35 Đề thi thử đại học 2010

pdf 36 trang phuongnguyen 6270
Bạn đang xem 20 trang mẫu của tài liệu "35 Đề thi thử đại học 2010", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pdf35_de_thi_thu_dai_hoc_2010.pdf

Nội dung text: 35 Đề thi thử đại học 2010

  1. TRƯỜNG KHOA o0o
  2. MATHVN.COM - www.mathvn.com Đề số 1 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm) Cho hàm số y= - x3 +3 x 2 - 2 (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C). 2) Tìm trên đường thẳng (d): y = 2 các điểm mà từ đó có thể kẻ được ba tiếp tuyến đến đồ thị (C). Câu II (2 điểm) 1) Giải phương trình: 2x+ 3 + x + 1 = 3 x + 2 2 x2 + 5 x + 3 - 16 . æ3p ö æ p ö 2) Giải phương trình: 2 2 cos2x+ sin2 x cosç x + ÷ - 4sin ç x + ÷ = 0 . è4 ø è 4 ø p 2 Câu III (1 điểm) Tính tích phân: I=ò (sin4 x + cos 4 x )(sin 6 x + cos 6 x ) dx . 0 Câu IV (2 điểm) Cho hình chóp S.ABC, đáy ABC là tam giác vuông tại B có AB = a, BC = a 3 , SA vuông góc với mặt phẳng (ABC), SA = 2a. Gọi M, N lần lượt là hình chiếu vuông góc của điểm A trên các cạnh SB và SC. Tính thể tích của khối chóp A.BCNM. Câu V (1 điểm) Cho a, b, c, d là các số dương. Chứng minh rằng: 1 1 1 1 1 + + + £ a444+++ b c abcd b 444 +++ c d abcd c 444 +++ d a abcd d 444 +++ a b abcd abcd II. PHẦN RIÊNG (3,0 điểm) A. Theo chương trình chuẩn. Câu VI.a (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, gọi A, B là các giao điểm của đường thẳng (d): 2x – y – 5 = 0 và đường tròn (C’): x2+ y 2 -20 x + 50 = 0 . Hãy viết phương trình đường tròn (C) đi qua ba điểm A, B, C(1; 1). 2) Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(4; 5; 6). Viết phương trình mặt phẳng (P) qua A, cắt các trục tọa độ lần lượt tại I, J, K mà A là trực tâm của tam giác IJK. Câu VII.a (1 điểm) Chứng minh rằng nếu a+ bi = (c + di)n thì a2+ b 2 =() c 2 + d 2 n . B. Theo chương trình nâng cao Câu VI.b (2 điểm) 3 1) Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có diện tích bằng , A(2; – 2 3), B(3; –2), trọng tâm của DABC nằm trên đường thẳng (d): 3x – y –8 = 0. Viết phương trình đường tròn đi qua 3 điểm A, B, C. 2) Trong không gian với hệ trục tọa độ Oxyz, cho bốn điểm A(4;5;6); B(0;0;1); C(0;2;0); D(3;0;0). Chứng minh các đường thẳng AB và CD chéo nhau. Viết phương trình đường thẳng (D) vuông góc với mặt phẳng Oxy và cắt các đường thẳng AB, CD. ìlog(x2+ y 2 ) - log(2) x + 1 = log( x + 3) y ï 4 4 4 Câu VII.b (1 điểm) Giải hệ phương trình: í 2 æx ö ïlog(4xy+ 1)log(4 - 4 y + 2 y - 2 x + 4) = log 4 ç ÷ - 1 î èy ø 1
  3. MATHVN.COM - www.mathvn.com Đề số 2 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) 3 2 Câu I. (2đ): Cho hàm số y= x -3 mx + 9 x - 7 có đồ thị (Cm). 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số khi m = 0 . 2. Tìm m để (Cm) cắt trục Ox tại 3 điểm phân biệt có hoành độ lập thành cấp số cộng. Câu II. (2đ): 1. Giải phương trình: sin2 3x- cos 2 4 x = sin 2 5 x - cos 2 6 x 21-x- 2 x + 1 2. Giải bất phương trình: ³0 2x - 1 3 x+7 - 5 - x2 Câu III. (1đ) Tính giới hạn sau: A = lim x®1 x -1 Câu IV (1đ): Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật; SA ^ (ABCD); AB = SA = 1; AD = 2 . Gọi M, N lần lượt là trung điểm của AD và SC; I là giao điểm của BM và AC. Tính thể tích khối tứ diện ANIB. Câu V (1đ): Biết (;)x y là nghiệm của bất phương trình: 5x2+ 5 y 2 - 5 x - 15 y + 8 £ 0 . Hãy tìm giá trị lớn nhất của biểu thức F= x + 3 y . II. PHẦN TỰ CHỌN (3đ) A. Theo chương trình chuẩn: Câu VI.a (2đ) x2 y 2 1. Trong mặt phẳng với hệ toạ độ Oxy, cho elip (E): + = 1. A, B là các điểm trên 25 16 (E) sao cho: AF1+ BF2 = 8 , với FF1; 2 là các tiêu điểm. Tính AF2+ BF 1 . 2. Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng ()a : 2x- y - z - 5 = 0 và điểm A(2;3;- 1) . Tìm toạ độ điểm B đối xứng với A qua mặt phẳng ()a . Câu VIIa. (1đ): Giải phương trình: 3 2 3 3 log1( x+ 2) - 3 = log 1( 4 - x) + log 1 ( x + 6) 2 4 4 4 B. Theo chương trình nâng cao: Câu VI.b (2đ) 1. Trong mặt phẳng với hệ toạ độ Oxy, viết phương trình đường tròn đi qua A(2;- 1) và tiếp xúc với các trục toạ độ. x+1 y - 1 z - 2 2. Trong không gian với hệ toạ độ Oxyz, cho đường thẳng d : = = và mặt 2 1 3 phẳng P : x- y - z -1 = 0 . Viết phương trình đường thẳng D đi qua A(1;1;- 2) , song song với mặt phẳng ()P và vuông góc với đường thẳng d . mx2+( m 2 + 1) x + 4 m 3 + m Câu VII.b (1đ) Cho hàm số: y = có đồ thị ()C . x+ m m Tìm m để một điểm cực trị của ()Cm thuộc góc phần tư thứ I, một điểm cực trị của ()Cm thuộc góc phần tư thứ III của hệ toạ độ Oxy. 2
  4. MATHVN.COM - www.mathvn.com Đề số 3 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I: (2 điểm) Cho hàm số y= x3 -3 x 2 + 1 có đồ thị (C). 1. Khảo sát sự biến thiên và vẽ đồ thị (C). 2. Tìm hai điểm A, B thuộc đồ thị (C) sao cho tiếp tuyến của (C) tại A và B song song với nhau và độ dài đoạn AB = 4 2 . Câu II: (2 điểm) 1 1 1. Giải phương trình: log (x+ 3) + log( x - 1)8 = 3log(4) x . 22 4 4 8 æp ö 2. Tìm nghiệm trên khoảng ç0; ÷ của phương trình: è2 ø 2 æx ö æp ö2 æ 3 p ö 4sinçp - ÷ - 3 sin ç - 2x ÷ = 1 + 2 cos ç x- ÷ è2 ø è 2 ø è4 ø Câu III: (1 điểm) Cho hàm số f(x) liên tục trên R và f( x )+ f ( - x ) = cos4 x với mọi xÎR. p 2 Tính: I= ò f( x) dx . -p 2 Câu IV: (1 điểm) Cho hình chóp S.ABCD có đáy ABCD là một hình vuông tâm O. Các mặt bên (SAB) và (SAD) vuông góc với đáy (ABCD). Cho AB = a, SA = a 2 . Gọi H, K lần lượt là hình chiếu của A trên SB, SD .Tính thể tích khối chóp O.AHK. Câu V: (1 điểm) Cho bốn số dương a, b, c, d thoả mãn a + b + c + d = 4 . a b c d Chứng minh rằng: + + + ³ 2 1+b2 c 1 + c 2 d 1 + d 2 a 1 + a 2 b II. PHẦN RIÊNG (3 điểm) A. Theo chương trình chuẩn. Câu VI.a: (2 điểm) 3 1) Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có diện tích bằng , A(2;– 2 3), B(3;–2). Tìm toạ độ điểm C, biết điểm C nằm trên đường thẳng (d): 3x – y – 4 = 0. 2) Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(2;4;1),B(–1;1;3) và mặt phẳng (P): x – 3y + 2z – 5 = 0. Viết phương trình mặt phẳng (Q) đi qua hai điểm A, B và vuông góc với mặt phẳng (P). Câu VII.a: (1 điểm) Tìm các số thực b, c để phương trình z2 + bz + c = 0 nhận số phức z=1 + i làm một nghiệm. B. Theo chương trình nâng cao Câu VI.b: (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có trọng tâm G(-2, 0) và phương trình các cạnh AB, AC theo thứ tự là: 4x + y + 14 = 0; 2x + 5y - 2 = 0 . Tìm tọa độ các đỉnh A, B, C. 2) Trong không gian với hệ toạ độ Oxyz, cho các điểm A(2,0,0); B(0,4,0); C(2,4,6) và ì6x- 3y + 2z = 0 đường thẳng (d) í . Viết phương trình đường thẳng D // (d) và cắt î6x+ 3y + 2z - 24 = 0 các đường thẳng AB, OC. Câu VII.b: (1 điểm) Giải phương trình sau trong tập số phức: z4––– z 3+6 z 2 8 z 16 = 0 . 3
  5. MATHVN.COM - www.mathvn.com Đề số 4 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2.0 điểm). Cho hàm số y= x4 -5 x 2 + 4, có đồ thị (C). 1. Khảo sát sự biến thiên và vẽ đồ thị (C). 4 2 2. Tìm m để phương trình x-5 x + 4 = log2 m có 6 nghiệm. Câu II (2.0 điểm). 1 1 1. Giải phương trình: sin2x+ sin x - - = 2cot 2 x (1) 2sinx sin2 x 2. Tìm m để phương trình sau có nghiệm x Îé0;1 + 3 ù : ë û m( x2 -2 x + 2 + 1) + x (2 - x ) £ 0 (2) 4 2x + 1 Câu III (1.0 điểm). Tính I= ò dx 0 1+ 2x + 1 Câu IV (1.0 điểm). Cho lăng trụ đứng ABC.A1B1C1 có AB = a, AC = 2a, AA1 = 2a 5 và o ·BAC =120 . Gọi M là trung điểm của cạnh CC1. Chứng minh MB ^ MA1 và tính khoảng cách d từ điểm A tới mặt phẳng (A1BM). Câu V (1.0 điểm). Cho x, y, z là các số dương. Chứng minh: 3x+ 2 y + 4 z ³ xy + 3 yz + 5 zx II. PHẦN RIÊNG (3.0 điểm) A. Theo chương trình Chuẩn. Câu VI.a. (2.0 điểm). Trong không gian với hệ tọa độ Oxyz, cho các điểm B(- 1; 3; 0), C (1; 3; 0), M (0; 0; a ) với a > 0. Trên trục Oz lấy điểm N sao cho mặt phẳng (NBC) vuông góc với mặt phẳng (MBC). 1. Cho a = 3 . Tìm góc a giữa mặt phẳng (NBC) và mặt phẳng (OBC). 2. Tìm a để thể tích của khối chóp BCMN nhỏ nhất ïìx+ x2 -2 x + 2 = 3y- 1 + 1 Câu VII.a. (1.0 điểm). Giải hệ phương trình: í (,) x y Î 2x- 1 ¡ îïy+ y -2 y + 2 = 3 + 1 B. Theo chương trình Nâng cao. Câu VI.b. (2.0 điểm). Trong không gian Oxyz cho hai điểm A (–1; 3; –2), B (–3; 7; –18) và mặt phẳng (P): 2x – y + z + 1 = 0 1. Viết phương trình mặt phẳng chứa AB và vuông góc với mp (P). 2. Tìm tọa độ điểm M Î (P) sao cho MA + MB nhỏ nhất. 2 Câu VII. b. (1.0 điểm). Giải bất phương trình: (log8x + log4x )log 2 2 x ³ 0 4
  6. MATHVN.COM - www.mathvn.com Đề số 5 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) 2x + 1 Câu I (2 điểm) Cho hàm số y = có đồ thị (C). x -1 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số . 2. Với điểm M bất kỳ thuộc đồ thị (C) tiếp tuyến tại M cắt 2 tiệm cận tại Avà B. Gọi I là giao điểm hai tiệm cận . Tìm vị trí của M để chu vi tam giác IAB đạt giá trị nhỏ nhất. Câu II (2 điểm) 3sin2x - 2sin x 1. Giải phương trình: = 2 (1) sin2x .cos x ïì 4 2 2 2. Giải hệ phương trình : x-4 x + y - 6 y + 9 = 0 (2) í 2 2 îïx y+ x +2 y - 22 = 0 p 2 2 Câu III (1 điểm) Tính tích phân sau: I= ò esinx .sin x .cos 3 x . dx 0 Câu IV (1 điểm) Cho hình chóp tứ giác đều S.ABCD có cạnh bên bằng a, mặt bên hợp với đáy góc a . Tìm a để thể tích của khối chóp đạt giá trị lớn nhất. Câu V (1 điểm) Cho x, y, z là các số dương. Tìm giá trị nhỏ nhất của biểu thức: æx y z ö P=3 4(x3 + y) 3 +3 4(x 3 + z) 3 + 3 4(z 3 + x)2 3 +ç + + ÷ ç2 2 2 ÷ èy z x ø II. PHẦN RIÊNG (3 điểm) A. Theo chương trình chuẩn Câu VI.a (2 điểm) 1 1. Trong mặt phẳng với hệ toạ độ Oxy, cho hình chữ nhật ABCD có tâm I( ; 0) . 2 Đường thẳng chứa cạnh AB có phương trình x – 2y + 2 = 0, AB = 2AD. Tìm toạ độ các đỉnh A, B, C, D, biết đỉnh A có hoành độ âm . 2. Trong không gian với hệ toạ độ Oxyz, cho 2 đường thẳng ()d1 và ()d2 có phương x-1 y + 1 z - 2 x - 4 y - 1 z - 3 trình: (d );= = ; ( d ) : = = . 12 3 1 2 6 9 3 Lập phương trình mặt phẳng (P) chứa (d 1 ) và ()d2 . Câu VII.a (1 điểm) Tìm m để phương trình sau có 2 nghiệm phân biệt : 10x2+ 8 x + 4 = m (2 x + 1). x 2 + 1 (3) B. Theo chương trình nâng cao Câu VI.b (2 điểm) 1. Trong mặt phẳng với hệ toạ độ Oxy, cho hình vuông ABCD biết M(2;1); N(4; –2); P(2;0); Q(1;2) lần lượt thuộc cạnh AB, BC, CD, AD. Hãy lập phương trình các cạnh của hình vuông. 2. Trong không gian với hệ toạ độ Oxyz, cho 2 đường thẳng (D) và (D¢) có phương ìx=3 + t ì x = - 2 + 2 t ' ï ï trình: ():DD í y= - 12 + t ;(): ¢ í y = 2' t îïz =4 îï z = 2 + 4 t ' Viết phương trình đường vuông góc chung của (D) và (D¢). Câu VII.b (1 điểm) Giải và biện luận phương trình: mx+1 .( m2 x 2 + 2 mx + 2) = x 3 - 3 x 2 + 4 x - 2 (4) 5
  7. MATHVN.COM - www.mathvn.com Đề số 6 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu 1 (2 điểm): Cho hàm số y= x3 - 3 x (1 ) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1). 2) Chứng minh rằng khi m thay đổi, đường thẳng (d): y = m(x +1) + 2 luôn cắt đồ thị (C) tại một điểm M cố định và xác định các giá trị của m để (d) cắt (C) tại 3 điểm phân biệt M, N, P sao cho tiếp tuyến với đồ thị (C) tại N và P vuông góc với nhau. Câu 2 (2 điểm): 1) Giải phương trình: 5.32x- 1- 7.3 x - 1 + 16.3 - x + 9 x + 1 = 0 (1) 2) Tìm tất cả các giá trị của tham số m để hệ phương trình sau có 2 nghiệm phân biệt: ìlog (x+ 1) - log ( x - 1) > log4 () a ï 3 3 3 í (2) log(x2 - 2 x + 5) - m log 25() = b îï 2 (x2 - 2 x + 5) ìx3=9 z 2 - 27( z - 1) ( a ) ï Câu 3 (1 điểm): Giải hệ phương trình: íy3=9 x 2 - 27( x - 1) ( b ) (3) ï 3 2 îz=9 y - 27( y - 1) ( c ) Câu 4 (1 điểm): Cho hình chóp S.ABCD có đáy là hình chữ nhật, AB =2a, BC= a, các cạnh bên của hình chóp bằng nhau và bằng a 2 . Gọi M, N tương ứng là trung điểm của các a cạnh AB, CD; K là điểm trên cạnh AD sao cho AK = . Hãy tính khoảng cách giữa hai 3 đường thẳng MN và SK theo a. Câu 5 (1 điểm) Cho các số a, b, c > 0 thoả mãn: a + b + c =1. Tìm giá trị nhỏ nhất của biểu a b c thức: T = + + . 1 a 1 b 1 c II. PHẦN RIÊNG (3 điểm) A. Theo chương trình chuẩn Câu 6a (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho điểm A(0; 2) và đường thẳng d: x – 2y + 2 = 0. Tìm trên d hai điểm B, C sao cho tam giác ABC vuông tại B và AB = 2BC. 2) Trong không gian với hệ trục Oxyz, cho mặt cầu (S) có phương trình: x2 + y2 + z2 – 2x + 4y + 2z – 3 = 0 và mặt phẳng (P): 2x – y + 2z – 14 = 0. Viết phương trình mặt phẳng (Q) chứa trục Ox và cắt mặt cầu (S) theo một đường tròn có bán kính bằng 3. Câu 7a (1 điểm) Tìm các số thực a, b, c để có: z3-2(1 + iz ) 2 + 4(1 + izizaizbzc ) - 8 = ( - )( 2 + + ) Từ đó giải phương trình: z3-2(1 + i ) z 2 + 4(1 + i ) z - 8 i = 0 trên tập số phức. Tìm môđun của các nghiệm đó. B. Theo chương trình nâng cao Câu 6b (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C): x2 + y2 – 6x + 5 = 0. Tìm điểm M thuộc trục tung sao cho qua M kẻ được hai tiếp tuyến của (C) mà góc giữa hai tiếp tuyến đó bằng 600. 2) Trong không gian với hệ toạ độ Oxyz, cho hai đường thẳng: (d1) : {x=2 t ; y = t ; z = 4 ; (d2) : {x=3 - t ; y = t ; z = 0 Chứng minh (d1) và (d2) chéo nhau. Viết phương trình mặt cầu (S) có đường kính là đoạn vuông góc chung của (d1) và (d2). x ln10 e dx Câu 7b (1 điểm) Cho số thực b ³ ln2. Tính J = và tìm lim J. òb 3 ex - 2 b® ln2 6
  8. MATHVN.COM - www.mathvn.com Đề số 7 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) 3 2 Câu I (2 điểm): Cho hàm số y= x +2 mx + ( m + 3) x + 4 có đồ thị là (Cm). 1) Khảo sát sự biến thiên và vẽ đồ thị (C1) của hàm số trên khi m = 1. 2) Cho (d) là đường thẳng có phương trình y = x + 4 và điểm K(1; 3). Tìm các giá trị của tham số m sao cho (d) cắt (Cm) tại ba điểm phân biệt A(0; 4), B, C sao cho tam giác KBC có diện tích bằng 8 2 . Câu II (2 điểm): 1) Giải phương trình: cos2x+ 5 = 2(2 - cos x )(sin x - cos x ) (1) ïì8x3 y 3+ 27 = 18 y 3 2) Giải hệ phương trình: (2) í 2 2 îï4x y+ 6 x = y p 2 2 1 Câu III (1 điểm): Tính tích phân: I = ò sinx× sin x + dx p 2 6 Câu IV (1 điểm): Cho hình chóp S.ABC có góc giữa hai mặt phẳng (SBC) và (ACB) bằng 600, ABC và SBC là các tam giác đều cạnh a. Tính khoảng cách từ B đến mp(SAC). Câu V (1 điểm) Tìm các giá trị của tham số thực m sao cho phương trình sau có nghiệm thực: 2 2 91+ 1 -x- (m + 2)3 1 + 1 - x + 2 m + 1 = 0 (3) II. PHẦN RIÊNG (3 điểm) A. Theo chương trình chuẩn: Câu VIa (2 điểm): 1) Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C) có phương trình ()()x-12 + y + 2 2 = 9 và đường thẳng d: x + y + m = 0. Tìm m để trên đường thẳng d có duy nhất một điểm A mà từ đó kẻ được hai tiếp tuyến AB, AC tới đường tròn (C) (B, C là hai tiếp điểm) sao cho tam giác ABC vuông. 2) Trong không gian với hệ tọa độ Oxyz, cho điểm A(10; 2; –1) và đường thẳng d có x 1 y z 1 phương trình: = = . Lập phương trình mặt phẳng (P) đi qua A, song song với 2 1 3 d và khoảng cách từ d tới (P) là lớn nhất. Câu VIIa (1 điểm): Cho ba số thực dương a, b, c thỏa mãn abc = 1. Chứng minh rằng: 4a3 4 b 3 4 c 3 + + ³ 3 (4) (1+b )(1 + c ) (1 + c )(1 + a ) (1 + a )(1 + b ) B. Theo chương trình nâng cao: Câu VIb (2 điểm): 1) Trong mặt phẳng với hệ toạ độ Oxy, cho điểm A(2;–3), B(3;–2), tam giác ABC có 3 diện tích bằng ; trọng tâm G của DABC nằm trên đường thẳng (d): 3x – y – 8 = 0. 2 Tìm bán kính đường tròn nội tiếp D ABC. 2) Trong không gian với hệ toạ độ Oxyz, cho đường thẳng (d) là giao tuyến của 2 mặt phẳng (P): 2x – 2y – z + 1 = 0, (Q): x + 2y – 2z – 4 = 0 và mặt cầu (S): x2 + y2 + z2 + 4x – 6y + m = 0. Tìm m để (S) cắt (d) tại 2 điểm M, N sao cho độ dài MN = 8. ìlog(x2+ y 2 ) = 1log( + xy ) ï 2 2 Câu VIIb (1 điểm): Giải hệ phương trình : í (x, y Î R) x2- xy + y 2 îï3= 81 7
  9. MATHVN.COM - www.mathvn.com Đề số 8 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) 4 2 2 Câu I: (2 điểm) Cho hàm số f( x )= x + 2( m - 2) x + m - 5 m + 5 (Cm) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số với m = 1 2) Tìm m để (Cm) có các điểm cực đại, cực tiểu tạo thành 1 tam giác vuông cân. Câu II: (2 điểm) 1 1 1) Giải bất phương trình sau trên tập số thực: £ (1) x+2 - 3 - x 5 - 2 x 2) Tìm các nghiệm thực của phương trình sau thoả mãn 1+ log1 x ³ 0 : 3 sinx .tan2 x+ 3(sin x - 3tan2) x = 3 3 (2) 1 æ1- x ö ç ÷ Câu III: (1 điểm) Tính tích phân sau: I=òç -2 x ln( 1 + x) ÷ dx 0 è1+ x ø Câu IV: (1 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình thoi với µA =1200 , BD = a >0. Cạnh bên SA vuông góc với đáy. Góc giữa mặt phẳng (SBC) và đáy bằng 600. Một mặt phẳng (α) đi qua BD và vuông góc với cạnh SC. Tính tỉ số thể tích giữa hai phần của hình chóp do mặt phẳng (α) tạo ra khi cắt hình chóp. Câu V: (1 điểm) Cho ba số thực dương a, b, c thoả mãn abc+ a + c = b . Hãy tìm giá trị lớn 2 2 3 nhất của biểu thức: P = - + (3) a2+1 b 2 + 1 c 2 + 1 II. PHẦN RIÊNG (3 điểm ) A. Theo chương trình chuẩn Câu VI.a: (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x+ y +1 = 0 . Phương trình đường cao vẽ từ B là: x-2 y - 2 = 0 . Điểm M(2;1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC. 2) Trong không gian với hệ toạ độ Oxyz, viết phương trình đường thẳng (d) đi qua x+2 y z - 1 M(1;1;1), cắt đường thẳng (d ) : = = và vuông góc với đường thẳng 1 3 1- 2 (d2 ) : x= - 2 + 2 t ; y = - 5 t ; z = 2 + t ( tÎ R ). 1 2 3n n 2 n n Câu VII.a: (1 điểm) Giải phương trình: CCCCn+3 n + 7 n + + (2 - 1) n = 3 - 2 - 6480 B. Theo chương trình nâng cao Câu VI.b: (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho Elip (E): x2+5 y 2 = 5 , Parabol (P ) : x= 10 y2 . Hãy viết phương trình đường tròn có tâm thuộc đường thẳng (D ) :x+ 3 y - 6 = 0 , đồng thời tiếp xúc với trục hoành Ox và cát tuyến chung của Elip (E) với Parabol (P). 2) Trong không gian với hệ toạ độ Oxyz, viết phương trình đường thẳng (d) vuông góc với mặt phẳng (P): x+ y + z -1 = 0 đồng thời cắt cả hai đường thẳng x-1 y + 1 z (d ) : = = và (d ) : x= - 1 + t ; y = - 1; z = - t , với tÎ R . 1 2- 1 1 2 2 ïìx=1 + 6log4 y ( a ) Câu VII.b: (1 điểm) Giải hệ phương trình sau trên tập số thực: . (4) í 2x 2 x+ 1 îïy=2 y + 2 ( b ) 8
  10. MATHVN.COM - www.mathvn.com Đề số 9 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm) Cho hàm số y = x3 + (1 – 2m)x2 + (2 – m)x + m + 2 (m là tham số) (1) 1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 2. 2) Tìm các giá trị của m để đồ thị hàm số (1) có điểm cực đại, điểm cực tiểu, đồng thời hoành độ của điểm cực tiểu nhỏ hơn 1. Câu II (2 điểm) 2+ 3 2 1) Giải phương trình: cos3x cos3 x- sin3 x sin 3 x = (1) 8 ïìx2 +1 + y ( y + x ) = 4 y 2) Giải hệ phương trình: (x, y Î ) (2) í 2 îï(x+ 1)( y + x - 2) = y 5 dx Câu III (1 điểm) Tính tích phân: I = ò 3 2x+ 1 + 4 x + 1 a 3 Câu IV (1 điểm) Cho hình hộp đứng ABCD.A’B’C’D’ có các cạnh AB=AD = a, AA’ = 2 và góc BAD = 600 . Gọi M và N lần lượt là trung điểm của các cạnh A’D’ và A’B’. Chứng minh rằng AC’ vuông góc với mặt phẳng (BDMN). Tính thể tích khối chóp A.BDMN. Câu V (1 điểm) Cho x,y là các số thực thỏa mãn điều kiện x2+xy+y2 £ 3 .Chứng minh rằng: ––––4 3 3£x2 xy 3 y 2 £ 4 3 + 3 II. PHẦN RIÊNG (3 điểm) A. Theo chương trình chuẩn Câu VI.a (2 điểm) 1) Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có đỉnh A thuộc đường thẳng d: x – 4y –2 = 0, cạnh BC song song với d, phương trình đường cao BH: x + y + 3 = 0 và trung điểm của cạnh AC là M(1; 1). Tìm tọa độ các đỉnh A, B, C. 2) Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (a): 3x + 2y – z + 4 = 0 và hai điểm A(4;0;0) , B(0;4;0) .Gọi I là trung điểm của đoạn thẳng AB. Xác định tọa độ điểm K sao cho KI vuông góc với mặt phẳng (a), đồng thời K cách đều gốc tọa độ O và (a). ìln(1+x ) = ln(1 + y ) = x - y ( a ) Câu VII.a (1 điểm) Giải hệ phương trình: í 2 2 îx-12 xy + 20 y = 0 ( b ) B. Theo chương trình nâng cao Câu VI.b (2 điểm) 1) Trong mặt phẳng với hệ tọa độ Oxy cho DABC có cạnh AC đi qua điểm M(0;– 1). Biết AB = 2AM, phương trình đường phân giác trong AD: x – y = 0, phương trình đường cao CH: 2x + y + 3 = 0. Tìm tọa độ các đỉnh của DABC. 2) Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P): 4x – 3y + 11z = 0 và hai x y - 3 z +1 x - 4 y z - 3 đường thẳng d1: = = , = = . Chứng minh rằng d1 và d2 -1 2 3 1 1 2 chéo nhau. Viết phương trình đường thẳng D nằm trên (P), đồng thời D cắt cả d1 và d2. Câu VII.b (1 điểm) Giải phương trình: 4x– 2 x+1 + 2 ( 2 x – 1 )sin( 2 x + y – 1 ) + 2 = 0 . 9
  11. MATHVN.COM - www.mathvn.com Đề số 10 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) 2x +1 Câu I (2 điểm). Cho hàm số y = có đồ thị là (C). x + 2 1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số. 2) Chứng minh đường thẳng d: y = –x + m luôn luôn cắt đồ thị (C) tại hai điểm phân biệt A, B. Tìm m để đoạn AB có độ dài nhỏ nhất. Câu II (2 điểm) 1) Giải phương trình: 9sinx + 6cosx – 3sin2x + cos2x = 8 2 2 2 2) Giải bất phương trình: log 2 x - log 2 x - 3 > 5(log 4 x - 3) dx Câu III (1 điểm). Tìm nguyên hàm I = ò sin 3 x.cos5 x Câu IV (1 điểm). Cho lăng trụ tam giác ABC.A1B1C1 có tất cả các cạnh bằng a, góc tạo bởi cạnh bên và mặt phẳng đáy bằng 300. Hình chiếu H của điểm A trên mặt phẳng (A1B1C1) thuộc đường thẳng B1C1. Tính khoảng cách giữa hai đường thẳng AA1 và B1C1 theo a. Câu V (1 điểm). Cho ba số thực không âm a, b, c thỏa mãn: a2009 + b2009 + c2009 = 3. Tìm giá trị lớn nhất của biểu thức: P = a4 + b4 + c4. II. PHẦN RIÊNG (3 điểm) A. Theo chương trình chuẩn Câu VIa (2 điểm). 1) Trong mặt phẳng với hệ toạ độ Oxy, cho 2 đường thẳng (d1): x-7 y + 17 = 0 , (d2): x+ y -5 = 0 . Viết phương trình đường thẳng (d) qua điểm M(0;1) tạo với (d1), (d2) một tam giác cân tại giao điểm của (d1), (d2). 2) Trong không gian với hệ toạ độ Oxyz, cho hình hộp chữ nhật ABCD.A’B’C’D’ có A º O, B(3;0;0), D(0;2;0), A’(0;0;1). Viết phương trình mặt cầu tâm C tiếp xúc với AB’. Câu VIIa (1 điểm). Có bao nhiêu số tự nhiên có 4 chữ số khác nhau và khác 0 mà trong mỗi số luôn luôn có mặt hai chữ số chẵn và hai chữ số lẻ. 2.Theo chương trình nâng cao (3 điểm) Câu VIb (2 điểm) 1) Trong mặt phẳng với hệ tọa độ Oxy, cho điểm M(1; 0). Lập phương trình đường thẳng (d) đi qua M và cắt hai đường thẳng (d1): x + y + 1 = 0, (d2): x – 2y + 2 = 0 lần lượt tại A, B sao cho MB = 3MA. 2) Trong không gian với hệ toạ độ Oxyz, cho điểm M(0;1;1) và 2 đường thẳng (d1), (d2) x-1 y + 2 z với: (d1): = = ; (d2) là giao tuyến của 2 mặt phẳng (P): x +1 = 0 và (Q): 3 2 1 x+ y - z +2 = 0 . Viết phương trình đường thẳng (d) qua M vuông góc (d1) và cắt (d2). Câu VIIb (1 điểm) Tìm hệ số của x8 khai triển Newtơn của biểu thức P=(1 + x2 - x 3 ) 8 . 10
  12. MATHVN.COM - www.mathvn.com Đề số 11 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) x +1 Câu I: (2 điểm) Cho hàm số y = (C). x -1 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Tìm trên trục tung tất cả các điểm từ đó kẻ được duy nhất một tiếp tuyến tới (C). Câu II: (2 điểm) 1) Giải phương trình: log2 (x 2+ 1) + ( x 2 - 5)log( x 2 + 1) - 5 x 2 = 0 2) Tìm nghiệm của phương trình: cosx+ cos2 x + sin 3 x = 2 thoả mãn : x -1 < 3 1 Câu III: (1 điểm) Tính tích phân: I=ò xln( x2 + x + 1) dx 0 Câu IV: (1 điểm) Cho hình lăng trụ đứng ABC.A’B’C’ có DABC là tam giác vuông tại B và AB = a, BC = b, AA’ = c ( c2³ a 2 + b 2 ). Tính diện tích thiết diện của hình lăng trụ bị cắt bởi mặt phẳng (P) đi qua A và vuông góc với CA¢. Câu V: (1 điểm) Cho các số thực x, y , z Î (0;1) và xy+ yz + zx =1. Tìm giá trị nhỏ nhất của x y z biểu thức: P = + + 1 x2 1 y 2 1 z 2 II. PHẦN RIÊNG (3 điểm): A. Theo chương trình chuẩn: Câu VI.a: (2 điểm) 1) Trong không gian với hệ toạ độ Oxyz, cho đường thẳng (d) có phương trình: { x= - t ; y= -1 + 2 t ; z=2 + t ( tÎ R ) và mặt phẳng (P): 2x- y - 2 z - 3 = 0 .Viết phương trình tham số của đường thẳng D nằm trên (P), cắt và vuông góc với (d). x2 y 2 2) Trong mặt phẳng với hệ toạ độ Oxy, cho elip (E): + =1. Viết phương trình 9 4 đường thẳng d đi qua I(1;1) cắt (E) tại 2 điểm A và B sao cho I là trung điểm của AB. ìz- w - zw = 8 Câu VII.a: (1 điểm) Giải hệ phương trình sau trên tập số phức: í 2 2 îz+ w = -1 B. Theo chương trình nâng cao: Câu VI.b: (2 điểm) 1) Trong không gian với hệ toạ độ Oxyz, cho 4 điểm A(2;4;–1), B(1;4;–1), C(2;4;3), D(2;2;–1). Tìm tọa độ điểm M để MA2 + MB2 + MC2 + MD2 đạt giá trị nhỏ nhất. 2) Trong mặt phẳng với hệ tọa độ Oxy, cho DABC cân có đáy là BC. Đỉnh A có tọa độ là các số dương, hai điểm B và C nằm trên trục Ox, phương trình cạnh AB : y= 3 7(x - 1). Biết chu vi củaDABC bằng 18, tìm tọa độ các đỉnh A, B, C. 2y- 1 ïìx+ x -2 x + 2 = 3 + 1 Câu VII.b: (1 điểm) Giải hệ phương trình: í (,) x yÎ R 2x- 1 îïy+ y -2 y + 2 = 3 + 1 11
  13. MATHVN.COM - www.mathvn.com Đề số 12 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) 3 2 Câu I: (2 điểm) Cho hàm số y= x -3 m x + 2 m (Cm). 1) Khảo sát sự biến thiên và vẽ đồ thị hàm số khi m = 1 . 2) Tìm m để (Cm) và trục hoành có đúng 2 điểm chung phân biệt. Câu II: (2 điểm) (sin2x- sin x + 4)cos x - 2 1) Giải phương trình: = 0 2sinx + 3 2) Giải phương trình: 8x+ 1 = 2 3 2 x+1 - 1 p 2 sin xdx Câu III: (1 điểm) Tính tích phân: I = ò 3 0 (sinx+ cos x ) Câu IV: (1 điểm) Cho khối chóp S.ABC có SA ^ (ABC), DABC vuông cân đỉnh C và SC = a . Tính gócj giữa 2 mặt phẳng (SCB) và (ABC) để thể tích khối chóp lớn nhất. Câu V: (1 điểm) Tìm m để phương trình sau đây có đúng 2 nghiệm thực phân biệt: 2-x - 2 + x - (2 - x )(2 + x ) = m II. PHẦN RIÊNG (3 điểm): A. Theo chương trình chuẩn: Câu VI.a: (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho điểm M(3;1). Viết phương trình đường thẳng d đi qua M cắt các tia Ox, Oy tại A và B sao cho (OA+3OB) nhỏ nhất. 2) Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(1;2;3) và B(3;4;1). Tìm toạ độ điểm M thuộc mặt phẳng (P): x- y + z -1 = 0 để DMAB là tam giác đều. n 20 æ2 5 ö Câu VII.a: (1 điểm) Tìm hệ số của x trong khai triển Newton của biểu thức ç+ x ÷ , èx3 ø 1 1 1 1 biết rằng: CCCC0- 1 + 2 + + ( - 1)n n = n2 n 3 nn + 1 n 13 B. Theo chương trình nâng cao: Câu VI.b: (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho 4 điểm A(1;0), B(–2;4), C(–1;4), D(3;5). Tìm toạ độ điểm M thuộc đường thẳng (D ) :3x- y - 5 = 0 sao cho hai tam giác MAB, MCD có diện tích bằng nhau. 2) Trong không gian với hệ toạ độ Oxyz, cho đường thẳng ()D1 có phương trình {x=2 t ; y = t ; z = 4 ; ()D2 là giao tuyến của 2 mặt phẳng (a ) :x+ y - 3 = 0 và (b ) : 4x+ 4 y + 3 z - 12 = 0 . Chứng tỏ hai đường thẳng DD1, 2 chéo nhau và viết phương trình mặt cầu nhận đoạn vuông góc chung của DD1, 2 làm đường kính. x2+(2 m + 1) x + m 2 + m + 4 Câu VII.b: (1 điểm) Cho hàm số y = . Chứng minh rằng với mọi m, 2(x+ m ) hàm số luôn có cực trị và khoảng cách giữa hai điểm cực trị không phụ thuộc m. 12
  14. MATHVN.COM - www.mathvn.com Đề số 13 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) x+3 m - 1 Câu I: (2 điểm) Cho hàm số y = có đồ thị là (Cm) (m là tham số) (2+m) x + 4 m 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m = 0. 2) Xác định m sao cho đường thẳng (d): y = - x + m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài đoạn AB là ngắn nhất. Câu II: (2 điểm) 1) Giải phương trình: sinx- cosx + 4sin 2 x = 1 . 2 2 ïìx y- x + y = 2 2) Tìm m để hệ phương trình: í 2 2 có ba nghiệm phân biệt. îïm( x+ y) - x y = 4 1 e xex +1 Câu III: (1 điểm) Tính các tích phân I= x31 - x 2 dx ; J = dx ò ò x 0 1 x( e+ ln x ) Câu IV: (1điểm) Cho hình lập phương ABCD.A'B'C'D' cạnh bằng a và điểm M trên cạnh AB sao cho AM = x, (0 < x < a). Mặt phẳng (MA'C') cắt BC tại N. Tính x theo a để thể tích 1 khối đa diện MBNC'A'B' bằng thể tích khối lập phương ABCD.A'B'C'D'. 3 Câu V: (1 điểm) Cho x, y là hai số dương thay đổi thoả điều kiện 4(x + y) – 5 = 0. Tìm giá 4 1 trị nhỏ nhất của biểu thức S = + . x4 y II. PHẦN RIÊNG (3 điểm) A. Theo chương trình Chuẩn : Câu VI.a (2 điểm) 1) Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng D1: 3x+ 4 y + 5 = 0 ; D2: 4x–– 3 y 5= 0 . Viết phương trình đường tròn có tâm nằm trên đường thẳng d: x – 6y – 10 = 0 và tiếp xúc với D1, D2. 2) Trong không gian với hệ tọa độ Oxyz, cho hình chóp A.OBC, trong đó A(1; 2; 4), B thuộc trục Ox và có hoành độ dương, C thuộc Oy và có tung độ dương. Mặt phẳng (ABC) vuông góc với mặt phẳng (OBC), tan·OBC = 2 . Viết phương trình tham số của đường thẳng BC. Câu VII.a (1 điểm) Giải phương trình: z2 -2(2 + i ) z + 7 + 4 i = 0 trên tập số phức. B. Theo chương trình Nâng cao : Câu VI.b (2 điểm) 1) Trong mặt phẳng với hệ tọa độ Oxy, cho các điểm M1(155; 48), M2(159; 50), M3(163; 54), M4(167; 58), M5(171; 60). Lập phương trình đường thẳng d đi qua điểm M(163; 50) sao cho đường thẳng đó gần các điểm đã cho nhất. 2) Trong không gian với hệ toạ độ Oxyz, cho ba điểm A(2;0;0), C(0;4;0), S(0; 0; 4).Tìm tọa độ điểm B trong mp(Oxy) sao cho tứ giác OABC là hình chữ nhật. Viết phương trình mặt cầu đi qua bốn điểm O, B, C, S. Câu VII.b (1 điểm) Chứng minh rằng : 8a4- 8 a 2 + 1 £ 1 , với mọi a thuộc đoạn [–1 ; 1]. 13
  15. MATHVN.COM - www.mathvn.com Đề số 14 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) 2x - 1 Câu I. (2 điểm) Cho hàm số y = (C) x +1 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Tìm các điểm M thuộc đồ thị (C) sao cho tổng các khoảng cách từ M đến hai tiệm cận của (C) là nhỏ nhất. Câu II. (2 điểm) ïì x+ y =1 1) Tìm m để hệ phương trình có nghiệm: í . îïx x+ y y =1 - 3 m 2) Giải phương trình: cos23xcos2x – cos2x = 0. p Câu III. (1 điểm) Tính tích phân: I=2 ( x + sin2 x )cos xdx . ò0 Câu IV. (1 điểm) Trên cạnh AD của hình vuông ABCD có độ dài là a, lấy điểm M sao cho AM = x (0 £ m £ a). Trên nửa đường thẳng Ax vuông góc với mặt phẳng (ABCD) tại điểm A, lấy điểm S sao cho SA = y (y > 0). Tính thể tích khối chóp S.ABCM theo a, y và x. Tìm giá trị lớn nhất của thể tích khối chóp S.ABCM, biết rằng x2 + y2 = a2. 1 1 1 Câu V. (1 điểm) Cho x, y, z là các số dương thoả mãn: + + =1. Chứng minh rằng: x y z 1 1 1 + + £1. 2z+ y + z x + 2 y + z x + y + 2 z II. PHẦN RIÊNG (3 điểm) A. Theo chương trình chuẩn Câu VI.a. (2 điểm) x2 y 2 1) Trong mặt phẳng với hệ toạ độ Oxy, cho điểm C(2; 0) và elip (E): + =1. Tìm 4 1 toạ độ các điểm A, B thuộc (E), biết rằng hai điểm A, B đối xứng với nhau qua trục hoành và tam giác ABC là tam giác đều. 2) Trong không gian với hệ toạ độ Oxyz, cho mặt cầu (S): x2 + y2 + z2 –2x + 2y + 4z – x y 1 z x 1 y z 3 = 0 và hai đường thẳng DD:,:= = = = . Viết phương trình tiếp 12 1 1 2 1 1 1 diện của mặt cầu (S), biết tiếp diện đó song song với hai đường thẳng D1 và D1. ì2.ACx+ 5. x = 90 Câu VII.a. (1 điểm) Giải hệ phương trình: ï y y í x x îï5.ACy- 2. y = 80 B. Theo chương trình nâng cao Câu VI.b. (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho parabol (P): y2 = 8x. Giả sử đường thẳng d đi qua tiêu điểm của (P) và cắt (P) tại hai điểm phân biệt A, B có hoành độ tương ứng là x1, x2. Chứng minh: AB = x1 + x2 + 4. 2) Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;5;0), B(3;3;6) và đường thẳng D có phương trình tham số {x= -1 + 2 t ; y = 1 - t ; z = 2 t . Một điểm M thay đổi trên đường thẳng D , xác định vị trí của điểm M để chu vi tam giác MAB đạt giá trị nhỏ nhất. 6 p t sin 2 dt 1 p ò 2 Câu VII.b. Tính đạo hàm của hàm số f( x )= ln và giải bpt: f'( x ) > 0 . (3 - x)3 x + 2 14
  16. MATHVN.COM - www.mathvn.com Đề số 15 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm): Cho hàm số: y=3 x - x3 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Tìm trên đường thẳng y = – x các điểm kẻ được đúng 2 tiếp tuyến tới đồ thị (C). Câu II (2 điểm): 3sin 2x- 2sin x 1) Giải phương trình.: = 2 sin 2x .cos x x 2) Tìm m để phương trình sau có nghiệm: x( x- 1) + 4( x - 1) = m x -1 p 2 2 Câu III (1 điểm): Tính tích phân I= ò esinx .sin x .cos 3 x . dx. 0 Câu IV (1 điểm): Cho hình nón đỉnh S, đường tròn đáy có tâm O và đường kính là AB = 2R. Gọi M là điểm thuộc đường tròn đáy và ·ASB = 2a , ·ASM = 2b . Tính thể tích khối tứ diện SAOM theo R, a và b . Câu V (1 điểm): Cho: a2+ b 2 + c 2 =1. Chứng minh: abc+2(1 + abc + + + ab + acbc + ) ³ 0 II. PHẦN RIÊNG (3 điểm) A. Theo chương trình chuẩn Câu VI.a (2 điểm) 1) Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C): (x – 1)2 + (y + 1)2 = 25 và điểm M(7; 3). Lập phương trình đường thẳng (d) đi qua M cắt (C) tại hai điểm A, B phân biệt sao cho MA = 3MB. 2) Trong không gian với hệ toạ độ Oxyz, cho các điểm A(1;0;0); B(0;2;0); C(0;0;–2). Gọi H là hình chiếu vuông góc của O trên mặt phẳng (ABC), tìm tọa độ điểm H. 2 Câu VIIa (1 điểm) Giải phương trình: log2x+ ( x - 7)log 2 x + 12 - 4 x = 0 B. Theo chương trình nâng cao Câu VI.b (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho hình bình hành ABCD có diện tích bằng 4. Biết A(1;0), B(0;2) và giao điểm I của hai đường chéo nằm trên đường thẳng y = x. Tìm tọa độ các đỉnh C và D. 2) Trong không gian với hệ tọa độ Oxyz, cho DABC với tọa độ đỉnh C(3; 2; 3) và phương trình đường cao AH, phương trình đường phân giác trong BD lần lượt là: x 2 y 3 z 3 x 1 y 4 z 3 d : = = , d : = = . 1 1 1- 2 2 1- 2 1 Lập phương trình đường thẳng chứa cạnh BC của DABC và tính diện tích của DABC . Câu VII.b (1 điểm) Giải phương trình: 2008x = 2007 x + 1. 15
  17. MATHVN.COM - www.mathvn.com Đề số 16 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) 2x - 4 Câu I: (2 điểm) Cho hàm số y = . x +1 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Tìm trên (C) hai điểm đối xứng nhau qua đường thẳng MN biết M(–3;0) và N(–1; –1) Câu II: (2 điểm) 1 3x 7 1) Giải phương trình: 4cos4x – cos2x -cos4x + cos = 2 4 2 2) Giải phương trình: 3x.2x = 3x + 2x + 1 p 2 æ1+ sin x ö x Câu III: (1 điểm) Tính tích phân: K = òç ÷.e dx 0 è1+ cos x ø Câu IV: (1 điểm) Cho hình chóp tam giác đều S.ABC có độ dài cạnh bên bằng 1. Các mặt bên hợp với mặt phẳng đáy một góc α. Tính thể tích hình cầu nội tiếp hình chóp S.ABC. Câu V: (1 điểm) Gọi a, b, c là ba cạnh của một tam giác có chu vi bằng 2. Chứng minh rằng: 52 £a2 + b 2 + c 2 +2 abc < 2 27 II. PHẦN RIÊNG: (3 điểm) A. Theo cương trình chuẩn: Câu VI.a: (2 điểm) 1) Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác có phương trình hai cạnh là 5x – 2y + 6 = 0 và 4x + 7y – 21 = 0. Viết phương trình cạnh thứ ba của tam giác đó, biết rằng trực tâm của nó trùng với gốc tọa độ O. 2) Trong không gian với hệ toạ Oxyz, tìm trên Ox điểm A cách đều đường thẳng x-1 y z + 2 (d) : = = và mặt phẳng (P) : 2x – y – 2z = 0 1 2 2 cos x p Câu VII.a: (1 điểm) Tìm giá trị nhỏ nhất hàm số y = với 0 < x ≤ . sin2 x (2cos x- sin x ) 3 B. Theo chương trình nâng cao: Câu VI.b: (2 điểm) 1) Trong mặt phẳng với hệ trục tọa độ Oxy, cho đường thẳng (D): x – 3y – 4 = 0 và đường tròn (C): x2 + y2 – 4y = 0. Tìm M thuộc (D) và N thuộc (C) sao cho chúng đối xứng qua điểm A(3;1). x 2 y z 4 2) Trong không gian với hệ trục toạ độ Oxyz, cho đường thẳng (d): = = 3- 2 2 và hai điểm A(1;2; –1), B(7; –2;3). Tìm trên (d) những điểm M sao cho khoảng cách từ đó đến A và B là nhỏ nhất. æ2p 2 p ö 3 Câu VII.b: (1 điểm) Cho a =3ç cos + i sin ÷ . Tìm các số phức β sao cho β = α. è3 3 ø 16
  18. MATHVN.COM - www.mathvn.com Đề số 17 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) 2x - 1 Câu I: (2 điểm) Cho hàm số y = (C) x -1 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Tìm m để đường thẳng d: y = x + m cắt (C) tại hai điểm phân biệt A, B sao cho DOAB vuông tại O. Câu II: (2 điểm) cos2 x .( cos x - 1) 1) Giải phương trình: =2( 1 + sin x) sinx+ cos x ìx2+ y 2 - xy = 3 ( a ) 2) Giải hệ phương trình: ï í 2 2 îï x+1 + y + 1 = 4 ( b ) p 2 Câu III: (1 điểm) Tính tích phân: I=ò ( ecos x + sin x) .sin 2 xdx 0 Câu IV: (1 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. SA ^ (ABCD) và SA = a. Gọi M, N lần lượt là trung điểm AD, SC. Tính thể tích tứ diện BDMN và khoảng cách từ D đến mp(BMN). x2 Câu V: (1 điểm) Chứng minh rằng: ex +cos x ³ 2 + x - , " x Î R . 2 II. PHẦN RIÊNG: (3 điểm) A. Theo chương trình chuẩn Câu VI.a: (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, lập phương trình đường thẳng d đi qua điểm A(1; 2) và cắt đường tròn (C) có phương trình (x- 2)2 + ( y + 1) 2 = 25 theo một dây cung có độ dài bằng 8. 2) Trong không gian với hệ toạ độ Oxyz, cho mặt cầu (S) có phương trình x 2 + y 2 + z2 - 2x + 4y - 6z -11 = 0 và mặt phẳng (a) có phương trình 2x + 2y – z + 17 = 0. Viết phương trình mặt phẳng (b) song song với (a) và cắt (S) theo giao tuyến là đường tròn có chu vi bằng 6p. Câu VII.a: (1 điểm) Lập số tự nhiên có 5 chữ số khác nhau từ các chữ số {0; 1; 2; 3; 4; 5; 6; 7}. Hãy tính xác suất để lập được số tự nhiên chia hết cho 5. B. Theo chương trình nâng cao Câu VI.b: (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho DABC biết: B(2; –1), đường cao qua A có phương trình d1: 3x – 4y + 27 = 0, phân giác trong góc C có phương trình d2: x + 2y – 5 = 0. Tìm toạ độ điểm A. 2) Trong không gian với hệ tọa độ Oxyz, cho các điểm A(–1; –1; 0), B(1; –1; 2), C(2; – 2; 1), D(–1;1;1). Viết phương trình mặt phẳng (a) đi qua D và cắt ba trục tọa độ tại các điểm M, N, P khác gốc O sao cho D là trực tâm của tam giác MNP. 0 1 2 1004 Câu VII.b: (1 điểm) Tính tổng: SCCCC=2009 + 2009 + 2009 + + 2009 17
  19. MATHVN.COM - www.mathvn.com Đề số 18 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) 2x - 3 Câu I: (2 điểm) Cho hàm số y = x - 2 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Cho M là điểm bất kì trên (C). Tiếp tuyến của (C) tại M cắt các đường tiệm cận của (C) tại A và B. Gọi I là giao điểm của các đường tiệm cận. Tìm toạ độ điểm M sao cho đường tròn ngoại tiếp tam giác IAB có diện tích nhỏ nhất. Câu II (2 điểm) x x2 2 æp x ö 1) Giải phương trình: 1+ sin sinx - cos sin x = 2cos ç - ÷ 2 2è 4 2 ø 2 æ1 ö 2) Giải bất phương trình: log(42x- 4 x + 1) - 2 x > 2 - ( x + 2)log 1 ç - x ÷ 2 è2 ø e æln x 2 ö Câu III (1 điểm) Tính tích phân: I=òç + 3 x ln x ÷ dx 1 èx1+ ln x ø a Câu IV (1 điểm) Cho hình chóp S.ABC có AB = AC = a. BC = . SA= a 3 , ·SAB=· SAC = 300 2 Tính thể tích khối chóp S.ABC. 3 Câu V (1 điểm) Cho a, b, c là ba số dương thoả mãn : a + b + c = . Tìm giá trị nhỏ nhất 4 1 1 1 của biểu thức P = + + . 3a+3 b 3 b + 3 c 3 c + 3 a II. PHẦN RIÊNG (3 điểm) A. Theo chương trình Chuẩn Câu VIa (2 điểm) 1) Trong mặt phẳng với hệ trục toạ độ Oxy, cho cho hai đường thẳng d1 : 2 x- y + 5 = 0 . d2: 3x + 6y – 7 = 0. Lập phương trình đường thẳng đi qua điểm P( 2; –1) sao cho đường thẳng đó cắt hai đường thẳng d1 và d2 tạo ra một tam giác cân có đỉnh là giao điểm của hai đường thẳng d1, d2. 2) Trong không gian với hệ trục toạ độ Oxyz, cho 4 điểm A( 1; –1; 2), B( 1; 3; 2), C( 4; 3; 2), D( 4; –1; 2) và mặt phẳng (P) có phương trình: x+ y + z -2 = 0 . Gọi A’ là hình chiếu của A lên mặt phẳng Oxy. Gọi ( S) là mặt cầu đi qua 4 điểm A¢, B, C, D. Xác định toạ độ tâm và bán kính của đường tròn (C) là giao của (P) và (S). Câu VIIa (1 điểm) Tính diện tích của hình phẳng giới hạn bởi các đường: y= x2 - 4 x và y= 2 x . B. Theo chương trình Nâng cao Câu VIb (2 điểm) 1) Trong mặt phẳng với hệ trục toạ độ Oxy, cho Hypebol (H) có phương trình: x2 y 2 - =1. Viết phương trình chính tắc của elip (E) có tiêu điểm trùng với tiêu điểm 16 9 của (H) và ngoại tiếp hình chữ nhật cơ sở của (H). 2) Trong không gian với hệ trục toạ độ Oxyz, cho (P) : x+ 2 y - z + 5 = 0 và đường thẳng x + 3 (d ) := y + 1 = z - 3 , điểm A( –2; 3; 4). Gọi D là đường thẳng nằm trên (P) đi qua 2 giao điểm của (d) và (P) đồng thời vuông góc với d. Tìm trên D điểm M sao cho khoảng cách AM ngắn nhất. ì23x+ 1+ 2 y - 2 = 3.2 y + 3 x (1) Câu VIIb (1 điểm): Giải hệ phương trình ï . í 2 îï 3x+ 1 + xy = x + 1 (2) 18
  20. MATHVN.COM - www.mathvn.com Đề số 19 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm) Cho hàm số y= x3 -3 x 2 + 4 . 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Gọi d là đường thẳng đi qua điểm A(3; 4) và có hệ số góc là m. Tìm m để d cắt (C) tại 3 điểm phân biệt A, M, N sao cho hai tiếp tuyến của (C) tại M và N vuông góc với nhau. Câu II (2điểm) ïìx2 +1 + y ( x + y ) = 4 y 1) Giải hệ phương trình: (x, y Î ) í 2 R îï(x+ 1)( x + y - 2) = y sin3x .sin3 x+ cos 3 x cos3 x 1 2) Giải phương trình: = - æp ö æ p ö 8 tançx- ÷ tan ç x + ÷ è6 ø è 3 ø 1 Câu III (1 điểm) Tính tích phân: I=ò xln( x2 + x + 1) dx 0 Câu IV (1 điểm) Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a, hình chiếu vuông góc của A’ lên mặt phẳng (ABC) trùng với tâm O của tam giác ABC. Một mặt phẳng (P) chứa BC và vuông góc với AA’, cắt lăng trụ theo một thiết diện có diện tích a2 3 bằng . Tính thể tích khối lăng trụ ABC.A’B’C’. 8 Câu V (1 điểm) Cho a, b, c là ba số thực dương thỏa mãn abc = 1. Tìm giá trị lớn nhất của 1 1 1 biểu thức P = + + a2+2 b 2 + 3 b 2 + 2 c 2 + 3 c 2 + 2 a 2 + 3 II. PHẦN RIÊNG (3 điểm) A. Theo chương trình chuẩn Câu VI.a (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho D ABC có đỉnh A(1;2), phương trình đường trung tuyến BM: 2x+ y + 1 = 0 và phân giác trong CD: x+ y -1 = 0 . Viết phương trình đường thẳng BC. 2) Trong không gian với hệ tọa độ Oxyz, cho đường thẳng (D) có phương trình tham số {x= -2 + t ; y = - 2 t ; z = 2 + 2 t . Gọi D là đường thẳng qua điểm A(4;0;–1) song song với (D) và I(–2;0;2) là hình chiếu vuông góc của A trên (D). Viết phương trình của mặt phẳng chứa D và có khoảng cách đến (D) là lớn nhất. Câu VII.a (1điểm) Tìm hệ số của số hạng chứa x2 trong khai triển nhị thức Niutơn của n æ1 ö çx + ÷ , biết rằng n là số nguyên dương thỏa mãn: è2 4 x ø 22 2 3 2n+ 1 6560 2CCCC0+ 1 + 2 + +n = ( C k là số tổ hợp chập k của n phần tử) n2 n 3 nL n+ 1 n n + 1 n B. Theo chương trình nâng cao Câu VI.b (2 điểm) 1) Trong mặt phẳng với hệ trục tọa độ Oxy, cho hai đường thẳng d1: x + y + 5 = 0, d2: x + 2y – 7= 0 và tam giác ABC có A(2; 3), trọng tâm là điểm G(2; 0), điểm B thuộc d1 và điểm C thuộc d2 . Viết phương trình đường tròn ngoại tiếp tam giác ABC. 2) Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC với A(1; 2; 5), B(1; 4; 3), C(5; 2; 1) và mặt phẳng (P): x – y – z – 3 = 0. Gọi M là một điểm thay đổi trên mặt phẳng (P). Tìm giá trị nhỏ nhất của biểu thức MA2+ MB 2 + MC 2 . ïìex- y+ e x + y =2( x + 1) Câu VII.b (1 điểm) Giải hệ phương trình (x, y Î ). í x+ y R îïe= x - y +1 19
  21. MATHVN.COM - www.mathvn.com Đề số 20 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I. (2,0 điểm) Cho hàm số f( x )= x3 - 3 x 2 + 4 . 1) Khảo sát sự biến thiên và vẽ đồ thị hàm số . 3 2 æ1 ö æ 1 ö 2) Tìm giá trị lớn nhất và nhỏ nhất của hàm số: G(x)= ç2sinx+ ÷ - 3 ç 2sin x + ÷ + 4 è2 ø è 2 ø Câu II. (2,0 điểm) 1) Tìm m sao cho phương trình sau có nghiệm duy nhất: ln(mx )= 2ln( x + 1) 2) Giải phương trình: sin3x .(1+ cot x ) + cos 3 x (1 + tan x ) = 2sin2 x . e2x -2 x + 1 Câu III. (1,0 điểm) Tính giới hạn: lim x®0 3x+ 4 - 2 - x Câu IV. (1,0 điểm) Xác định vị trí tâm và độ dài bán kính của mặt cầu ngoại tiếp tứ diện ABCD có AB=2, AC = 3, AD = 1, CD = 10, DB = 5, BC = 13 . ïìx+ y = 3 Câu V. (1,0 điểm) Tìm m để hệ phương trình sau có nghiệm với x ³ 2 : í 2 2 îï x+3 + y + 5 = m II. PHẦN RIÊNG (3,0 điểm) A. Theo chương trình Chuẩn Câu VI.a (2,0 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, viết phương trình đường tròn nội tiếp tam giác æ1 ö ABC với các đỉnh: A(–2;3), BCç;0 ÷ , (2;0) . è4 ø 2) Trong không gian với hệ toạ độ Oxyz, viết phương trình đường thẳng d đi qua điểm ì2x+ 3 y + 11 = 0 x-2 y + 1 z - 1 M ( 4; 5;3) và cắt cả hai đường thẳng: d ': í và d '': = = . îy-2 z + 7 = 0 2 3- 5 1 2 3 2 k Câu VII.a (1,0 điểm) Tìm n sao cho Cn+6 C n + 6 C n = 9 n - 14 n , trong đó Cn là số tổ hợp chập k từ n phần tử. B. Theo chương trình Nâng cao Câu VI.b (2,0 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, viết phương trình elip với các tiêu điểm FF1(-1;1) , 2 ( 5;1) và tâm sai e = 0,6 . 2) Trong không gian với hệ toạ độ Oxyz, viết phương trình hình chiếu vuông góc của ìx-2 z = 0 đường thẳng d : í trên mặt phẳng P: x- 2 y + z + 5 = 0 . î3x- 2 y + z - 3 = 0 n n Câu VII.b (1,0 điểm) Với n nguyên dương cho trước, tìm k sao cho CC2n- k 2 n + k lớn nhất hoặc nhỏ nhất. 20
  22. MATHVN.COM - www.mathvn.com Đề số 21 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) 3 2 Câu I: (2 điểm) Cho hàm số y= x +2 mx + ( m + 3) x + 4 có đồ thị là (Cm) 1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số trên khi m = 1. 2) Cho đường thẳng (d): y = x + 4 và điểm K(1; 3). Tìm các giá trị của tham số m sao cho (d) cắt (Cm) tại ba điểm phân biệt A(0; 4), B, C sao cho tam giác KBC có diện tích bằng 8 2 . Câu II: (2 điểm) 1) Giải bất phương trình: 15.2x+1+ 1 ³ 2 x - 1 + 2 x + 1 2 2) Tìm m để phương trình: 4(log2x )- log 0,5 x + m = 0 có nghiệm thuộc (0, 1). 3 dx Câu III: (2 điểm) Tính tích phân: I = . ò 6 2 1 x(1+ x ) Câu IV: (1 điểm) Tính thể tích của hình chóp S.ABC, biết đáy ABC là một tam giác đều cạnh a, mặt bên (SAB) vuông góc với đáy, hai mặt bên còn lại cùng tạo với đáy góc α. cos x p Câu V: (1 điểm) Tìm giá trị nhỏ nhất của hàm số: y = với 0 < x £ . sin2 x (2cos x- sin x ) 3 II. PHẦN RIÊNG (3 điểm) A. Theo chương trình chuẩn Câu VI.a (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho điểm A(2;–3), B(3;–2), D ABC có diện tích 3 bằng ; trọng tâm G của D ABC thuộc đường thẳng (d): 3x – y – 8 = 0. Tìm bán kính 2 đường tròn nội tiếp D ABC. 2) Trong không gian với hệ toạ độ Oxyz, cho điểm A(1; –2; 3) và đường thẳng d có x+ 1 y - 2 z + 3 phương trình = = . Tính khoảng cách từ điểm A đến đường thẳng d. 2 1- 1 Viết phương trình mặt cầu tâm A, tiếp xúc với d. z 2 Câu VII.a (1 điểm) Giải phương trình z4- z 3 + + z +1 = 0 trên tập số phức. 2 B. Theo chương trình nâng cao Câu VI.b (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, viết phương trình tiếp tuyến chung của hai 2 2 2 2 đường tròn (C1): x + y – 2x – 2y – 2 = 0, (C2): x + y – 8x – 2y + 16 = 0. 2) Trong không gian với hệ toạ độ Oxyz, cho 2 đường thẳng: ìx= t ìx= t ' ï ï (d1) : íy=4 + t ; và (d2) : íy=3 t ' - 6 ï ï îz=6 + 2 t îz= t ' - 1 Gọi K là hình chiếu vuông góc của điểm I(1; –1; 1) trên (d2). Tìm phương trình tham số của đường thẳng đi qua K vuông góc với (d1) và cắt (d1). 0 1 2 2009 Câu VII.b (1 điểm) Tính tổng SCCCC=2009 +2 2009 + 3 2009 + + 2010 2009 . 21
  23. MATHVN.COM - www.mathvn.com Đề số 22 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm). Cho hàm số y= x3 +3 x 2 + m (1) 1) Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi m = -4. 2) Tìm m để đồ thị hàm số (1) có hai điểm cực trị A, B sao cho ·AOB =1200 . Câu II (2 điểm ). æp ö æ p ö 1) Giải phương trình: sin3çx- ÷ = sin2sin x ç x + ÷ . è4 ø è 4 ø 2) Giải bất phương trình: 8+ 21+ 3 -x - 4 3 - x + 2 1 + 3 - x £ 5 . Câu III (2 điểm). Tính diện tích hình (H) giới hạn bởi các đường y=1 + 2 x - x2 và y = 1. Câu IV (2 điểm). Cho hình chóp S.ABC có đáy là DABC vuông cân tại A, AB = AC = a. Mặt bên qua cạnh huyền BC vuông góc với mặt đáy, hai mặt bên còn lại đều hợp với mặt đáy các góc 600. Tính thể tích của khối chóp S.ABC. Câu V (2.0 điểm). Cho a, b, c là ba số dương. Chứng minh rằng: ab bc ca a+ b + c + + £ a+3 b + 2 c b + 3 c + 2 a c + 3 a + 2 b 6 II. PHẦN RIÊNG (3 điểm) A. Theo chương trình chuẩn Câu VI.a (2 điểm) x+1 y - 2 z - 2 1) Trong không gian với hệ toạ độ Oxyz, cho đường thẳng D : = = và 3- 2 2 mặt phẳng (P): x + 3y + 2z + 2 = 0. Lập phương trình đường thẳng song song với mặt phẳng (P), đi qua M(2; 2; 4) và cắt đường thẳng (D). 2) Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm A(1; 0), B(3; -1) và đường thẳng (D): x - 2y -1 = 0. Tìm điểm C thuộc đường thẳng (D) sao cho diện tích tam giác ABC bằng 6. Câu VII.a (1 điểm) Tìm các số thực b, c để phương trình z2 + bz + c = 0 nhận số phức z=1 + i làm một nghiệm. B. Theo chương trình nâng cao Câu VI.b (2 điểm) 1) Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có diện tích bằng 12, 9 tâm I thuộc đường thẳng (d ) : x- y - 3 = 0 và có hoành độ x = , trung điểm của một I 2 cạnh là giao điểm của (d) và trục Ox. Tìm tọa độ các đỉnh của hình chữ nhật. 2) Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) và mặt phẳng (P) có phương trình là ():Sxyzxyz2++-+-+= 2 2 4 2 650,():2 Pxyz +-+= 2 160 . Điểm M di động trên (S) và điểm N di động trên (P). Tính độ dài ngắn nhất của đoạn thẳng MN. Xác định vị trí của M, N tương ứng. (1+ i )2009 Câu VII.b (1 điểm) Giải phương trình: z2 -2. z + 2 i = 0 trên tập số phức. (1- i )2008 22
  24. MATHVN.COM - www.mathvn.com Đề số 23 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I: (2 điểm) Cho hàm số y= x3 - x . 1) Khảo sát sự biến thiên và đồ thị (C) của hàm số. 2) Dựa và đồ thị (C) biện luận số nghiệm của phương trình: x3 – x = m3 – m Câu II: (2 điểm) 1) Giải phương trình: cos2x + cosx + sin3x = 0 x x 2) Giải phương rtình: (3+ 2 2) - 2( 2 - 1) - 3 = 0 . ln 2 2e3x+ e 2 x - 1 Câu III: (1 điểm) Cho I = dx . Tính eI ò 3x 2 x x 0 e+ e - e +1 Câu IV: (1 điểm) Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình thang vuông tai A và D. Biết AD = AB = a, CD = 2a, cạnh bên SD vuông góc với mặt phẳng đáy và SD = a. Tính thể tứ diện ASBC theo a. Câu V: (1 điểm) Cho tam giác ABC. Tìm giá trị nhỏ nhất của biểu thức: æ2AB öæ 2 ö æ2BC öæ 2 ö æ2CA öæ 2 ö ç1+ tan ÷ç 1 + tan ÷ ç1+ tan ÷ç 1 + tan ÷ ç1+ tan ÷ç 1 + tan ÷ 2 2 2 2 2 2 P = è øè ø + è øè ø + è øè ø C A B 1+ tan2 1+ tan 2 1+ tan 2 2 2 2 II. PHẦN RIÊNG: (3 điểm) A. Theo chương trình chuẩn: Câu VI.a: (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C): x2 + y2 – 4y – 5 = 0. Hãy æ4 2 ö viết phương trình đường tròn (C¢) đối xứng với đường tròn (C) qua điểm M ç; ÷ è5 5 ø 2) Trong không gian với hệ toạ độ Oxyz, viết phương tham số của đường thẳng (d) đi ìx= t x y- 2 z ï qua điểm A(1;5;0) và cắt cả hai đường thẳng D1 : = = và D2 : íy=4 - t . 1 3 3 ï îz= -1 + 2 t Câu VII.a: (1 điểm) Cho tập hợp D = {x Î R/ x4 – 13x2 + 36 ≤ 0}. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x3 – 3x trên D. B. Theo chương trình nâng cao: Câu VI.b: (2 điểm) 1) Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C) và đường thẳng D định bởi: (C ) : x2+ y 2 - 4 x - 2 y = 0; D : x + 2 y - 12 = 0 . Tìm điểm M trên D sao cho từ M vẽ được với (C) hai tiếp tuyến lập với nhau một góc 600. 2) Trong không gian với hệ toạ độ Oxyz, viết phương trình đường vuông góc chung của ìx=3 + 7 t x 7 y 3 z 9 ï hai đường thẳng: D1 : = = và D2 : íy=1 - 2 t 1 2- 1 ï îz=1 - 3 t Câu VII.b: (1 điểm) Giải phương trình z3 + (1 – 2i)z2 + (1 – i)z – 2i = 0., biết rằng phương trình có một nghiệm thuần ảo. 23
  25. MATHVN.COM - www.mathvn.com Đề số 24 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I: (2 điểm) Cho hàm số : y= x3 +(1 - 2 m ) x 2 + (2 - m ) x + m + 2 (1) ( m là tham số). 1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 2. 2) Tìm các giá trị của m để đồ thị hàm số (1) có điểm cực đại, điểm cực tiểu, đồng thời hoành độ của điểm cực tiểu nhỏ hơn 1. Câu II: (2 điểm) 1 1) Giải phương trình: cos3x- cos2 x + cos x = 2 3log 3+ 2log 2 2) Giải bất phương trình: x x ³ 3 logx 3+ log x 2 6 dx Câu III: (1 điểm) Tính tích phân: I = ò 2 2x+ 1 + 4 x + 1 Câu IV: (1 điểm) Cho hình chóp lục giác đều S.ABCDEF với SA = a, AB = b. Tính thể tích của hình chóp đó và khoảng cách giữa các đường thẳng SA, BE. Câu V: (1 điểm) Cho x, y là các số thực thoả mãn điều kiện: x2+ xy + y 2 £ 3. Chứng minh rằng : -(4 3 + 3) £x2 - xy - 3 y 2 £ 4 3 - 3. II. PHẦN RIÊNG (3 điểm) A. Theo chương trình chuẩn Câu VI.a: (2 điểm) 1) Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC biết phương trình các đường thẳng chứa các cạnh AB, BC lần lượt là 4x + 3y – 4 = 0; x – y – 1 = 0. Phân giác trong của góc A nằm trên đường thẳng x + 2y – 6 = 0. Tìm tọa độ các đỉnh của tam giác ABC. 2) Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 3x + 2y – z + 4 = 0 và hai điểm A(4;0;0), B(0; 4; 0). Gọi I là trung điểm của đoạn thẳng AB. Xác định tọa độ điểm K sao cho KI vuông góc với mặt phẳng (P) đồng thời K cách đều gốc tọa độ O và mặt phẳng (P). Câu VII.a: (1 điểm) Chứng minh 3(1+i )2010 = 4 i (1 + i ) 2008 - 4(1 + i ) 2006 B. Theo chương trình nâng cao Câu VI.b: (2 điểm) 1) Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d: x – 5y – 2 = 0 và đường tròn (C): x2+ y 2 +2 x - 4 y - 8 = 0 . Xác định tọa độ các giao điểm A, B của đường tròn (C) và đường thẳng d (cho biết điểm A có hoành độ dương). Tìm tọa độ C thuộc đường tròn (C) sao cho tam giác ABC vuông ở B. 2) Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng: ìx=1 + t ï x 3 y 1 z (D1 ) :íy = - 1 - t , (D2 ) : = = ï -1 2 1 îz = 2 Xác định điểm A trên D1 và điểm B trên D2 sao cho đoạn AB có độ dài nhỏ nhất. Câu VII.b: (2 điểm) Cho tập A= {0; 1; 2; 3; 4; 5; 6}. Có bao nhiêu số tự nhiên có 5 chữ số khác nhau chọn trong A sao cho số đó chia hết cho 15. 24
  26. MATHVN.COM - www.mathvn.com Đề số 25 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I: (2 điểm) Cho hàm số : y= (–)– x m3 3 x (1) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) khi m = 1. ì x-13 - 3 x - k < 0 ï 2) Tìm k để hệ bất phương trình sau có nghiệm: í12 1 3 ï log2x+ log 2 ( x - 1) £ 1 î2 3 Câu II: (2 điểm) 1) Tìm tổng tất cả các nghiệm x thuộc [ 2; 40] của phương trình: sinx – cos2x = 0. logx 1 log (3 x ) log ( x 1)3 0 2) Giải phương trình: 2 + -1 - - 8 - = . 2 e æ2 ö Câu III: (1 điểm) Tính tích phân: I=òç x + ÷ln xdx . 1 èx ø Câu IV: (1 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, ·BAD = 600 , SA vuông góc mặt phẳng (ABCD), SA = a. Gọi C¢ là trung điểm của SC. Mặt phẳng (P) đi qua AC¢ và song với BD, cắt các cạnh SB, SD của hình chóp lần lượt tại B¢, D¢. Tính thể tích của khối chóp S.AB¢C¢D¢. Câu V: (1 điểm) Cho a, b, c là ba cạnh của một tam giác. Chứng minh bất đẳng thức: ab bc ca a b c + + ³ + + cca()()()+ aab + bbc + caabbc + + + II. PHẦN RIÊNG (3 điểm) A. Theo chương trình chuẩn Câu VI.a (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho phương trình hai cạnh của một tam giác là 5x – 2y + 6 = 0 và 4x + 7y – 21 = 0. Viết phương trình cạnh thứ ba của tam giác đó, biết rằng trực tâm của nó trùng với gốc tọa độ O. 2) Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(4;5;6). Viết phương trình mặt phẳng (P) qua A; cắt các trục tọa độ lần lượt tại I, J, K mà A là trực tâm của DIJK. 2 3 25 Câu VII.a (1 điểm) Tính tổng: SCCC=1.2.25 + 2.3. 25 + + 24.25. 25 . B. Theo chương trình nâng cao Câu VI.b (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C): x2 + y2 – 6x + 5 = 0. Tìm M thuộc trục tung sao cho qua M kẻ được hai tiếp tuyến của (C) mà góc giữa hai tiếp tuyến đó bằng 600. 2) Trong không gian với hệ trục tọa độ Oxyz, cho bốn điểm A(4;5;6); B(0;0;1); C(0;2;0); D(3;0;0). Viết phương trình đường thẳng (D) vuông góc với mặt phẳng (Oxy) và cắt được các đường thẳng AB, CD. Câu VII.b (1 điểm) Tìm số phức z thoả mãn điều kiện: z = 5 và phần thực của z bằng hai lần phần ảo của nó. 25
  27. MATHVN.COM - www.mathvn.com Đề số 26 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) x - 2 Câu I: (2 điểm) Cho hàm số y = . x -1 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Chứng minh rằng với mọi giá trị thực của m, đường thẳng (d) y = – x + m luôn cắt đồ thị (C) tại hai điểm phân biệt A, B. Tìm giá trị nhỏ nhất của đoạn AB. Câu II: (2 điểm) 1 1) Giải bất phương trình: log 2- logx - ³ 0 x 4 2 æp ö æ p ö 2) Giải phương trình: tançx- ÷ tan ç x + ÷ .sin3 x = sin x + sin2 x è6 ø è 3 ø p 2 sin xdx Câu III: (1 điểm) Tính tích phân ò 3 0 (sinx+ 3 cos x) Câu IV: (1 điểm) Tính thể tích hình chóp S.ABC biết SA = a, SB = b, SC = c, ·ASB = 600 , ·BSC=900 ,· CSA = 120 0 . Câu V: (1 điểm) Với mọi số thực dương a; b; c thoả mãn điều kiện a + b + c = 1. Tìm giá trị a3 b 3 c 3 nhỏ nhất của biểu thức: P = + + (1 a )2 (1 b ) 2 (1 c ) 2 II. PHẦN RIÊNG (3 điểm) A. Theo cương trình chuẩn: Câu VI.a: (2 điểm) 1) Trong mặt phẳng với hệ trục toạ độ Oxy, cho hai đường thẳng (d1): x + y + 1 = 0, (d2): 2x – y – 1 = 0 . Lập phương trình đường thẳng (d) đi qua M(1;–1) cắt (d1) và (d2) uuur uuur r tương ứng tại A và B sao cho 2MA+ MB = 0 2) Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (P): x + 2y – 2z + 1 = 0 và hai điểm A(1;7; –1), B(4;2;0). Lập phương trình đường thẳng (D) là hình chiếu vuông góc của đường thẳng AB trên (P). 2 Câu VII.a: (1 điểm) Ký hiệu x1 và x2 là hai nghiệm phức của phương trình 2x – 2x + 1 = 0. 1 1 Tính giá trị các số phức: 2 và 2 . x1 x2 B. Theo chương trình nâng cao: Câu VI.b: (2 điểm) 1) Trong mặt phẳng với hệ trục toạ độ Oxy , cho hypebol (H) có phương trình x2 y 2 - =1. Giả sử (d) là một tiếp tuyến thay đổi và F là một trong hai tiêu điểm của 9 4 (H), kẻ FM ^(d). Chứng minh rằng M luôn nằm trên một đường tròn cố định, viết phương trình đường tròn đó 2) Trong không gian với hệ trục toạ độ Oxyz, cho ba điểm A(1;0;0), B(0;2;0), C(0;0;3). Tìm toạ độ trưc tâm của tam giác ABC. Câu VII.b: (1 điểm) Chứng minh rằng với "Îk,n Z + thoả mãn 3£ k £ n ta luôn có: k k 1 k 2 k k 3 k 2 Cn+ 3C n + 2C n = C n+ 3 - C n - C n . 26
  28. MATHVN.COM - www.mathvn.com Đề số 27 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm). Cho hàm số: y= x4 -(2 m + 1) x 2 + 2 m (m là tham số ). 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m = 2. 2) Tìm tất cả các giá trị của m để đồ thị hàm số cắt trục Ox tại 4 điểm phân biệt cách đều nhau. Câu II (2 điểm). 1 8æ 21p ö 1 1) Giải phương trình: 2cosx+ c os2( x + 3p) = + sin 2( x - p ) + 3cosç x + ÷ + sin 2 x . 3 3è 2 ø 3 ì(1+ 4x- y ).51 - x + y = 1 + 3 x - y + 2 (1) ï 2) Giải hệ phương trình: . í 2 1 ïx-3 y y - = 1 - 2 y (2) î x xex Câu III (2 điểm). Tính diện tích hình phẳng giới hạn bởi: y=0, y = , x = 1. ( x +1)2 Câu IV (1 điểm). Cho hình chóp S.ABCD có đáy ABCD là hình thang AB=BC=a, BAD· = 900 , đường cao SA= a 2 , tam giác SCD vuông tại C. Gọi H là hình chiếu của A trên SB. Tính thể tích của tứ diện SBCD và khoảng cách từ điểm H đến mp(SCD). 1 1 1 Câu V (1 điểm) Cho x, y, z là các số dương thoả mãn + + = 2009 . Tìm giá trị lớn nhất x y z 1 1 1 của biểu thức: P = + + 2x+ y + z x + 2 y + z x + y + 2 z II. PHẦN RIÊNG (3 điểm) A. Theo chương trình chuẩn Câu VI.a (2 điểm) 1) Trong không gian với hệ tọa độ Oxyz, cho hai điểm AB(4;0;0) , (0;0;4) và mặt phẳng (P): 2x- y + 2 z - 4 = 0 . Tìm điểm C trên mặt phẳng (P) sao cho DABC đều. 2) Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d: x – 5y – 2 = 0 và đường tròn (C): x2+ y 2 +2 x - 4 y - 8 = 0 . Xác định tọa độ các giao điểm A, B của đường tròn (C) và đường thẳng d (cho biết điểm A có hoành độ dương). Tìm tọa độ C thuộc đường tròn (C) sao cho tam giác ABC vuông ở B. Câu VII.a (1 điểm) Tìm phần thực của số phức : z=(1 + i )n .Trong đó nÎN và thỏa mãn: log4(n- 3) + log 5 ( n + 6) = 4 B. Theo chương trình nâng cao Câu VI.b (2 điểm ) 1) Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng: ì x=2 + t x-4 y - 1 z + 5 ï d1:= = và : d 2 :í y = - 3 + 3 t t Î ¡ . 3 1 2 ï î z= t Viết phương trình mặt cầu có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng d1 và d2. 2) Trong mặt phẳng với hệ toạ độ Oxy, cho hình bình hành ABCD có diện tích bằng 4. Biết A(1;0), B(0;2) và giao điểm I của hai đường chéo nằm trên đường thẳng y = x. Tìm tọa độ đỉnh C và D. n Câu VII.b (1 điểm) Cho số phức: z=1 - 3. i . Hãy viết số z dưới dạng lượng giác biết rằng 2 nÎN và thỏa mãn: n2-2 n + 6 + 4log(26)3n- n + = ( n 2 - 2 n + 6) log5 3 . 27
  29. MATHVN.COM - www.mathvn.com Đề số 28 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm). Cho hàm số y= x4 -5 x 2 + 4, có đồ thị (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C). 4 2 2) Tìm m để phương trình |x- 5 x + 4 | = log2 m có 6 nghiệm. Câu II (2 điểm). 1 1 1) Giải phương trình: sin2x+ sin x - - = 2cot2 x 2sinx sin 2 x 2 2) Tìm m để phương trình: m( x-2 x + 2 + 1) + x (2 - x ) £ 0 có nghiệm x Îëé0; 1 + 3 ûù 4 2x + 1 Câu III (1 điểm). Tính tích phân: I= ò dx 0 1+ 2x + 1 Câu IV (1 điểm). Cho lăng trụ đứng ABCA1B1C1 có AB = a, AC = 2a, AA1 = 2a 5 và o ·BAC =120 . Gọi M là trung điểm của cạnh CC1. Tính khoảng cách d từ điểm A tới mặt phẳng (A1BM). Câu V (1 điểm) Cho x, y, z là các số dương. Chứng minh: 3x+ 2 y + 4 z ³ xy + 3 yz + 5 zx II. PHẦN RIÊNG (3.0 điểm) A. Theo chương trình chuẩn Câu VI.a. (2 điểm). 1) Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(–1; 3; –2), B(–3; 7; –18) và mặt phẳng (P): 2x – y + z + 1 = 0. Tìm tọa độ điểm M Î (P) sao cho MA + MB nhỏ nhất. 2) Trong mặt phẳng với hệ toạ độ Oxy, viết phương trình đường thẳng D đi qua điểm M(3;1) và cắt các trục Ox, Oy lần lượt tại B và C sao cho tam giác ABC cân tại A với A(2;–2). 2 2 Câu VII.a (1 điểm). Giải phương trình: log3( x+ x + 1) - log 3 x = 2 x - x B. Theo chương trình nâng cao Câu VI.b. (2 điểm). 1) Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;5;0), B(3;3;6) và đường ìx= -1 + 2 t ï thẳng D có phương trình tham số íy=1 - t . Một điểm M thay đổi trên đường thẳng D. ï îz= 2 t Xác định vị trí của điểm M để chu vi tam giác MAB đạt giá trị nhỏ nhất. 2) Trong mặt phẳng với hệ toạ độ Oxy, viết phương trình đường thẳng D đi qua điểm M(4;1) và cắt các tia Ox, Oy lần lượt tại A và B sao cho giá trị của tồng OA+ OB nhỏ nhất. 2 Câu VII.b (1 điểm) Giải bất phương trình: (log8x + log4x )log 2 2 x ³ 0 28
  30. MATHVN.COM - www.mathvn.com Đề số 29 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm) Cho hàm số y= x4 +2 mx 2 + m 2 + m (1). 1) Khảo sát sự biến thiên và vẽ đồ thị hàm số khi m = –2. 2) Tìm m để đồ thị hàm số (1) có 3 điểm cực trị lập thành một tam giác có một góc bằng 1200 . Câu II (2 điểm) 1) Giải bất phương trình: ( x+3 - x - 1)( 1 + x2 + 2 x - 3) ³ 4 æp ö 2 sinç- x ÷ 2) Giải phương trình: è4 ø (1+ sin2x ) = 1 + tan x cos x x Câu III (1 điểm) Tính diện tích hình phẳng giới hạn bởi: y=, y = 0, x = 0, x = p . 1+ sin x Câu IV (1 điểm) Cho hình hộp ABCD.A¢B¢C¢D¢ có đáy ABCD là hình vuông, AB = AA¢ = 2a. Hình chiếu vuông góc của A¢ lên mặt phẳng đáy trùng với tâm của đáy. M là trung điểm của BC. Tính thể tích hình hộp và cosin của góc giữa hai đường thẳng AM và A¢C Câu V (1 điểm) Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức A=5sin3 x - 9 sin 2 x + 4 II. PHẦN RIÊNG (3 điểm) A. Theo chương trình chuẩn Câu VI.a (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho hình bình hành ABCD có diện tích bằng 4. Biết toạ độ các đỉnh A(2; 0), B(3; 0) và giao điểm I của hai đường chéo AC và BD nằm trên đường thẳng y= x . Xác định toạ độ các điểm C, D. 2) Trong không gian với hệ toạ độ Oxyz, cho A(2; 0; 0), B(0; 2; 0), C(0; 0; 2). Tính bán kính mặt cầu nội tiếp tứ diện OABC. 010 19 91 100 10 Câu VII.a (1 điểm) Chứng minh: CCCCCCCCC10. 20+ 10 . 20 + + 10 . 20 + 10 . 20 = 30 . A. Theo chương trình nâng cao Câu VI.b (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C): x2+ y 2 -2 x - 4 y - 5 = 0 và A(0; –1) Î (C). Tìm toạ độ các điểm B, C thuộc đường tròn (C) sao cho DABC đều. 2) Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P): x-2 y + 2 z - 1 = 0 và các x-1 y - 3 z x - 5 y z + 5 đường thẳng d:;:= = d = = . Tìm các điểm MNÎÎd , d 12 3 2 2 6 4 5 1 2 sao cho MN // (P) và cách (P) một khoảng bằng 2. Ay+ yA y 1 A y 1 C y 1 Câu VII.b (1 điểm) Tìm các số nguyen dương x, y thoả mãn: x 1 x 1 = x = x . 10 2 1 29
  31. MATHVN.COM - www.mathvn.com Đề số 30 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) 3 1 Câu I. (2,0 điểm) Cho hàm số : y= x3 - mx 2 + m 3 2 2 1) Khảo sát sự biến thiên và vẽ đồ thị hàm số với m = 1. 2) Xác định m để đồ thị hàm số có các điểm cực đại, cực tiểu đối xứng với nhau qua đường thẳng y = x. Câu II. (2,0 điểm) 1) Giải phương trình: tan2x- tan 2 x .sin 3 x + cos 3 x - 1 = 0 2) Giải phương trình: 5.32x- 1- 7.3 x - 1 + 16.3 - x + 9 x + 1 = 0 4 3 1 Câu III. (1,0 điểm) Tính tích phân: I = dx ò 4 1 x( x + 1) Câu IV. (1,0 điểm) Cho hình chóp S.ABC có mặt bên SBC là tam giác đều cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy. Biết góc BAC = 1200, tính thể tích của khối chóp S.ABC theo a. Câu V. (1,0 điểm) Cho ba số thực dương a, b, c thỏa: a3 b 3 c 3 + + =1 a2+ ab + b 2 b 2 + bc + c 2 c 2 + ca + a 2 Tìm giá trị lớn nhất của biểu thức S = a + b + c II. PHẦN RIÊNG (3 điểm) A. Theo chương trình chuẩn Câu VI.a (2 điểm) 1) Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) qua O, vuông góc với mặt phẳng (Q): x+ y + z = 0 và cách điểm M(1;2; -1) một khoảng bằng 2 . 2) Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có phương trình đường phân giác trong góc A là (d1): x + y + 2 = 0, phương trình đường cao vẽ từ B là (d2): 2x – y + 1 = 0, cạnh AB đi qua M(1; –1). Tìm phương trình cạnh AC. Câu VII.a (1 điểm) Có 6 học sinh nam và 3 học sinh nữ xếp hàng dọc đi vào lớp. Hỏi có bao nhiêu cách xếp để có đúng 2 học sinh nam đứng xen kẻ 3 học sinh nữ. B. Theo chương trình nâng cao Câu VI.b (2,0 điểm) ìx=2 + 4 t ï 1) Trong không gian với hệ tọa độ Oxyz , cho đường thẳng (d): íy=3 + 2 t và mặt ï îz= -3 + t phẳng (P) : -x + y +2 z + 5 = 0 . Viết phương trình đường thẳng (D) nằm trong (P), song song với (d) và cách (d) một khoảng là 14 . 2) Trong mặt phẳng với hệ toạ độ Oxy, cho parabol (P): y2 = x và điểm I(0; 2). Tìm toạ uuur uur độ hai điểm M, N Î (P) sao cho IM= 4 IN . Câu VII.b (1 điểm) Tìm m để phương trình sau có nghiệm: 5-x + x - 1 + - 5 + 6 x - x2 = m 30
  32. MATHVN.COM - www.mathvn.com Đề số 31 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) 3 2 Câu I: (2 điểm) Cho hàm số: y = x + 3x + mx + 1 có đồ thị (Cm); (m là tham số). 1) Khảo sát sự biến thiên và vẽ đồ thị hàm số khi m = 3. 2) Xác định m để (Cm) cắt đường thẳng y = 1 tại 3 điểm phân biệt C(0; 1), D, E sao cho các tiếp tuyến của (Cm) tại D và E vuông góc với nhau. Câu II: (2 điểm) 1) Giải phương trình: 2cos3x + 3 sinx + cosx = 0 2 2 ïì x+91 = y - 2 + y (1) 2) Giải hệ phương trình: í 2 2 îï y+91 = x - 2 + x (2) 2 e dx Câu III: (1 điểm) Tính tích phân: I = ò e xln x .ln ex Câu IV: (1 điểm) Tính thể tích của hình chóp S.ABC, biết đáy ABC là một tam giác đều cạnh a, mặt bên (SAB) vuông góc với đáy, hai mặt bên còn lại cùng tạo với đáy góc a. Câu V: (1 điểm) Cho a,, b c là những số dương thoả mãn: a2+ b 2 + c 2 = 3. Chứng minh bất 1 1 1 4 4 4 đẳng thức: + + ³ + + a+ b b + c c + a a2 +7 b 2 + 7 c 2 + 7 II.PHẦN RIÊNG (3 điểm) A. Theo chương trình chuẩn Câu VI.a (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho elip (E): 4x2+ 9 y 2 = 36 và điểm M(1; 1). Viết phương trình đường thẳng qua M và cắt (E) tại hai điểm C, D sao cho MC = MD. 2) Trong không gian với hệ toạ độ Oxyz, tìm trên Ox điểm A cách đều đường thẳng x-1 y z + 2 (d) : = = và mặt phẳng (P) : 2x – y – 2z = 0. 1 2 2 Câu VII.a (1 điểm) Cho tập hợp X = {0,1,2,3,4,5,6,7}. Có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau đôi một từ X, sao cho một trong ba chữ số đầu tiên phải bằng 1. B. Theo chương trình nâng cao Câu VI.b (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho elip (E): 5x2+ 16 y 2 = 80 và hai điểm A(–5; – 1), B(–1; 1). Một điểm M di động trên (E). Tìm giá trị lớn nhất của diện tích DMAB. 2) Trong không gian với hệ toạ độ Oxyz, cho hai mặt phẳng và hai đường thẳng có phương trình (P): 3x+ 12 y - 3 z - 5 = 0 và (Q): 3x- 4 y + 9 z + 7 = 0 x+5 y - 3 z + 1 x-3 y + 1 z - 2 (d1): = = , (d2): = = . 2- 4 3 -2 3 4 Viết phương trình đường thẳng (D) song song với hai mặt phẳng (P), (Q) và cắt (d1), (d2) 3n- 2 Câu VII.b (1 điểm) Tìm số n nguyên dương thỏa mãn bất phương trình: An+2 C n £ 9 n . 31
  33. MATHVN.COM - www.mathvn.com Đề số 32 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) 2x - 1 Câu I: (2 điểm) Cho hàm số y = . 1- x 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Gọi I là giao điểm của hai đường tiệm cận, A là điểm trên (C) có hoành độ là a. Tiếp tuyến tại A của (C) cắt hai đường tiệm cận tại P và Q. Chứng tỏ rằng A là trung điểm của PQ và tính diện tích tam giác IPQ. Câu II: (2điểm) 1) Giải bất phương trình: log(32x+ 1 + 6) - 1 ³ log(7 2 - 10 - x ) sin6x+ cos 6 x 1 2) Giải phương trình: = tan 2x cos2x- sin 2 x 4 p 4 æex ö Câu III: (1 điểm) Tính tích phân: I = e-x 2 x+ dx ò ç2 ÷ 0 è1+ tan x ø Câu IV: (1 điểm) Cho hình lăng trụ đứng ABCD.A’B’C’D’ có đáy ABCD là một hình thoi cạnh a, góc ·BAD = 600. Gọi M là trung điểm AA¢ và N là trung điểm của CC¢. Chứng minh rằng bốn điểm B¢, M, N, D đồng phẳng. Hãy tính độ dài cạnh AA¢ theo a để tứ giác B¢MDN là hình vuông. Câu V: (1 điểm) Cho ba số thực a, b, c lớn hơn 1 có tích abc = 8. Tìm giá trị nhỏ nhất của 1 1 1 biểu thức: P = + + 1+a 1 + b 1 + c II. PHẦN RIÊNG (3 điểm) A. Theo chương trình chuẩn Câu VI.a. (2 điểm) 1) Trong mặt phẳng với hệ tọa độ Oxy, cho điểm A(2; –1) và đường thẳng d có phương trình 2x – y + 3 = 0. Lập phương trình đường thẳng (D) qua A và tạo với d một góc α có 1 cosα = . 10 2) Trong không gian với hệ tọa độ Oxyz, cho 3 điểm A(3;1;1), B(0;1;4), C(–1;–3;1). Lập phương trình của mặt cầu (S) đi qua A, B, C và có tâm nằm trên mặt phẳng (P): x + y – 2z + 4 = 0. Câu VII.a: (1 điểm) Cho tập hợp X = {0; 1; 2; 3; 4; 5; 6}. Từ các chữ số của tập X có thể lập được bao nhiêu số tự nhiên có 5 chữ số khác nhau và phải có mặt chữ số 1 và 2. B. Theo chương trình nâng cao Câu VI.b: ( 2 điểm) 1) Trong mặt phẳng với hệ tọa độ Oxy, cho điểm A(–1;1) và B(3;3), đường thẳng (D): 3x – 4y + 8 = 0. Lập phương trình đường tròn qua A, B và tiếp xúc với đường thẳng (D). 2) Trong không gian với hệ tọa độ Oxyz, cho 4 điểm A(3;0;0), B(0;1;4), C(1;2;2), D(– 1;–3;1). Chứng tỏ A, B, C, D là 4 đỉnh của một tứ diện và tìm trực tâm của tam giác ABC. ì ïlogyxy= log x y Câu VII.b: (1 điểm) Giải hệ phương trình: í . x y îï2+ 2 = 3 32
  34. MATHVN.COM - www.mathvn.com Đề số 33 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I: (2 điểm) Cho hàm số y= x4 + mx 3 -2 x 2 - 3 mx + 1 (1) . 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) khi m = 0. 2) Định m để hàm số (1) có hai cực tiểu. Câu II: (2 điểm) 2+ 3 2 1) Giải phương trình: cos3xcos3x – sin3xsin3x = 8 2) Giải phương trình: 2x+ 1 + x x2 + 2 + ( x + 1) x 2 + 2 x + 3 = 0 p 2 Câu III: (1 điểm) Tính tích phân: I=ò ( x +1) sin 2 xdx . 0 Câu IV: (1 điểm) Cho lăng trụ ABC.A'B'C' có A¢.ABC là hình chóp tam giác đều cạnh đáy AB = a, cạnh bên AA¢ = b. Gọi a là góc giữa hai mặt phẳng (ABC) và (A¢BC). Tính tana và thể tích của khối chóp A¢.BB¢C¢C. a2 b 2 c 2 a b c Câu V: (1 điểm) Cho ba số a, b, c khác 0. Chứng minh: + + ³ + + . b2 c 2 a 2 b c a II. PHẦN RIÊNG (3 điểm) A. Theo chương trình chuẩn Câu VI.a: (2 điểm) 1) Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có điểm I (6; 2) là giao điểm của 2 đường chéo AC và BD. Điểm M (1; 5) thuộc đường thẳng AB và trung điểm E của cạnh CD thuộc đường thẳng D: x + y – 5 = 0. Viết phương trình đường thẳng AB. 2) Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x – 2y – z – 4 = 0 và mặt cầu (S): x2 + y2 + z2 – 2x – 4y – 6z – 11 = 0. Chứng minh rằng mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn. Xác định tọa độ tâm và tính bán kính của đường tròn đó. 2 2 Câu VII.a: (1 điểm) Giải bất phương trình: 9x+ x -1+ 1 ³ 10.3 x + x - 2 . B. Theo chương trình nâng cao Câu VI.b: (2 điểm) 1) Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C): x2 + y2 + 4x + 4y + 6 = 0 và đường thẳng D: x + my – 2m + 3 = 0 với m là tham số thực. Gọi I là tâm của đường tròn (C). Tìm m để D cắt (C) tại 2 điểm phân biệt A và B sao cho diện tích DIAB lớn nhất. 2) Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm D(–1; 1; 1) và cắt ba trục tọa độ tại các điểm M, N, P khác gốc O sao cho D là trực tâm của tam giác MNP. Câu VII.b: (1 điểm) Giải phương trình: 4x- 2 x+1 + 2(2 x - 1)sin(2 x +y - 1) + 2 = 0 . 33
  35. MATHVN.COM - www.mathvn.com Đề số 34 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I: (2 điểm): Cho hàm số: y= x4 -2 x 2 + 1. 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 4 2 2) Biện luận theo m số nghiệm của phương trình: x-2 x + 1 + log2 m = 0 (m>0) Câu II:(2 điểm) 1) Giải bất phương trình: x2-3 x + 2 - 2 x 2 - 3 x + 1 ³ x - 1 2) Giải phương trình : cos3 x cos3 x+ sin3 x sin3 x = 2 4 p 2 7sinx- 5cos x Câu III: (1 điểm): Tính tích phân: I= dx ò 3 0 (sinx+ cos x ) Câu IV: (1 điểm): Cho hình chóp tứ giác đều S.ABCD có độ dài cạnh đáy bằng a, các mặt bên tạo với mặt đáy góc 60o. Mặt phẳng (P) chứa AB và đi qua trọng tâm của tam giác SAC cắt SC, SD lần lượt tại M, N. Tính thể tích khối chóp S.ABMN theo a. Câu V: (1 điểm) Cho 4 số thực a, b, c, d thoả mãn: a2+ b 2 =1; c – d = 3. 9+ 6 2 Chứng minh: F= ac + bd - cd £ 4 II.PHẦN RIÊNG (3.0 điểm ) A. Theo chương trình Chuẩn Câu VI.a: (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC với A(3; –7), B(9; –5), C(–5; 9), M(–2; –7). Viết phương trình đường thẳng đi qua M và tiếp xúc với đường tròn ngoại tiếp DABC. 2) Trong không gian với hệ toạ độ Oxyz, cho hai đường thẳng: ìx= -1 - 2 t x y z ï d1 : = = và d2 : í y= t 1 1 2 ï îz=1 + t Xét vị trí tương đối của d1 và d2. Viết phương trình đường thẳng qua O, cắt d2 và vuông góc với d1 Câu VII.a: (1 điểm) Một hộp đựng 5 viên bi đỏ, 6 viên bi trắng và 7 viên bi vàng. Nguời ta chọn ra 4 viên bi từ hộp đó. Hỏi có bao nhiêu cách chọn để trong số bi lấy ra không có đủ cả ba màu? B. Theo chương trình Nâng cao : Câu VI.b: (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có đỉnh A(1; 3) và hai đường trung tuyến của nó có phương trình là: x – 2y + 1 = 0 và y – 1 = 0. Hãy viết phương trình các cạnh của DABC. 2) Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(0; 0;–3), B(2; 0;–1) và mặt phẳng (P) có phương trình: 3x- 8 y + 7 z + 1 = 0 . Viết phương trình chính tắc đường thẳng d nằm trên mặt phẳng (P) và d vuông góc với AB tại giao điểm của đường thẳng AB với (P). n 3 æ2 2 ö Câu VII.b: (1 điểm) Tìm hệ số x trong khai triển çx + ÷ biết n thoả mãn: èx ø 1 3 2n- 1 23 CCC2n+ 2 n + + 2 n = 2 34
  36. MATHVN.COM - www.mathvn.com Đề số 35 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) x+ 2 Câu I (2 điểm) Cho hàm số y = (1). 2x+ 3 1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1). 2) Viết phương trình tiếp tuyến của đồ thị hàm số (1), biết tiếp tuyến đó cắt trục hoành, trục tung lần lượt tại hai điểm phân biệt A, B sao cho DOAB cân tại gốc tọa độ O. Câu II (2 điểm) 1) Giải phương trình: cotx+ 3 + tan x + 2cot 2 x = 3 . 2) Giải phương trình: x2-2( x + 1) 3 x + 1 = 2 2 x 2 + 5 x + 2 - 8 x - 5 . p 4 cosx- sin x Câu III (1 điểm) Tính tích phân : I= ò dx . 0 3- sin 2x Câu IV (1 điểm) Cho hình lập phương ABCD.A¢B¢C¢D¢ cạnh a. Gọi M, N lần lượt là trung điểm các cạnh CD, A¢D¢. Điểm P thuộc cạnh DD’ sao cho PD¢ = 2PD. Chứng tỏ (MNP) vuông góc với (A¢AM) và tính thể tích của khối tứ diện A¢AMP. Câu V (1 điểm) Cho a, b, c là 3 cạnh của tam giác có chu vi bằng 3. Tìm giá trị nhỏ nhất của ()()()a+ b - c3 b + c - a 3 c + a - b 3 biểu thức: P = + + . 3c 3 a 3 b II. PHẦN RIÊNG (3 điểm) A. Theo chương trình chuẩn Câu VI.a. (2 điểm) 1) Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C): (x – 1)2 + (y + 1)2 = 25 và điểm M(7; 3). Lập phương trình đường thẳng (d) đi qua M cắt (C) tại A, B phân biệt sao cho MA = 3MB. 2) Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x – 2y + 2z – 1 = 0 và hai x+ 1 y z + 9 x- 1 y - 3 z + 1 đường thẳng D1 : = = ; D2 : = = . Xác định tọa độ điểm 1 1 6 2 1- 2 M thuộc đường thẳng D1 sao cho khoảng cách từ M đến đường thẳng D2 và khoảng cách từ M đến mặt phẳng (P) bằng nhau. 2 Câu VII.a (1 điểm) Gọi z1 và z2 là 2 nghiệm phức của phương trình: z+2 z + 10 = 0 . 2 2 Tính giá trị của biểu thức: A= z1 + z 2 . B. Theo chương trình nâng cao Câu VI.b (2 điểm) 1) Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(3; 3), B(2; –1), C(11; 2). Viết phương trình đường thẳng đi qua A và chia DABC thành hai phần có tỉ số diện tích bằng 2. x y 1 z 2 2) Trong không gian với hệ tọa độ Oxyz cho, đường thẳng d : = = và mặt 1 2 1 phẳng (P): x + 3y + 2z + 2 = 0. Lập phương trình đường thẳng d¢ đi qua điểm M(2; 2; 4), song song với mặt phẳng (P) và cắt đường thẳng d. 3 Câu VII.b (1 điểm) Giải phương trình: log2( 1+x) = log 7 x . 35