Phân tích và xử lý số liệu bằng SPSS

pdf 62 trang phuongnguyen 80
Bạn đang xem 20 trang mẫu của tài liệu "Phân tích và xử lý số liệu bằng SPSS", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pdfphan_tich_va_xu_ly_so_lieu_bang_spss.pdf

Nội dung text: Phân tích và xử lý số liệu bằng SPSS

  1. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam TO CHC C S D’ LIEU I. KIEM TRA VA M A’ HOA BA NG CAU HO I 1. Ki !m tra ay la b c kiem tra chat l ng bang cau hoi nham bao ẩam khong co bang cau hoi nao thieu thong tin can thiet theo yeu cau thiet ke ban ẩau, b c nay can thiet ẩ c th c hie n tr c khi tien hanh ma! ho a va nha p d ! lie u vao ma y t%nh. Ng i kiem tra phai bao ẩam t%nh toan ven va t%nh ch%nh (a c cua t ng bang cau hoi ) t ng cau tra l i. Thong th ng kiem tra bang cau hoi la kiem tra nh !ng ẩa+c t%nh sau cua bang cau hoi- • T%nh logic cua ca c cau tra l i • T%nh ẩay ẩu cua mo t cau tra l i va cua mo t bang cau hoi • T%nh h p ly va (a c th c cua ca c cau tra l i Th nhat la t%nh logic cua ca c cau tra l i trong mo t bang cau hoi. oi khi trong bang cau hoi, do yeu cau nghien c u se! co nh !ng ẩ ng da.n, nh !ng ẩieu kie n ẩe. ng i tra l i hoa+c co the tra l i tat ca ca c cau hoi hoa+c co the bo /ua mo t vai cau hoi nao ẩo . 0iem tra t%nh logic cua bang cau hoi cho phe p nha nghien c u loai bo nh !ng cau tra l i th a, cu!ng nh k1p th i bo sung nh !ng phan thieu trong bang cau hoi. T%nh logic cua cau tra l i con phu thuo c vao s  ket noi va lien he la.n nhau gi !a ca c cau hoi trong mo t bang cau hoi, da.n ẩen ẩoi khi mo t cau tra l i la co y ngh2a neu ẩ ng rieng mo t m3nh no nh ng lai vo ngh2a neu ket h p so sa nh v i ca c cau tra l i tr c hoa+c sau no Th hai la kiem tra t%nh ẩay ẩu cua mo t cau tra l i va cua mo t bang cau hoi. 4o t cau hoi trong nghien c u th1 tr ng ẩoi khi bao gom nhieu cau hoi nho, nh ẩoi v i cau hoi ve m c ẩo ẩong y ẩoi v i nh !ng cau no i the hie n nh !ng ẩa+c t%nh ve mo t san pham cu the nao ẩo se! bao gom nhieu ẩa+c t%nh kha c nhau, neu nh thieu mo t ẩa nh gia ve mo t ẩa+c t%nh nao ẩo th3 co the (em nh cau tra l i ẩo khong hoan ch5nh. 6ay ẩoi v i ca c cau hoi m , ẩoi khi ng i tra l i do khong hieu ro! cau hoi, hay do s  thieu nhie t t3nh cua ng i tra l i, cau tra l i cua ho th ng rat chung chung va vo ngh2a ẩoi v i muc tieu nghien c u. 0h%a canh kha c la t%nh ẩay ẩu cua bang cau hoi, mo t bang cau hoi ch5 co gia tr1 neu nh tat ca nh !ng cau hoi theo yeu cau ẩeu ẩ c tra l i ẩay ẩu. 4o.i cau hoi trong bang cau hoi ẩeu co mo t gia tr1 nhat ẩ1nh, do ẩo thieu mo t cau tra l i cho mo t cau hoi nao ẩo se! lam mat ẩi gia tr1 cua bang cau hoi Cuoi cung la kiem tra t%nh h p ly va (a c th c cua cau tra l i. 4o t cau tra l i ẩay ẩu ch a ha8n la cau tra l i co gia tr1, do t%nh chan th c va h p ly cua cau tra l i cu!ng /uyet ẩ1nh ẩen gia tr1 cua cau tra l i va cua bang cau hoi, ẩa+c bie t la ca c cau hoi cham ẩiem, cau hoi m  va ca c cau hoi mang t%nh logic
  2. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam 9ua tr3nh kiem tra, ra soa t lai bang cau hoi la nham muc ẩ%ch kiem tra, pha t hie n, s a ch !a va thong ba o k1p th i cho ng i thu tha p d ! lie u tra nh nh !ng sai so t tiep theo. 4o t so sai so t th ng ga+p nh sau- • Nh !ng cuo c phong van gia tao • Nh !ng cau tra l i khong ẩay ẩu • Nh !ng cau tra l i thieu nhat /ua n • Nh !ng cau tra l i khong th%ch h p • Nh !ng cau tra l i khong ẩoc ẩ c e (  ly ca c lo.i trong kiem tra va hie u ẩ%nh, ta co the l a chon ca ch (  ly nh sau tuy thuo c vao m c ẩo sai so t cu the- • Tra ve cho bo pha n thu tha p d ! lie u ẩe lam sa ng to van ẩe • Suy lua n t  ca c cau tra l i kha c • Loai bo toan bo bang cau hoi 2. M a' ho*a La /ua tr3nh chuyen d1ch cau tra l i th c cua ng i tra l i vao t ng nho m, t ng ma.u ẩai die n v i ca c gia tr1 t ng ng nham lam cho /ua tr3nh to m ta n ca c cau tra l i t  tr c, ng i tra l i ch5 vie c l a chon cau tra l i nao phu h p nhat, do ẩo vie c ma! ho a cho ca c cau hoi nay th ng ẩ c tien hanh t  tr c,  giai ẩoan thiet ke bang cau hoi • 4a! hoa - Trong bang cau hoi ngoai nh !ng cau hoi ẩo ng neu  tren, con nh !ng cau hoi m , la nh !ng cau hoi ma nha nghien c u ẩe ca c khoang trong trong bang cau hoi cho ng i tra l i t  do ẩ a ra cau tra l i theo suy ngh2 va die.n gia!i cua ch%nh ho. oi v i ca c cau hoi m , do ca c cau tra l i khong ẩ c lie t ke tr c, nen kho (a c ẩ1nh ẩ c ca c cau tra l i th c cua ng i tra l i. Ca c bang cau hoi nha n ve th ng co nh !ng cau tra l i rat kha c nhau, rat ẩa dang. Do ẩo cong vie c ma! ho a nh !ng cau tra l i nay la can thiet cho /ua tr3nh kiem tra, nha p lie u, to m ta<t va phan t%ch sau nay 4uc ẩ%ch cua ma! ho a la tao nha!n cho ca c cau tra l i, th  ng la bang ca c con so. 4a! ho a con giu p gia!m thieu so l ng ca c cau tra l i bang ca ch nho m ca c cau tra l i thanh nh !ng nho m co nh !ng ẩa+c ẩiem giong nhau, nh nh !ng nho m ve mau sa<c, ve chat l ng, ? khi ẩa nh gia ve mo t nha!n hie u san pham cu the nao ẩo . Tien tr3nh ma! ho a co the ẩ c tien hanh nh sau-
  3. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam • au tien, (a c ẩ1nh loai cau tra l i cho nh !ng cau hoi t ng ng. Nh !ng cau tra l i nay co the thu tha p t  mo t ma.u ca c bang cau hoi ẩa! hoan tat, th ng la 2AB tren tong so bang cau hoi • Tiep theo la (ay d ng mo t danh sa ch lie t ke ca c cau tra l i, ca c cau tra l i ẩ c lie t ke c ban d a tren nh !ng cau tra l i (a c ẩ1nh  tren, va co tien hanh nho m ca c cau tra l i theo nh !ng nho m ẩa+c tr ng. Nh !ng cau tra l i ẩ c nho m lai theo nh !ng yeu to nh s  giong nhau ve ẩa+c t%nh, tan suat (uat hie n, ? • Cuoi cung, nh !ng nho m cau tra l i nay ẩ c ga n cho mo t nha!n hie u, mo t gia tr1, th ng la mo t con so cu the II. NHAP D’ LIEU, -.NH BIE/N VA CAC THAO TAC TREN BIE/N 1. Nha0p d3' li 0u 4o t cau tru c d ! lie u ẩien h3nh trong SCSS se! bao gom- • Co0t Ca c co t trong man h3nh data SCSS se! /uan ly ca c bien DvariablesE. 4o.i co t trong man h3nh bang t%nh SCSS se! ẩai die n cho mo t cau tra l i trong bang cau hoi. Tuy nhien chu y ẩen hai loai bien, bien mo t tra l i va bien nhieu tra l i Loa&i bieãn mot tra l' i- 4o.i co t trong bang t%nh se! la bien ẩai die n cho ket /ua duy nhat cua cau hoi mo t tra l i. Loa&i bieãn nhieu tra l' i- oi hoi phai s ! dung nhieu co t ẩe /uan ly cho ca c ket /ua kha c nhau co the co cho cau hoi nhieu tra l i. Chai bao ẩam khai ba o ẩu so co t Dso bienE nham ch a ẩ ng ẩu ca c cau tra l i co the (ay (a. • Do6ng Ca c dong trong man h3nh bang t%nh SCSS se! /uan ly ca c bang cau hoi, hay mo t /uan sa t DobservationE. 4o.i dong se! ẩ c (em nh mo t bang cau hoi, so l ng ma.u nghien c u phai bang v i so l ng dong ch a thong tin. D ! lie u ẩ c nha p ngay trong man h3nh bang t%nh cua SCSS nh h3nh 1-
  4. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam 63nh 1- 4an h3nh data Chu ng ta co the tien hanh nha p d ! lie u nh sau- • 0hai ba o ten bien ch a ẩ ng thong tin can nha p vao thanh ben tren mo.i co t Dten ma+c ẩ1nh cua ca c co t nay trong SCSS la var0001, var000(E. Chan nay se! ẩ c ẩe ca p chi tiet trong phan ẩ1nh bien. • Chon o can nha p d ! lie u, la phan giao nhau gi !a co t va hang. OI can nha p se! co khung vien chung /uanh ba o cho ng i nha p biet ẩo la o ẩang hoat ẩo ng, ten bien va so hie u hang ẩ c hie n  go c tra i cua c a so. • Go! gia tr1 can nha p vao khung ẩa! chon, gia tr1 nay ẩ c hie n trong thanh s !a ẩoi Dcell editorE nam  tren c a so. Chu y khi nha p d ! lie u phai bao ẩam ẩu ng v i kieu bien ẩa! ẩ c ẩ1nh ngh2a. Thong th ng ca c kieu bien ẩ c khai ba o la dang chuoi Ddai toi ẩa 8 ky t E hoa+c dang so, nham bao ẩam t%nh t ng th%ch cho vie c phan t%ch sau nay. 2. -9nh bi ;n Bi ;n (variabl )- La ta p h p nh !ng tra l i cho 1 cau hoi. Co hai loai bien nh sau- Theo yeu cau bang cau hoi: • Lien mo t tra l i- Lien danh cho cau hoi co mo t tra l i
  5. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam • Lien nhieu tra l i- Ca c bien danh cho nhieu cau tra l i tra l i ẩong th i trong cau hoi nhieu tra l i M% du nh trong bang cau hoi co hai cau hoi sau- Cau hoi 1- 6a!y cho biet ban  nho m tuoi nao trong so nh !ng nho m tuoi sau- Nho m tuoi code D i 18 1 1N ẩen 30 2 31 ẩen P0 3 P1 ẩen A0 P Tren A0 A Cau hoi 2- No i ẩen ẩie n thoai di ẩo ng, ban biet ẩ c nh !ng nha!n hie u nao trong danh sa ch lie t ke d i ẩay Nha!n hie u code Ericson 1 4otorola 2 Nokia 3 Siemens P Canasonic A ? .M.M Co the thay ẩoi v i cau hoi 1, ng i tra l i ch5 co the ẩ a ra mo t cau tra l i duy nhat ve tuoi cua m3nh, do ẩo bien ch a ẩ ng cau tra l i cua cau hoi 1 la bien mo t tra l i. Trong khi (em (e t cau hoi 2, ng i tra l i co the neu ra nhieu nha!n hie u ma ho co biet /ua do ẩo phai co nhieu bien ch a ẩung ca c tra l i co the co , ta goi bien ẩo la bien nhieu tra l i. Theo )ie*u d , lieu: • Lien ẩ1nh l ng D/uantitative variableE- La bien co the mo ta bang mo t con so va con so ẩo co the dung ẩe t%nh toa n thanh nh !ng gia tr1 so hoc nh gia tr1 trung b3nh. • Lien ẩ1nh t%nh D/ualitative variableE- La ca c bien the hie n trang tha i cua bien nh mau sa<c, gi i t%nh. Loai bien nay co the ẩ c ma! ho a thanh ca c con so nh ng lai khong co gia tr1 t%nh toa n so hoc. Ta co the (em (e t bang mo ta ca c loai phong trong mo t kha ch san sau-
  6. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam Loai Gia So l ng 4o ta phong D ongRphongE phong Tivi Tu lanh 4a y ẩieu hoa Loai S A00,000 10 Co Co Co Loai L 300,000 20 0hong Co Co Loai C 1A0,000 A0 0hong Co 0hong Ta co the phan loai bien trong bang tren nh sau- Lien ẩ1nh l ng- Lien gia va so l ng phong Lien ẩ1nh t%nh- Lien Loai phong va ca c bien mo ta. Nh3'ng ca;p @o0 @o l3A6ng (l v ls of m asur m nt) Nh ẩa! ẩe ca p  tren, bien dung ẩe ch a ca c ket /ua tra l i, nh !ng hie n t ng ẩ c /uan sa t sau khi ca c ket /ua hay hie n t ng tren ẩa! ẩ c ga n thanh nh !ng d ! kie n l ng ho a Dcon soE hay nh !ng ky ma! DcodeE. Mie c ga n nh !ng d ! lie u nay ẩoi hoi chu ng ta phai pha t trien mo t dang thang ẩo phu h p v i ẩa+c t%nh cua d ! lie u. Co bon loai thang ẩo- • Thang ẩo ẩ1nh danh Dnominal measurementE • Thang ẩo th t  Dordinal measurementE • Thang ẩo /ua!ng Dinterval measurementE • Thang ẩo ty le Dratio measurementE Thang -o -.nh danh- Trong loai thang ẩo nay ca c con so ẩ c s  dung ẩ n thuan nh mo t gia tr1 (a c ẩ1nh mo t loai, hang DcategoryE kha c nhau va ch5 ẩ c dung nh mo t ca i ten hay nha!n cho loai, hang ẩo . oi v i loai thang ẩo ẩ1nh danh ca c gia tr1 so ẩ c s  dung nh la ky so nha n dang va khong co gia tr1 ve ma+t so hoc nh so sa nh, co ng, tr , nhan, chia. Thang -o th  t &- Trong thang ẩo nay d ! lie u ẩ c (a<p (ep th t  ca c gia tr1 theo mo t tieu chuan nao ẩo . 4o.i gia tr1 co v1 tr% cao h n hoa+c thap h n so v i gia tr1 kha c, nh ng khong die.n ta ẩ c cao hay thap h n bao nhieu. Dang cau hoi nho m tuoi cua ng i tra l i D1- nho h n 18 tuoiT 2- 1N-30 tuoi, ? E hay khoang thu nha p D1- d i 1 trie u ẩongRtha ng, 2- T  1 trie u ẩong ẩen 2 trie u ẩongRtha ngE la v% du ro nhat ve dang thang ẩo nay. To m lai thang ẩo th t  bao gom ca thong tin ẩ1nh danh ẩong th i cung cap luon /uan he th t  gi !a ca c gia tr1 nh ng khong ẩo ẩ c khoang ca ch gi !a ca c gia tr1 ẩo . Thang -o ua,ng- Giong nh ẩa+c t%nh cua thang ẩo th t , nh ng thang ẩo /ua!ng cho phe p ta ẩo ẩ c khoang ca ch gi !a ca c gia tr1. Tuy nhien do thang ẩo /ua!ng khong
  7. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam (a c ẩ1nh ẩiem 0, do ẩo ta ch5 co the no i gia tr1 nay l n h n gia tr1 kia bao nhieu ẩ n v1 nh ng khong the ket lua n gia tr1 ẩo l n h n gia tr1 kia bao nhieu lan. M% du n c  nhie t ẩo 80o C chenh le ch ve nhie t ẩo so v i n c  P0o C giong nh m c ẩo chenh le ch ve nhie t ẩo cua n c  A0o C va n c  10o C, nh ng ta khong the no i n c  80o C no ng gap ẩoi n c  P0o C Thang -o ty le- ay la thang ẩo co ẩu ca c ẩa+c t%nh th t  va khoang ca ch. Ngoai ra vie c (a c ẩ1nh ty so gi !a ca c gia tr1 la co the th c hie n do  thang ẩo nay ẩiem 0 ẩ c (a c ẩ1nh mo t ca ch co y ngh2a. M% du khi ta thu tha p so lie u ve thu nha p hang tha ng cua mo t ho  thanh pho 6o ch% 4inh, ta co the so sa nh thu nha p cua hai ho S va L co thu nha p lan l t la P trie u va 8 trie u nh ho L co thu nha p gap ẩoi ho S, hay ho S co thu nha p bang phan n a ho L -9nh bi ;n Sau khi ẩa! khao sa t ve bien va ca c dang gia tr1 trong bien, chu ng ta can phai co cong ẩoan ga n nha!n cho ca c bien va ga n y ngh2a cho ca c gia tr1 cua bien Trong SCSS co hai cong cu ẩ1nh bien ẩ1nh bien rieng bie t va ẩ1nh bien chung. • 1nh bien rieng bie t Ddefine variableE- Thong th ng ẩ c dung ẩe ẩ1nh bien mo t tra l i. • 1nh bien chung DtemplateE- 4o t ca ch lam nga<n gon, tiet kie m th i gian khi ẩ1nh ca c bien co nh !ng ẩa+c t%nh giong nhau Dkieu bien, nha!n cua ca c gia tr1 trong bienE nh ca c bien trong cau hoi nhieu tra l i • M i phien ban SCSS 10.0A, ta co ca ch ẩ1nh bien ẩ n gian h n nhieu bang ca ch s  dung Mariable Miew -9nh bi ;n ri Dng bi 0t e ẩ1nh m i hoa+c thay ẩoi ten, loai va ca c ẩa+c t%nh kha c cua mo t bien, co hai ca ch- Double-click len ten bien hien th1 tren ẩau mo.i co t tren man h3nh data cua SCSS 6oa+c chon bat ky o nao trong co t cua bien va chon tren menu- DataRDefine Mariable? 6o p thoai Define Mariable ẩ c m  ra nh h3nh 2-
  8. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam 63nh 2- 6o p thoai Define Mariable /hai bao ten bieãn, ten bien nay se! hien th1 tren man h3nh data cua SCSS va b1 han che ve so ky t  hien th1, do ẩo can thiet phai khai ba o nga<n gon va de. g i nh , thong th ng nen ẩa+t theo th t  cau hoi trong bang cau hoi nh /1, /3, /Pa, ? Co mo t so /ui c sau ẩay phai tuan theo khi khai ba o ten bien - La<t ẩau bang mo t ch  ca i va khong ba<t ẩau bang dau chamD.E. Ten bien khong ẩ c /ua 8 ky t  0hong ẩ c ch a khoang tra<ng va ca c ky t  ẩa+c bie t nh DXE, DYE, D*E. Ca c t  kho a sau ẩay khong ẩ c dung lam ten bien- SLL, NE, E9, TO, LE, LT, LY OR, GT, SND, NOT, GE, W IT6 e ẩ1nh ra loai bien, an thanh type trong h p thoai define variable, ta se! co ho p thoai Define Mariable Type nh h3nh 3- 63nh 3- 6o p thoai Define Mariable Type
  9. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam Tuy thuo c vao yeu cau cua d ! lie u, ma ta se! ẩ1nh loai bien cho bien, SCSS ma+c ẩ1nh loai bien la kieu so DnumericE. Tiep theo la gan nha,n cho cac bieãn. Ta tr  lai ho p thoai define variable va nhan vao thanh labels ẩe co ẩ c ho p thoai nh h3nh P- 63nh P- 6o p thoai Define Lables Cong vie c ẩau tien trong ho p thoai define labels la tien hanh ga n nha!n cho bien Dvariable labelsE, nha!n cua bien se! ẩ c hie.n th1 v i chieu dai toi ẩa 120 ky t , ẩ c dung ẩe mo ta them y ngh2a cua bien. Thong th ng ta co the dung nh !ng cau hoi trong bang cau hoi ẩe s  dung lam nha!n cua bien, ẩieu nay giu p ta de. dang trong vie c ẩoc va hieu so lie u phan t%ch sau nay. Tiep theo la gan nha,n cho cac gia tr. cua bieãn DMalue labelsE va ẩay ch%nh la khai ba o y ngh2a cua ca c gia tr1 cua bien. 0hai ba o nha!n cua bien tren ho p thoai Mariable lable. M i nha!n cua gia tr1 Dvalue lablesE co ba thao ta c- • Ga n mo t nha!n m i- Nha p gia tr1 vao ho p thoai Malue Nha p mo t nha!n vao ho p thoai Malue Label Sn nu t Sdd • S !a ẩoi mo t nha!n- Di ve t sa ng ẩen nha!n can s a ẩoi Nha p ten nha!n m i, an nu t Change ẩe thay ẩoi • Loai bo mo t nha!n- Di ve t sa ng ẩen nha!n can loai bo
  10. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam Sn nu t Remove ẩe loai bo 0ia tr. )huyeãt 12issing values3 ẩ c dung ẩe khai ba o ca c gia tr1 ma ta cho phe p chu ng ẩai die n cho ca c tr ng h p trong d ! lie u, khi ẩo ca c gia tr1 nay se! khong ẩ c s  dung trong /ua tr3nh (  ly thong ke sau nay. 1nh ngh2a 4issing Malues th ng ẩ c s  dung ẩe biet tai sao thong tin b1 thieu. Cha8ng han ta co the muon phan bie t thong tin b1 thieu do ng i tra l i t  choi tra l i hay do cau hoi khong th%ch h p ẩoi v i ẩoi t ng ẩo Trong ho p thoai tren ta co the nha p ba gia tr1 khuyet kha c nhau, mo t khoang gia tr1 khuyet hay mo t khoang va mo t gia tr1 khuyet kha c. 1nh ngh2a bang khoang ch5 co the ẩ c dung khi bien lay gia tr1 so Ta khong the ẩ1nh ngh2a gia tr1 khuyet cho ca c bien chuo.i dai h n ta m ky t . Tat ca ca c gia tr1 chuo.i, ke ca trong hay khoang tra<ng, ẩ c (em nh co gia tr1 tr  khi ta ẩ1nh ngh2a ẩo la gia tr1 khuyet. e ẩ1nh ngh2a trong hay khoang tra<ng la gia tr1 khuyet, ta nha p mo t khoang tra<ng Dsingle spaceE vao mo t trong ba vung cua Discrete missing values Ta con co the phan t%ch ca c gia tr1 khuyet bang cong cu 4issing Malue Snalysis.
  11. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam 4issing Malue Snalysis co ba ch c na_ng ch%nh 1. No la cong cu giu p mo ta /uy lua t cua ca c gia tr1 khuyet- ca c gia tr1 khuyet nam  ẩau, co nhieu gia tr1 khuyet khong, co nh !ng ca+p bien co (u h ng b1 thieu gia tr1  ca c bang cau hoi kha c nhau khong, ca c d ! lie u /ua l n hay /ua nho, hay co phai ca c gia tr1 b1 thieu mo t ca ch ngau nhien 2. ` c l ng trung b3nh, ẩo le ch chuan, hie p ph ng sai, va he so t ng /uan bang ca c ph ng pha p listwise, pairwise, regression, or E4 De(pectation- ma(imiaationE. Ch ng pha p listwise bo /ua ca c tr ng h p co gia tr1 khuyet  bat ky bien nao, trong khi pairwise ch5 bo /ua ca c tr ng h p co gia tr1 khuyet  ca+p bien ẩang (  ly . Ch ng pha p E4 c l ng ca c gia tr1 khuyet bang /ua tr3nh la+p. bc mo.i b c la+p co mo t b c E t%nh gia tr1 trung b3nh cua ca c tham so va mo t b c 4 t%nh ca c c l ng h p ly nhat D ma(imum likelihood estimatesE. Ch ng pha p hoi /uy th3 c l ng ca c gia tr1 khuyet bang thua t toa n hoi /uy. 3. ien ca c gia tr1 b1 thieu bang ca c gia tr1 c l ng cho b i hoi /uy hay E4 4issing value analysis giu p giai /uyet nhieu van ẩe gay ra do thieu d ! lie u. Nh !ng tr ng h p b1 thieu gia tr1 kha c mo t ca ch he thong v i nh !ng tr ng h p co ẩay ẩu gia tr1 co the lam cho ket /ua kho hieu, m ho. Ca c d ! lie u b1 thieu co the lam giam ẩo ch%nh (a c cua ca c thong ke ẩ c t%nh v3 co %t thong tin h n d  t%nh ban ẩau. 4o t van ẩe n !a la ca c gia thiet ẩang sau nhieu thu tuc thong ke d a tren ca c
  12. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam tr ng h p co ẩu thong tin, va ca c gia tr1 khuyet co the lam ph c tap them phan ly thuyet s  dung 2easurement. Tuy thuo c vao dang thang ẩo ẩ c s  dung trong bien ma ta khai ba o trong cong cu measurement, chu y khai ba o scale ẩ c dung chung cho dang thang ẩo /ua!ng va thang ẩo ty le -9nh bi ;n chung ay la cong cu ẩ1nh bien nhanh cho cung mo t lu c nhieu bien co cung chung kieu bien-type hoa+cRva cung chung kieu ma! ho a d ! lie u Dca c gia tr1 cua bien giong nhau-value labelsE. Tr c tien ta ẩa nh dau khoi ca c bien Dt  co tE ma ta muon ẩ1nh bien chung tren man h3nh Data cua SCSS. T  data tren thanh menu ta nhap template ẩe co ẩ c ho p thoai nh h3nh A 63nh A- 6o p thoai Template Sau khi co ho p thoai template, nhan thanh Definedd trong ho p thoai ẩe khai ba o ten bien  ho p thoai Name, phan ten khai ba o nay se! ẩ c l u tr ! trong template va ta co the lay ra s  dung trong tr ng h p khai ba o ca c bien kha c co cung dang. Chan define template ẩ c dung khai ba o loai, ca c gia tr1 cua bien,? cho ca c bien ẩang ẩ1nh ngh2a loai bien va ga n nha!n cho ca c gia tr1 cua bien. Chan apply trong ho p thoai cho ta l a chon nh !ng phan chung cua ca c bien. Sau ẩo nhan Sdd ẩe (a c nha n vie c ẩ1nh bien chung nay. Neu phan ẩ1nh nghia! nay ẩa! ẩ c l u trong template sau nay khi muon ẩem no ra ẩe ẩ1nh ngh2a cho ca c bien kha c co s  giong nhau ve loai hay nha!n gia tr1, ? ta ch5 vie c l a chon ten template ẩa! ẩ c l u trong cong cu template Dma+c ẩ1nh la defaultE E. TaFo la0p th Dm ca*c bi ;n Ta p h p 1 so bien Dtra l iE kha c nhau ẩe tao thanh mo t bien m i co y ngh2a cho thong ke hay phan t%ch h n. Ngoai ca c bien ẩa! ẩ c khai ba o trong /ua tr3nh nha p
  13. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam d ! lie u, mo t so bien kha c co the ẩ c tao ra do nhu cau ( ! ly va phan t%ch d ! lie u. Co mo t so cong cu th ng ẩ c s  dung nh Recode, Compute, Count R cod Recode into same variables- Recode tren cung mo t bien, t c la ẩ1nh lai nh !ng gia tr1 cua nh !ng bien hie n tai hoa+c ru t nga<n b t da!y ca c gia tr1 ton tai thanh nh !ng gia tr1 m i tren cung nh !ng bien ẩo . Nhap transformRrecode t  thanh menu ch%nh. bc ẩay ta l a chon into same variable ẩe tien hanh ẩ1nh lai gia tr1 cho bien tren cung mo t bien. Ta co ho p thoai nh h3nh e 63nh e- 6o p thoai recode into same variables Chuyen ca c bien can ẩ1nh lai gia tr1 sang ho p thoai variables. Nhan tha nh Old and New Malues ẩe ẩ1nh ca c gia tr1 cu can thay ẩoi thanh ca c gia tr1 m i. Nhan thanh If ẩe (a c ẩ1nh ca c ẩieu kie n ẩe th c hie n le nh Recode Tiep theo nhan thanh old and new values t  ho p thoai Recode ta se! co ho p thoai nh h3nh f 63nh f- 6o p thoai Old and New Malues
  14. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam Old value dung ẩe khai ba o gia tr1 cu! can chuyen ẩoi. Gia tr1 cu! nay co the la mo t g%a tr1 ẩ n le, mo t gia tr1 khuyet, mo t da!y ca c gia tr1. New value dung ẩe khai ba o gia tr1 m i se! thay the cho gia tr1 cu! t ng ng. Nhan thanh Sdd ẩe l u s  chuyen ẩoi nay. Ca c gia tr1 chuyen ẩoi co the s a ch a hoa+c loai bo bang ca ch di chuyen vet toi ẩen bieu th c the hie n s  chuyen ẩoi trong ho p thoai Old-dNew va nhan thanh Change cho s  thay ẩoi hoa+c Remove ẩe loai bo. Neu vie c ẩ1nh lai gia tr1 cua ca c gia tr1 cua bien co mo t so ẩieu kie n kem theo, ta co the dung cong cu if ẩe ẩ1nh ra ca c ẩieu kie n cho le nh recode. Nhan thanh if t  ho p thoai ta co ho p thoai con nh h3nh 8 63nh 8- 6o p thoai If cases Trong ho p thoai If Cases, ma+c ẩ1nh la khong co ẩieu kie n nao ca, phe p ẩ1nh lai gia tr1 cua bien ẩ c th c hie n cho tat ca ca c /uan sa t,  ẩay hien th1 la Include all cases. Chon le nh include if case satisfies condition ẩe (a c ẩ1nh ẩieu kie n trong vie c ẩ1nh lai gia tr1 cua bien. Chuyen ten bien can ẩ1nh lai ca c gia tr1 vao ho p thoai ben phai. Lu c nay phe p ẩ1nh lai gia tr1 cua bien no i tren ch5 ẩ c th c hie n ẩoi v i ca c /uan sa t nao thoa ma!n ẩ c bieu th c ẩieu kie n ẩ c the hie n. Recode into different variables- Trong tr ng h p ẩ1nh lai gia tr1 hie n tai cua mo t bien thanh mo t gia tr1 m i trong mo t bien kha c ta se! l a chon transformRrecodeR into different variable va ta co ho p thoai nh h3nh N-
  15. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam 63nh N- 6o p thoai Recode into Different Mariables Chuyen ca c bien can ẩ1nh lai gia tr1 vao trong ho p variables. 0hai ba o ten bien m i va nha!n bien m i trong ho p thoai Output variable. Sau ẩo nhan thanh change ẩe (a c nha n. Ca c cong cu If va Old and New Malues cu!ng co y ngh2a va thao ta c giong nh tr ng h p ẩ1nh lai gia tr1 cho cung mo t bien. Comput Co ng cu compute ẩ c dung ẩe t%nh ca c gia tr1 m i t  ca c bien sa>n co trong cau tru c d ! lie u. 0et /ua t%nh toa n th ng ẩ c ch a ẩ ng trong mo t bien m i, hoa+c la mo t bien kha c sa8n co hoa+c bien ch a ẩ ng gia tr1 ẩang t%nh toa n. Truy (uat cong cu compute variable t  transform tren thanh menu ta co ho p thoai nh h3nh 10, 6o p thoai Target variable ch a ẩ ng ten bien se! nha n gia tr1 ẩ c t%nh. Ta co the khai ba o kieu va ga n nha!n cho ca c gia tr1 cua bien bang ca ch nhan vao thanh Type)label. 6o p thoai Numeric E(pression ch a ẩung ca c bieu th c so ẩ c dung ẩe t%nh gia tr1 cho bien ẩ%ch Dbien ch a ẩung gia tr1 m iE, bieu th c nay co the dung ten ca c bien sa>n co , ca c hang, ca c toa n t  va ca c ham so. Chu ng ta co the go! vao va soan bieu th c t%nh toa n t ng t  nh v i mo t va_n ban, va co the s ! dung ca c cong cu ẩ c hien th1 trong ho p thoai nh ca c phiem DgE, D-E, hunction,? Cong cu If dung ẩe ẩ1nh ra nh !ng ẩieu kie n can thiet kem theo trong t%nh toa n neu co , ẩ c s  dung giong nh cong cu If trong ho p thoai Recode
  16. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam 63nh 10- 6o p thoai Compute Mariable Count Cong cu nay ẩ c dung ẩe tao ra mo t bien m i ch a tong so lan (uat hie n cua mo t gia tr1 hay ca c gia tr1 ẩa! ẩ c ẩ1nh ra danh sa ch ca c bien ẩ c chon. T  menu ta chon TransformRcount ẩe co ẩ c ho p thoai nh h3nh 11 63nh 11- 6o p thoai Count 4o t bien m i se! ẩ c tao ra khi ta th c hie n thu tuc Count goi la bien ẩ%ch DTaget variableE se! ch a ẩ ng gia tr1 co ng don mo.i khi ga+p ẩ c gia tr1 can ẩem trong mo t hoa+c nhieu bien ẩa! ẩ c khai ba o tr c trong ho p thoai Numeric variables. Gia tr1 can ẩem se! ẩ c ẩ1nh ro! trong phan Define values. Gia tr1 khai ba o ẩe ẩem co the la nh !ng gia tr1 cu the nao ẩo DMalueE, hoa+c nh !ng gia tr1 ro.ng DSystem missingE hoa+c la mo t da!y ca c gia tr1 DrangeE. Sau khi khai ba o gia tr1 can ẩem ta dung thanh
  17. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam Sdd ẩe (a c nha n gia tr1 can ẩem vao trong ho p thoai Malues to count. S  dung Change hoa+c Remove ẩe thay the hoa+c loai bo gia tr1 can ẩem Dgia tr1 ẩa! ẩ c ẩa nh dau bang vet ẩenE. 63nh 12- 63nh 12- 6o p thoai define values Cong cu If dung ẩe (a c ẩ1nh ca c ẩieu kie n neu co khi th c hie n le nh Count, Dgiong nh cong cu If trong phan Recode ẩa! ẩ oc ẩe ca p  trenE -9nh nghGa nho*m bi ;n nhi Hu traI lA6i (d fin multir spons s ts) Trong cau hoi nhieu tra l i se! bao gom nhieu bien ch a ẩ ng ca c tra l i co the co , nh !ng bien nay goi la bien s cap. Do ẩo ẩe ( ! ly , chu ng ta phai go p ca c bien s cap nay thanh mo t bien go p ch a ca c bien s cap. Sau ẩo trong ca c phan t%ch thong ke lien /uan ẩen cau hoi nhieu tra l i, chu ng ta se! dung ten bien go p nay thay the cho tat ca ca c bien s cap. Lien go p nay ch a ẩung toan bo ca c gia tr1 trong ca c bien s cap cua mo t cau hoi nhieu tra l i. Chon menu StatisticsR4ultiple ResponseRDefine sets? se! m  ho p thoai Define 4ultiple Response Sets nhu h3nh 13-
  18. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam 63nh 13- 6o p thoai Define 4ultiple Response Sets Chon tat ca nh !ng bien s cap lien /uan ẩen mo t cau hoi nhieu tra l i  ho p thoai ben tra i chuyen sang ho p thoai Mariables in Set, ch5 ẩ1nh ca ch ma! ho a ca c bien ẩo Ddichotomy hay categoryE, da!y gia tr1 ma! ho a Range ? Through, (a c ẩ1nh ten nho m ẩa tra l i roi an thanh Sdd ẩe ẩ a ten nho m v a (a c ẩ1nh vao ho p 4ult Response Sets. Sau khi mo.i nho m ẩ c ẩ1nh ngh2a, ca c bien chon se! ẩ c tra ve ho p thoai thoai ben tra i, cho phe p ta co the dung nhieu bien t ng t  cho nhieu nho m ẩa tra l i kha c nhau Trong khung Mariable Sre Code Ss, chu ng ta co the chon mo t hay hai muc sau ẩay tuy theo ph ng pha p ma! ho a- 4ichotomies- ay la trang tha i ma+c ẩ1nh, mo.i bien s cap ch5 co hai gia tr1, va chu ng ta nha p gia tr1 nao cua bien can ẩem vao ho p Counted Malue Category- 4o.i bien s cap co nhieu h n hai gia tr1, va chu ng ta nha p ca c gia tr1 nho nhat va l n nhat cua da!y gia tr1 ma! ho a vao ca c o Range va thourgh Chu ng ta ẩa+t ten cho nho m ẩa bien Dtoi ẩa f ky t E va nha!n Dtoi ẩa P0 ky t E vao ca c ho p Name va Label. L u y la ten cua ca c nho m ẩa bien ch5 ẩ c s  dung trong ca c thu tuc (  ly bien nhieu tra l i ma thoi. e loai bo va s a ẩoi vie c ẩ1nh ngh2a mo t nho m bien ẩa tra l i nao ẩo ta di chuyen ve t sa ng ẩen ten nho m ẩo va nhap thanh Remove ẩe loai bo va thanh Change ẩe thay ẩoi. La0p baIng cho bi ;n nhi Hu traI lA6i e tien hanh la p bang cho ca c bien nhieu tra l i, ta s  dung ca c ten nho m ẩa bien ẩa! ẩ c ẩ1nh ngh2a bang cong cu Define 4ulti Response Sets ẩa! ẩ c ẩe ca p  phan tren sau ẩo vao Statisticsi4ultiple response va chon hre/uencies hoa+c Crosstabs tuy theo nhu cau la p bang mo t chieu hay ẩa chieu.
  19. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam Ngoai ra khi chu ng ta tien hanh la p bang cho ket /ua cuoi cung cua van ẩe nghien c u co the dung ca c cong cu trong statistics R custom table ẩe tao ra ca c bang bieu, co the la bang mo t chieu, bang nhieu chieu va ca c bang bieu mo ta thong ke tuy theo yeu cau cua van ẩe nghien c u Lang bieu the hie n tan so (uat hie n DTables of fre/uenciesE- cho phe p chu ng ta tao ra nh !ng bang bieu the hie n tan so (uat hie n cua mo t hay nhieu bien ẩ n • Dang bang bieu c ban DLasic tablesE- The hie n ca c d ! lie u nghien c u theo dang bang che o Dcross-tabulationE gi !a hai bien hoa+c gi !a mo t bien va mo t nho m ca c bien. • Dang bang ẩa bien D4ultiple response tablesE- Giong nh basic tables the hie n tan suat (uat hie n va bang che o, tuy nhien dang bang bieu nay cho phe p ta (ay d ng bang bieu cho ca c cau tra l i ẩa bien • Dang bang bieu tong h p DGeneral tablesE- Giong nh bang bieu c ban va ẩa tra! l i. Ca c d ! lie u ẩ c the hie n d i dang bang che o, tuy nhien  dang bang bieu nay cho phe p ng i phan t%ch the hie n moi lien he gi !a mo t bien v i nhieu bien kha c tren cung mo t bang e la p bang tan so cho bien nhieu tra l i ta ẩ a bien vao ho p thoai sau 63nh 1P- 6o p thoai 4ultiple Response hre/uencies Sau ẩay la ket /ua t%nh toa n t  SCSS
  20. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam Group $NOI_lE4 DNoi (em bong daE Cct of Cct of Category label Code Count Responses Cases Nha 1 1eP e3.1 Nf.e 9ua n caf<e 2 A0 1N.2 2N.8 Lar 3 P 1.A 2.P San va n ẩo ng P P1 1A.8 2P.P 9ua n nha u e 1 .P .e Total responses 2e0 100.0 1AP.8 0 missing casesT 1e8 valid cases e la p bang che o cho bien nhieu tra l i, ta chon mo t bien ẩ n Dkhong nhat thiet phai la bien thanh phan cua bien go pE va mo t bien go p D4ultiple Response setsE ẩ a vao ca c hang va co t roi chon ca c ket /ua can t%nh trong Options, co the t%nh t5 le phan tra_m theo so ng i ẩieu tra trong ma.u hay so ket /ua tra l i. Ta co the ta ch bang che o thanh nhieu l p d a vao ca c gia tr1 cua bien LayerDsE 63nh 1A- 6o p thoai 4ultiple Response Crosstabs 0et /ua t%nh toa n cho trong bang sau ẩay
  21. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam * * * C R O S S T A B U L A T I O N * * * $NOI_XEM (paired group) Noi xem bong da by Q15B_1 A/C thớch xem ụỷ ủaõu nhaỏt? Q15B_1 Count Nha Quan cafe Bar Sõn van Nha van Row pct dong hoa Row Col pct Total Tab pct 1 2 3 4 5 $NOI_XEM À À À À À À 1 80 19 3 59 2 163 Nha 49.1 11.7 1.8 36.2 1.2 63.2 86.0 42.2 50.0 53.2 66.7 31.0 7.4 1.2 22.9 .8 À À À À À À 2 9 18 1 20 1 49 Quan cafộ 18.4 36.7 2.0 40.8 2.0 19.0 9.7 40.0 16.7 18.0 33.3 3.5 7.0 .4 7.8 .4 À À À À À À 3 0 3 1 0 0 4 Bar .0 75.0 25.0 .0 .0 1.6 .0 6.7 16.7 .0 .0 .0 1.2 .4 .0 .0 À À À À À À 4 4 5 1 31 0 41 Sõn van dong 9.8 12.2 2.4 75.6 .0 15.9 4.3 11.1 16.7 27.9 .0 1.6 1.9 .4 12.0 .0 À À À À À À 6 0 0 0 1 0 1 Quan nhau .0 .0 .0 100.0 .0 .4 .0 .0 .0 .9 .0 .0 .0 .0 .4 .0 À À À À À À Column 93 45 6 111 3 258 Total 36.0 17.4 2.3 43.0 1.2 100.0 Percents and totals based on responses 167 valid cases; 1 missing cases
  22. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam M O TA C S D’ LIEU I. M O TA D’ LIEU BAJNG BIEU -OK 1. Scatt r Chon mo t bien cho Y-a(is va bien kha c cho l-a(is. Ca c bien nay phai la so nh ng khong nen  ẩ1nh dang ngay tha ng Co the chon bien cho vao Set 4arkers. 4o.i gia tr1 cua bien nay se! ẩ c ẩa nh dau bang ky hie u kha c nhau tren bieu ẩo scatter. Lien nay co the la so hay chuoi ky t  Ta cu!ng co the chon bien so hay chuoi ky t  ẩ a vao Label Cases ẩe ẩa+t nha!n cho ca c ẩiem tren bieu ẩo M% du Neu ẩ c chon, ca c nha!n gia tr1 Dhay gia tr1 neu khong ẩ1nh ngh2a nha!nE cua bien nay ẩ c dung ẩe ga n nha!n cho ca c ẩiem Neu khong chon, so tr ng h p co the ẩ c dung ẩe ga n nha!n cho ca c c c tr1 63nh 1e- 6o p thoai Scatterplot Ta co bon ca ch ẩe hien th1 ket /ua cua bieu ẩo- simple la ca ch hien th1 ẩ n gian mo t bien theo bien kha c, overlay ẩe hien th1 nhieu bieu ẩo gi !a nhieu ca+p bien
  23. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam cung mo t lu c, matri( ẩe hien th1 bieu ẩo cua nhieu bien so t ng ca+p v i nhau, 3-D hien th1 bieu ẩo cua ba bien trong khong gian ba chieu. Co the (em ca c bieu ẩo minh hoa d i ẩay tr3nh bay lan l t theo th t  tren D i ẩay ta ch5 minh hoa tr ng h p simple scatterplot, ca c tr ng h p kha c lam t ng t 
  24. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam 63nh 1f- 6o p thoai Simple Scatterplot 22 20 18 16 ) s 14 r a e y ( l 12 e v e L 10 l a n Gender o i t 8 a Male c u d 6 Female E .5 1.0 1.5 2.0 2.5 3.0 3.5 Employment Category
  25. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam 2. Histogram Lieu ẩo histogram nho m ca c gia tr1 cua bien vao ca c nho m ca ch ẩeu nhau vave! bieu ẩo t ng ng v i so tr ng h p trong mo.i nho m. So tr ng h p co the bieu th1 theo phan tra_m, rat tie n cho vie c so sa nh ca c ta p d ! lie u co k%ch th c kha c nhau. So tr ng h p hay phan tra_m cu!ng co the ẩ c t%ch lu!y theo ca c nho m Lieu ẩo histogram co the ch5 ra ca c c c tr1 va ẩo le ch cua phan phoi. ieu nay cho biet co the dung ca c thu tuc co gia ẩ1nh phan phoi chuan ẩe (  ly bien nay khong 63nh 18- 6o p thoai 6istogram 200 100 Std. Dev = 2.88 Mean = 13.5 0 N = 474.00 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 Educational Level (years)
  26. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam 3. P-P Plots C-C Clots bieu die.n phan phoi t%ch lu!y cua bien theo phan phoi t%ch lu!y cua phan phoi ẩa! chon ẩe kiem tra. Neu ca c ẩiem phan bo (ung /uanh ẩ ng tha8ng, phan phoi cua bien phu h p v i phan phoi ẩa! chon. Ca c phan phoi co sa>n ẩe kiem tra la beta, chi-s/uare, e(ponential, gamma, half-normal, Laplace, Logistic, Lognormal, normal, pareto, Studentms t, W eibull, va uniform. Tuy theo phan phoi ẩa! chon ma (a c ẩ1nh ẩo t  do va ca c tham so Co the dung C-C Clots ẩoi v i ca c so lie u ẩa! ẩ c bien ẩoi. Ca c phe p bien ẩoi co sa>n la natural log, standardiae values, difference, va seasonally difference. 63nh 1N- 6o p thoai C-C Clots
  27. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam Detrended Normal P-P Plot of Educational Level (years) .1 l a m 0.0 r o N m o r f n o i t a i v e D -.1 -.2 0.0 .2 .4 .6 .8 1.0 1.2 Observed Cum Prob Transforms: natural log, difference (1) Normal P-P Plot of Educational Level (years) 1.00 .75 b .50 o r P m u C .25 d e t c e p x E 0.00 0.00 .25 .50 .75 1.00 Observed Cum Prob Transforms: natural log, difference (1)
  28. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam E. N-N Plot Cong cu 9-9 Clot ve! ẩo th1 cua ca c ẩiem phan v1 D/uantilesE cua phan phoi cua bien theo ca c phan v1 cua mo t phan phoi muon kiem tra. Ca c ẩo th1 (a c suat th ng ẩ c dung ẩe (a c ẩ1nh (em phan phoi cua bien co phu h p v i phoi muon kiem khong. Neu phu h p ca c ẩiem cua ẩo th1 se! phan bo /uanh mo t ẩ ng tha8ng. Ca c phan phoi co sa>n ẩe kiem tra la beta, chi-s/uare, e(ponential, gamma, half-normal, Laplace, Logistic, Lognormal, normal, pareto, Studentms t, W eibull, va uniform. Tuy theo phan phoi ẩa! chon ma chu ng ta (a c ẩ1nh ẩo t  do hay ca c tham so can thiet. Co the dung 9-9 Clots ẩoi v i ca c so lie u ẩa! ẩ c bien ẩoi. Ca c phe p bien ẩoi co sa>n la natural log, standardiae values, difference, va seasonally difference. 63nh 20- 6o p thoai 9-9 Clots
  29. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam Detrended Normal Q-Q Plot of Educational Level (years) .3 .2 .1 l 0.0 a m r o -.1 N m o r -.2 f n o i t -.3 a i v e D -.4 -4 -3 -2 -1 0 1 2 3 Standardized Observed Value Transforms: natural log, difference (1) Normal Q-Q Plot of Educational Level (years) 3 2 1 e 0 u l a V l -1 a m r o -2 N d e t c -3 e p x E -4 -4 -3 -2 -1 0 1 2 3 Standardized Observed Value Transforms: natural log, difference (1) O. BoP plot Cong cu Lo( plot cho ta chon loai bieu ẩo phu h p- simple hay clustered, va ca ch mo ta d ! lie u tot nhat /ua ca c l a chon trong phan Data in Chart Sre. Yn
  30. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam ngh2a cua l a chon nay se! ẩ c tr3nh bay d i ẩay. Lo(plots tr3nh bay median, inter/uartile range, outliers, va e(treme cases cua t ng bien 63nh 21- 6o p thoai Lo(plot a. Neu chon Simple, ta co the co ca c bo( plots nh sau- S. Summaries for Groups of Cases 4o t bien lay gia tr1 so se! ẩ c to m ta<t theo ket /ua cua mo t bien kha c. 4o.i ho p tr3nh bay median, /uartiles, va e(treme values cua mo t ket /ua. Can co ca c (a c ẩ1nh toi thieu sau- • Lien lay gia tr1 so can to m ta<t • Lien tren truc Category a ca c l a chon tren vao ho p thoai sau
  31. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam 63nh 22- 6o p thoai Define Simple Lo(plot 0et /ua (  ly cua SCSS Employm nt Cat gory Cas Proc ssing Summary Cases Malid 4issing Total Employment Category N Cercent N Cercent N Cercent Educational Level Clerical 3e3 100.0B 0 .0B 3e3 100.0B DyearsE Custodial 2f 100.0B 0 .0B 2f 100.0B 4anager 8P 100.0B 0 .0B 8P 100.0B
  32. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam Educational L v l (y ars) 22 20 18 16 ) s r 14 a e y ( l 12 e v e L l 10 a n o i t a 8 c u d E 6 N = 363 27 84 Clerical Custodial Manager Employment Category L. Summaries of Separate Mariables Nhieu bien lay gia tr1 so ẩ c to m ta<t. 4o.i ho p ẩai die n cho mo t bien can to m ta<t. Can co ca c (a c ẩ1nh toi thieu sau- • ot nhat hai bien lay gia tr1 so a ca c l a chon tren vao ho p thoai sau
  33. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam 63nh 23- 6o p thoai Define Simple Lo(plot- Summaries of Separate Mariables 0et /ua (  ly b i SCSS nh sau Cas Proc ssing Summary Cases Malid 4issing Total N Cercent N Cercent N Cercent Educational Level DyearsE PfP 100.0B 0 .0B PfP 100.0B 4onths since 6ire PfP 100.0B 0 .0B PfP 100.0B
  34. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam 120 100 80 60 40 20 Manager 0 N = 474 474 Educational Level (y Months since Hire b. Neu chon Scattered, ta co ca c bo( plots nh sau- S. Summaries for Groups of Cases 4o t bien lay gia tr1 so se! ẩ c to m ta<t trong ca c cum ẩ c (a c ẩ1nh b i mo t bien kha c. 4o.i ho p trong cum ẩai die n cho mo t ket /ua cua bien dung ẩe ẩ1nh ngh2a cum. Can co ca c (a c ẩ1nh toi thieu sau- • Lien lay gia tr1 so can to m ta<t • Lien tren truc Category DCategory Mariable 1E. • Lien ẩ1nh ngh2a cum DCat Mar 2E a ca c l a chon tren vao ho p thoai sau
  35. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam 63nh 2P- 6o p thoai Define Clustered Lo(plot- Summaries for Groups of Cases Ta ẩ c ket /ua cho b i SCSS nh sau Employm nt Cat goryRM inority Classification Cas Proc ssing Summary Cases Malid 4issing Total Employment 4inority N Cercent N Cercent N Cercent Category Classification Educational Clerical No 2fe 100.0B 0 .0B 2fe 100.0B Level DyearsE Yes 8f 100.0B 0 .0B 8f 100.0B Custodial No 1P 100.0B 0 .0B 1P 100.0B Yes 13 100.0B 0 .0B 13 100.0B 4anager No 80 100.0B 0 .0B 80 100.0B Yes P 100.0B 0 .0B P 100.0B
  36. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam Educational L v l (y ars) 22 20 18 16 ) s r 14 a e y ( l 12 e v e L l 10 a Minority Classificat n o i t a 8 No c u d Yes E 6 N = 276 87 14 13 80 4 Clerical Custodial Manager Employment Category L. Summaries of Separate Mariables Nhieu bien lay gia tr1 so ẩ c to m ta<t. 4o.i ho p trong cum ẩai die n cho mo t bien can to m ta<t. Can co ca c (a c ẩ1nh toi thieu sau- • ot nhat hai bien lay gia tr1 so DMar 1, Mar 2, etc.E • 4o t bien tren truc Category DCategory MariableE a ca c l a chon tren vao ho p thoai sau
  37. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam 63nh 2A- 6o p thoai Define Clustered Lo(plot- Summaries of Separate Mariables 0et /ua tr3nh bay trong SCSS nh sau Employm nt Cat gory Cas Proc ssing Summary Cases Malid 4issing Total Employment Category N Cercent N Cercent N Cercent Crevious E(perience Clerical 3e3 100.0B 0 .0B 3e3 100.0B DmonthsE Custodial 2f 100.0B 0 .0B 2f 100.0B 4anager 8P 100.0B 0 .0B 8P 100.0B 4onths since 6ire Clerical 3e3 100.0B 0 .0B 3e3 100.0B Custodial 2f 100.0B 0 .0B 2f 100.0B 4anager 8P 100.0B 0 .0B 8P 100.0B
  38. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam 600 500 No No 400 No No YNeos NYeos No YNeos 300 No No YNeos 200 100 Previous Experience 0 (months) -100 Months since Hire N = 363 363 27 27 84 84 Clerical Custodial Manager Employment Category II. TOM TAST D’ LIEU Tr3nh bay ca c d ! lie u nghien c u thanh bang bieu DtabulationE th ng ẩ c s ! dung ẩe to m ta<t va phan t%ch ca c ket /ua nghien c u. Co hai cong cu ch%nh s ! dung trong vie c to m ta<t va gan loc d ! lie u nghien c u marketing- • Cong cu fre/uencies • Cong cu descriptives • Cong cu e(plore 1. La0p baIng phaDn bo; taHn sua;t (Tr Uu nci s) Cong cu hre/uencies s  dung ca c thong so thong ke ẩe mo ta cho nhieu loai bien, ẩay la mo t b c tot ẩe chu ng ta ba<t ẩau khao sa t d ! lie u. Chu ng ta co the khao sa t d ! lie u thong /ua ca c cong cu nh - tan suat (uat hie n, phan tra_m, phan tra_m t%ch lu!y. Ngoai ra no con cung cap cho ta ca c phe p ẩo l ng thong ke nh ẩo ta p trung Dcentral tendency measurementE, ẩo phan ta n DdispersionE, t phan v1 D9uartilesE va ca c phan v1 DpercentilesE, phan phoi d ! lie u DdistributionE. La p bang nay ngoai vie c to m ta<t d ! lie u, no con giu p ta pha t hie n nh !ng sai so t trong d ! lie u nh , nh !ng gia tr1 bat th ng D/ua l n hay /ua nhoE co the lam sai
  39. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam le ch ket /ua phan t%ch thong ke, nh !ng gia tr1 ma! ho a bat th ng do sai so t vie c nha p lie u hay ma! ho a e tien hanh la p bang ẩ n ta chon cong cu StatisticRsumariaeRfre/uencies ta co ho p thoai nh h3nh 2e 63nh 2e- 6o p thoai hre/uencies Chuyen bien can mo ta sang ho p thoai variableDsE, SCSS ch5 cho phe p ca c bien kieu so DnumericE va chuoi nga<n p to ẩa 8 ky t  Dshort stringE. Ta co the l a chon mo t hoa+c nhieu bien can khao sa t Cong cu Charts ẩ c dung ẩe ve! ẩo th1 cho d ! lie u, va cong cu hormat ẩ c s  dung ẩ1nh ra kieu hien th1 cua d ! lie u, theo th t  ta_ng dan hoa+c gia!m dan Cong cu Statistics ẩe truy (uat ho p thoai nh h3nh 2f. Trong ho p thoai statistics nay se! bao gom ca c cong cu ẩe ẩo l ng ca c gia tr1 thong ke cua d ! lie u nh v1 tr% t ng ẩoi cua ca c nho m gia tr1, ma t ẩo ta p trung va phan ta n cua d ! lie u, nh !ng ẩa+c t%nh ve phan phoi cua d ! lie u DDistributionE
  40. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam 63nh 2f- 6o p thoai hre/uencies- Statistics Cac -ie*m phan v. 1percentile values3: c dung ẩe (a c ẩ1nh ca c ranh gi i t ng ẩoi cua ca c nho m /uan sa t t  ma.u /uan sa t, ẩieu l u y la d ! lie u can /uan sa t ẩa! ẩ c (a<p (ep thep th t  t  thap ẩen cao. Ta co ca c ẩiem chia d ! lie u thanh P phan bang nhau goi la t phan v1 D/uartilesE. 6oa+c ta co the chia d ! lie u theo ca c phan bang nhau cu the bang ca ch go! so phan muon chia vao cong cu cuts points for e/ual groups. 6oa+c ta co the (em ca c ẩiem phan v1 cu the nao ẩo t  cong cu percentileDsE. S  dung thanh Sdd ẩe (a c nha n so th t  phan v1 can /uan sa t, s  dung thanh Remove va Change ẩe loai bo hoa+c thay ẩoi s  (a c nha n ban ẩau -o l3A6ng v9 trV cuIa d3' li 0u (c ntral t nd ncy m asur m nt) • Gia tr1 trung b3nh D4eanE- La gia tr1 trung b3nh so hoc cua mo t bien, ẩ c t%nh bang tong ca c gia tr1 /uan sa t chia cho so /uan sa t. ay la ẩa+c tr ng th ng ẩ c dung cho thang ẩo /ua!ng va ty le . Gia tr1 trung b3nh co ẩa+c ẩiem la ch1u s  ta c ẩo ng cua gia tr1 cua mo.i /uan sa t, do ẩo ẩay la thang ẩo nhay cam nhat ẩoi v i s  thay ẩoi cua ca c gia tr1 /uan sa t • Trung v1 D4edianE- La gia tr1 nam gi !a da!y /uan sa t Dneu l ng /uan sa t la so le!E hoa+c la gia tr1 trung b3nh cua hai /uan sa t nam gi !a Dneu so l ng /uan sa t la so cha8nE da!y /uan sa t ẩ c (a<p (ep theo th t  t  nho ẩen l n. ay la dang cong cu thong ke th ng ẩ c dung ẩe ẩo l ng m c ẩo ta p trung cua dang d ! lie u thang ẩo th t , no co ẩa+c ẩiem la khong b1 anh h ng cua ca c gia tr1 ẩau mu t cua da!y phan phoi, do ẩo rat th%ch h p ẩe phan t%ch ẩoi v i d ! lie u co s  chenh le ch l n ve gia tr1  hay ẩau mu t cua da!y phan phoi • 4ode- La gia tr1 co tan suat (uat hie n l n nhat cua mo t ta p h p ca c so ẩo, dang nay th ng ẩ c dung ẩoi v i dang d ! lie u thang bieu danh. Giong nh trung v1, mode khong b1 anh h ng b i gia tr1 ẩau mu t cua da!y phan phoi
  41. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam -o l3Ang m3*c @o0 phaDn ta*n cuIa d3' li 0u (Disp rsion) • Ch ng sai DMarianceE- Dung ẩe ẩo l ng m c ẩo phan ta n cua mo t ta p ca c gia tr1 /uan sa t (ung /uanh gia tr1 trung b3nh cua ta p /uan sa t ẩo • o le ch chuan DStandard deviationE- la mo t cong cu kha c dung ẩe ẩo l ng ẩo phan ta n cua d ! lie u (ung /uanh gia tr1 trung b3nh cua no . o le ch chuan ch%nh bang ca_n ba c hai cua ph ng sai. M3 ph ong sai la trung b3nh cua ca c b3nh ph ng sai le ch cua ca c gia tr1 /uan sa t t  gia tr1 trung b3nh, do ẩo khao sa t ph ng sai th ng cho ca c gia tr1 rat l n, kho kha_n cho vie c die.n giai ket /ua. S  dung o le ch chuan se! giu p de. dang cho vie c die.n giai do ca c ket /ua ẩ a ra sa t v i d ! lie u goc h n. • 0hoang bien thien DRangeE- La khoang ca ch gi !a gia tr1 /uan sa t nho nhat va gia tr1 /uan sa t l n nhat • Standard Error of 4ean- c dung ẩe ẩo l ng ve s  kha c bie t ve gia tr1 trung b3nh cua ma.u nghien c u nay so v i ma.u nghien c u kha c trong ẩieu kie n co cung phan phoi. No co the ẩ c dung trong so sa nh gia tr1 trung b3nh /uan sa t v i mo t gia tr1 ban ẩau nao ẩo Dgia thuyetE va ta co the ket lua n hai gia tr1 nay la kha c nhau neu ty so gi !a hie u so cua hai gia tr1 ẩoi v i standard error of mean nam ngoai khoang D-2,g2E -aWc tVnh phaDn pho;i (Distribution)- Co hai ẩai l ng ẩo l ng nh !ng ẩa+c t%nh cua s  phan phoi d ! lie u laT • o le ch DCoefficient of Skewness, CSE cho ta biet dang phan phoi cua ca c gia tr1 /uan sa t co ẩoi ( ng hay khong. Cong th c t%nh ẩo le ch nh sau 3 (( i − à) Skewness = nσ3 CS q 0- Ca c /uan sa t ẩ c phan phoi mo t ca ch ẩoi ( ng (ung /uanh gia tr1 trung b3nh CS d 0- Ca c /uan sa t ta p trung chu yeu gan ca c gia tr1 nho nhat Dle ch phaiE CS r 0- Ca c /uan sa t ta p trung chu yeu gan ca c gia tr1 l n nhat Dle ch tra iE • o nhon DCoefficient of 0urtosis, C0E dung ẩe so sa nh m c ẩo phan ta n cua ẩ ng cong /uan sa t v i dang ẩ ng cong phan phoi chuan. C0 cua phan phoi chuan bang 3. Cong th c t%nh ẩo nhon nh sau 4 (( i − à) Kurtosis = nσ 4 Tuy nhien trong ca c phan mem ng dung he so 0urtosis la ẩo ẩo m c ẩo phan ta n cua ca c /uan sa t (ung /uanh gia tr1 trung b3nh. oi v i phan phoi chuan gia tr1 nay la 0. 6e so 0urtosis d ng ngh2a la ca c /uan sa t phan ta n nhieu h n va
  42. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam ẩuoi phan phoi dai h n so v i phan phoi chuan, am ngh2a la ca c /uan sa t phan ta n %t h n va ẩuoi phan phoi nga<n h n. 2. Tho;ng k D moD taI (D scriptiv ) S  dung StatistictsiSummariesiDescriptives ẩe m  ho p thoai mo ta thong ke nh h3nh 28 63nh 28- 6o p thoai descriptives va options ay la mo t dang cong cu kha c co the ẩ c dung ẩe to m ta<t d ! lie u va ch5 cho phe p thao ta c tren dang d ! lie u so. c dung ẩe the hie n (u h ng ta p trung cua d ! lie u Dcentral tendencyE thong /ua gia tr1 trung b3nh cua ca c gia tr1 trong bien DmeanE, va mo ta s  phan ta n cua d ! lie u thong /ua ph ng sai va ẩo le ch chuan. Chuyen ca c bien can to m ta<t vao ho p thoai variables va nhap thanh options ẩe l a
  43. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam chon ca c thong so thong ke can mo ta, nh gia tr1 trung b3nhpmean, Gia tr1 toi thieu, gia tr1 toi ẩa, ph ng sai va ẩo le ch chuan, ? 3. CoDng cuF EPplor Thu tuc E(plore cho chu ng ta ca c to m ta<t so lie u va ca c bieu ẩo cua toan bo so lie u hay cua ca c nho m so lie u rien bie t. Ta co the dung thu tuc nay l c /ua so lie u ẩe pha t hie n ca c gia tr1 bat th ng, (a c ẩ1nh ca c c c tr1 DoutliersE, mo ta, kiem tra gia thiet ẩe (a c ẩ1nh (em ca c ky! thua t thong ke ẩang dung ẩe phan t%ch so lie u co phu h p khong, co can phai bien ẩoi so lie u neu ky! thua t ẩang dung yeu cau so lie u co phan phoi chuan hay phai dung ca c phe p kiem phi tham so, thu tuc e(plore cu!ng neu ra ca c kha c bie t gi !a ca c nho m nho Statistics va plots cho ta t%nh ca c ẩa+c tr ng va ve! bieu ẩo cua so lie u. Ca c thong ke ẩ c t%nh la mean, median, AB trimmed mean, standard error, variance, standard deviation, minimum, ma(imum, range, inter/uartile range, skewness va kurtosis va standard errors cua chu ng, khoang tin ca y cho trung b3nh Dconfidence interval for the meanE v i ẩo tin ca y tuy y , percentiles, 6uberms 4-estimator, Sndrewms wave estimator, 6ampelms redescending 4-estimator, Tukeyms biweight estimator, A gia tr1 l n nhat va A gia tr1 nho nhat, thong ke 0olmogorov-Smirnov statistic v i m c y ngh2a Lilliefors ẩe kiem tra gia thiet chuan, va thong ke Shapiro-W ilk, bo(plots, stem-and-leaf plots, histograms, normality plots, va spread-versus-level plots v i phe p kiem Levene va ca c phe p bien ẩoi 63nh 2N- 6o p thoai E(plore Neu chon Statistics ta co ho p thoai sau
  44. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam 63nh 30- 6o p thoaiE(plore- Statistics M-estimator la mo t c l ng cho khuynh h ng ta p trung co phan bie t trong so cho ca c gia tr1 kha c nhau. Ca c c c tr1 ẩ c ga n trong so thap h n ca c gia tr1 gan tam. 0hi so lie u co phan phoi ẩoi ( ng trai dai ve hai ph%a hay co ca c c c tr1, 4-estimators cho c l ng ve v1 tr% tot h n trung b3nh va trung v1. Ta co bon c l ng la 6uberss 4- estimator, Sndrewss wave estimator, 6ampelss redescending 4-estimator, va Tukeyss biweight estimator M-E stim ators Employment 6uberss 4- Tukeyss 6ampelss 4-Sndrewss Category Estimator Liweight Estimator W ave Current Salary Clerical 2e,fP8.NP 2e,3AA.A0 2e,fef.eA 2e,3PN.30 Custodial 30,ee3.e0 30,A81.11 30,AfN.2N 30,A83.0P 4anager e1,388.N0 AN,820.A2 e1,0AN.e3 AN,f80.3f a The weighting constant is 1.33N. b The weighting constant is P.e8A. c The weighting constants are 1.f00, 3.P00, and 8.A00 d The weighting constant is 1.3P0*pi.
  45. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam St m-and-L af Plots Current Salary Stem-and-Leaf Clot for tOLCSTq Clerical hre/uency Stem ) Leaf 2.00 1 . A 1e.00 1 . eeeeefff 1A.00 1 . 88NNNNN 3A.00 2 . 00000011111111111 PP.00 2 . 2222222222222233333333 A3.00 2 . PPPPPPPPPPPPPPPAAAAAAAAAAA AA.00 2 . eeeeeeeeeeeeeffffffffffffff 3A.00 2 . 88888888NNNNNNNNN 30.00 3 . 00000001111111 1N.00 3 . 222333333 1f.00 3 . PPPPAAAA 11.00 3 . eeeff 8.00 3 . 88NN 8.00 P . 000) 3.00 P . 2) 12.00 E(tremes DdqP3NA0E Stem width- 10000 Each leaf- 2 caseDsE ) denotes fractional leaves.
  46. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam PHAN TYCH D’ LIEU Co nhieu phe p kiem ẩ c s  dung trong SCSS • Neu ta muon so sa nh trung b3nh cua ma.u v i mo t gia tr1 co ẩ1nh nao ẩo ta s  dung phe p kiem One-sample T test. • 6oa+c neu muon so sa nh trung b3nh cua hai nho m, ta s  dung kiem nghie m Independent-samples T test. • e so sa nh means cua hai bien ẩ c khao sa t t  cung mo t ma.u ta s  dung kiem nghie m Caired-samples T test. • 6oa+c v i tr ng h p ta co nhieu h n hai ma.u ẩo c la p, can kiem nghie m trung b3nh ta co the dung SNOMS mo t yeu to DOne-way SNOMSE. Trong ca c tr ng h p tren ca c bien ẩ c kiem nghie m trung b3nh ẩoi hoi phai la ca c bien ẩ1nh l ng va phan phoi phai la phan phoi chuan hay ma.u nghien c u phai ẩu l n. Tuy nhien v i nh !ng tr ng h p bien /uan sa t la bien ẩ1nh l ng nh ng la bien theo thang ẩo th t , hoa+c so l ng ma.u khong ẩu l n hoa+c khong thoa ma!n ẩieu kie n phan phoi chuan ta co the tien hanh kiem nghie m bang cong cu W ilco(on signed rank test Dse! tham khao trong phan Nonparametric test se! ẩ c gi i thie u trong ch ng tr3nh SCSS nang caoE Tr c tien ta se! nghien c u mo t cong cu ẩ n gian trong phan t%ch d ! lie u la 4eans I. M EANS Cong cu M ans dung ẩe t%nh toa n ca c gia tr1 trung b3nh theo ca c nho m nho va ẩ a ca c ch5 so thong ke lien /uan cho mo t bien phu thuo c trong pham vi ca c nho m cua mo t hay nhieu bien ẩo c la p. Ta co the l a chon ca c cong cu kem theo nh phan t%ch SNOMS mo t yeu to, eta, va ca c kiem nghie m tuyen t%nh. M% du ta co the ẩo l ng m c ẩo ẩa nh gia trung b3nh ve mo t show /uang ca o cua ba nho m tieu dung kha c nhau, cong nhan, sinh vien va cong ch c. Cong cu nay se! cho ta mo t bang che o the hie n s  ẩa nh gia cua ba nho m ng i nay ve show /uang ca o ẩ c (em. Cong cu nay ẩ n gian ch5 truy (uat ca c ket /ua thong ke /uan sa t ẩ c, ca c phe p kiem khong ẩ c ẩe ca p trong phan nay e th c hie n cong cu nay ta chon Compar M ans/M ans[. t  menus, ta co ho p thoai nh h3nh 1N. Co the chon mo t hay nhieu bien phu thuo c. Di chuyen ve t ẩen ẩen bien ch a ca c gia tr1 ẩ1nh l ng ma ta can /uan sa t gia tr1 trung b3nh cua ca c gia tr1 ẩ1nh l ng ẩo trong ca c nho m (a c ẩ1nh b i bien ẩo c la p. S  dung mui ten chuyen bien ẩa! chon vao ho p thoai d p nd nt list.
  47. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam Ca c bien phu thuo c trong bang 4eans phai la bien ẩ1nh l ng va ca c bien ẩo c la p th ng la ca c bien ẩ1nh danh. Ca c ẩai l ng thong ke ẩ c s  dung tuy thuo c vao dang d ! lie u. Nh mean va stadard deviation th3 d a tren ly thuyet phan phoi chuan va th%ch h p cho ca c bien ẩ1nh l ng v i phan phoi ẩoi ( ng. Ca c ẩai l ng kha c nh median va range th3 th%ch h p cho ca c bien ẩ1nh l ng ma ta khong biet lie u no co thoa ma!n ca c ẩieu kie n ve phan phoi chuan hay khong. Ta co the l a chon SNOMS va eta ẩe th c hie n vie c phan t%ch s  bien thien mo t chieu cho mo.i bien ẩo c la p. Eta va eta b3nh ph ng cho phe p ẩo l ng ca c moi t ng /uan Lien ẩo c la p la bien dung ẩe chia ca c gia tr1 cua bien phu thuo c thanh nh !ng nho m nho. Co hai ca ch ẩe l a chon bien ẩo c la p • L a chon mo t hoa+c nhieu bien ẩo c la p. Lu c nay ca c ket /ua cu!ng nh ca c ẩai l ng thong ke kem theo se! ẩ c the hie n tren ca c bang rieng bie t cho mo.i bien ẩo c la p • L a chon bien ẩo c la p theo l p, mo.i bien ẩo c la p trong mo t l p, lu c nay ca c ket /ua va ẩai l ng thong ke ẩ c the hie n tren chung mo t bang 63nh 31- 6o p thoai 4eans Cong cu Options Dh3nh 32E. Cho phe p ta l a chon ca c ẩai l ng thong ke can khao sa t va SNOMS, Eta, va Eta b3nh ph ng Dse! ẩ c ẩe ca p chi tiet ve y ngh2a  phan sauE
  48. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam 63nh 32- 6o p thoai Options II. ONE-SAM PLE T TEST Che p kiem mo t ma.u ẩ c dung ẩe kiem ẩ1nh (em gia tr1 trung b3nh cua mo t bien co kha c v i mo t gia tr1 ẩa! cho khong. M% du mo t nha nghien c u co the kiem ẩ1nh (em ch5 so I9 trung b3nh cua mo t nho m sinh vien co bang 100 v i m c y ngh2a AB khong. Ch ng pha p kiem nghie m nay dung cho ca c bien co thang ẩo /ua!ng hay t5 le . Gia thiet 6 va cong th c t%nh t nh sau On -sampl T t st 6- 4ean q Test Malue 0- 4ean ≠ Test Malue Mean Difference  t = ↔ Sig.(2 tailed) Standard Error of Mean Ta co /uy ta<c ket lua n ve gia thiet 6 nh sau- Sig. nho Dr 0.0A cha8ng hanE ngh2a la ba c bo gia thiet 6, ngh2a la trung b3nh kha c v i test value. L u y la /uy ta<c ket lua n ẩ n gian nay co the a p dung cho hau het ca c phe p kiem.
  49. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam T  4enus ta chon Compar M an\On -Sampl T T st[ ta se! co ho p thoai 63nh 33- 6o p thoai One-Sample T Test L a chon bien can so sa nh bang ca ch di chuyen ve t ẩen va chuyen ẩen vao ho p thoai T st Variabl (s), nha p gia tr1 can so sa nh vao ho p thoai T st Valu . Chon cong cu Options ẩe (a c ẩ1nh ẩo tin ca y cho kiem nghie m, ma+c ẩ1nh la NAB va ca ch ( ! ly ẩoi v i ca c gia tr1 khuyet. 0hi kiem nghie m ca c bien ta se! ga+p mo t vai gia tr1 khuyet trong ca c bien ẩo va van ẩe  ẩay la ta phai chon ca ch loai bo ca c gia tr1 khuyet ẩo • EPclud cas s analysis by analysis. 4o.i kiem nghie m T s  dung toan bo ca c tr ng h p DcasesE ch a ẩ ng gia tr1 co y ngh2a ẩoi v i bien ẩ c kiem nghie m. a+c ẩiem cua l a chon nay la k%ch th c ma.u luon thay ẩoi theo t ng kiem nghie m • EPclud cas s listwis . 4o.i kiem nghie m T s  dung ch5 nh !ng tr ng h p co gia tr1 ẩay ẩu ẩoi v i tat ca ca c bien . Trong tr ng h p nay k%ch th c ma.u luon khong ẩoi trong tat ca ca c phe p kiem 63nh 3P- L a chon ca ch (  ly gia tr1 khuyet e tien hanh kiem nghie m T mo t ma.u ẩoi hoi d ! lie u phai ẩa p ng gia ẩ1nh sau • D ! lie u phai la phan phoi chuan, hoa+c
  50. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam • 0%ch th c ma.u phai ẩu l n ẩe ẩ c (em la (ap (5 phan phoi chuan III. INDEPENDENT-SAM PLES T TEST 0iem nghie m nay dung cho hai ma.u ẩo c la p, dang d ! lie u la dang thang ẩo khang ca ch hoa+c ty le oi v i dang kiem nghie m nay, ca c ẩoi t ng can kiem nghie m phai ẩ c (ep mo t ca ch nga.u nhien vao hai nho m sao cho bat ky mo t kha c bie t nao t  ket /ua nghien c u la do s  ta c ẩo ng cua ch%nh nho m th  ẩo , ch khong phai do ca c yeu to kha c. M% du nh ta khong the dung ph ng pha p nay ẩe so sa nh thu nha p cua nam va n ! b i v3 thu nha p con b1 anh h ng l n b i tr3nh ẩo hoc van va nghe nghie p. 6oa+c ẩe ẩa nh gia ta c ẩo ng cua mo t ch ng tr3nh /uang ca o ta l a chon ra hai nho m kha ch hang ẩo c la p, nho m ẩa! (em /ua ch ng tr3nh /uang ca o va nho m ch a (em /ua ch ng tr3nh /uang ca o ẩe ẩa nh gia m c ẩo a th%ch cua san pham ẩa! ẩ c /uang ca o. bc ẩay ngoai cong cu th  la vie c (em /uang ca o hoa+c khong (em, nha nghien c u phai bao ẩam khong ton tai yeu to nao ẩa ng ke ta c ẩo ng ẩen s  ẩa nh gia ve san pham, nh gi i t%nh, s  tieu dung, tr3nh ẩo , ? To m lai ẩe so sa nh gia tr1 trung b3nh Dve s  a th%ch, thu nha p, chi tieu, ? E cua hai nho m ẩo c la p ta phai thiet ke th% nghie m sao cho ca c phan ng thu ẩ c cua nho m nay khong b1 anh h ng b i nho m kia, va ngoai ca c ta c nhan can ẩa nh gia can phai chu y ẩen ca c ta c ẩo ng kha c co the lam thay ẩoi s  phan ng thu nha n ẩ c gi !a hai nho m Me ma+t /uy tr3nh, tr c khi ẩi vao ca c kiem nghie m trung b3nh ta can phai tham khao mo t kiem nghie m kha c ma ket /ua cua no la rat /uan trong cho ca c kiem nghie m trung b3nh sau nay. 0iem nghie m Levene la phe p kiem t%nh ẩong nhat cua ph ng sai. bc ẩay ta kiem nghie m gia thuyet cho rang ph ng sai cua ca c ma.u /uan sa t la bang nhau. Neu ket /ua kiem nghie m cho ta m c y ngh2a nho h n AB, ta co the khong chap nha n gia! thuyet cho rang ph ong sai hai ma.u bang nhau. Chu y trong mo t so kiem nghie m nh SNOMS, kiem nghie m t, ? ẩoi hoi phai tien hanh phe p kiem L v n tr c ẩe (a c ẩ1nh t%nh ẩong nhat cua ca c ph ng sai. 0et /ua nay se! anh h ng ẩen vie c l a chon ca c kiem nghie m trung b3nh kha c D0iem nghie m trung b3nh v i ph ng sai ma.u bang nhau hoa+c kiem nghie m trung b3nh v i ph ng sai ma.u khong bang nhauE Gia thiet 6 va cong th c t%nh t trong ca c tr ng h p ph ng sai bang nhau va kha c nhau nh sau Ind p nd nt-Sampl s T T st: 6- 4ean Difference q 0 0- 4ean Difference ≠ 0 Levene's Test:
  51. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam 6- E/ual Mariance 0- une/ual Mariance • E/ual Mariance- Mean Difference  t = ↔ Sig.(2 tailed) Standard Error of Mean Difference l − l t = 1 2 2 2  ’ (N1 −1)S1 + (N 2 −1)S2 1 1  +  N1 + N 2 − 2  N1 N 2  df q N1gN2 -2 • une/ual Mariance- Mean Difference  t = ↔ Sig.(2 tailed) Standard Error of Mean Difference l − l t = 1 2  2 2 ’  S1 S2   +   N1 N 2  2 2 S1 S2 ω1 = , ω2 = N1 N2 (ω + ω )2 df = 1 2 ω2 ω2 1 + 2 N1 −1 N 2 −1 e th c hie n vie c so sa nh nay ta vao Compar m ans\Ind p nd nt sampl t- t st[. Ca c d ! lie u can so sa nh nam trong cung mo t bien ẩ1nh l ng. e so sa nh ta tien hanh nho m ca c gia tr1 thanh hai nho m nh  bien grouping. T  4enus ta ẩ c ho p thoai nh h3nh 3A
  52. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam 63nh 3A- 6o p thoai Independent sample T-test Di chuyen ve t ẩen vao bien ẩ1nh l ng ma ta can so sa nh gia tr1 trung b3nh, chon bang ca ch nhan nu t mu!i ten ẩe chuyen bien ẩ1nh l ng ẩo vao ho p thoai T st variabl (s). Ta co the chon nhieu bien ẩ1nh l ng ẩe so sa nh. Di chuyen ve t toi ẩen bien ẩ1nh ca c nho m can so sa nh v i nhau Dth ng la bien ẩ1nh danhE di chuyen vao ho p thoai Gouping variabl . Cong cu D fin Groups[ cho phe p ta ẩ1nh ra hai nho m can so sa nh v i nhau, nh h3nh 3e 63nh 3e- 6o p thoai Define Groups Co hai ca ch ẩ1nh nho m so sa nh- • S ! dung gia tr1 cu the- nha p hai gia tr1 ẩai die n cho hai nho m can so sa nh trong bien vao o group 1 va6 group 2. M% du ẩe so sa nh th i gian t  hoc cua hai nho m sinh vien na_m nhat va sinh vien na_m cuoi, ta dung bien loai sinh vien v i P nho m sinh vien ẩ  c ma! ho a nh sau- sinh vien na_m nhat, sinh vien na_m hai, sinh vien na_m ba, sinh vien na_m cuoi lan l t co ma! la 1,2,3,P. Ta nha p gia tr1 1 vao Group 1 va nha p gia tr1 P vao group 2. Lu c ẩo th i gian t  hoc trung b3nh se! ẩ c so sa nh gi !a hai nho m sinh vien na_m nhat va sinh vien na_m cuoi.
  53. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam • Ca ch th hai la s  dung Cut point: nha p gia tri phan ca ch ca c gia tr1 trong bien thanh hai nho m. Toan bo ca c tr ng h p co gia tr1 nho h n gia tr1 ẩ c nha p vao trong cut point se! ẩ1nh ra mo t nho m, va toan bo ca c tr ng h p co gia tr1 l n h n hoa+c bang gia tr1 trong Cut point se! tao ra mo t nho m kha c. M% du ta muon so sa nh th i gian t  hoc cua sinh vien hai na_m ẩau va sinh vien hai na_m cuoi, ta nha p gia tr1 3 Dla gia tr1 ma! ho a cua nho m sinh vien na_m th baE vao cut point, lu c ẩo ta tao ẩ c hai nho m sinh vien bao gom, sinh vien hai na_m ẩau Dsinh vien na_m th nhat va sinh vien na_n th haiE va nho m sinh vien hai na_m cuoi Dsinh vien na_m ba va sinh vien na_m cuoiE va se! tien hanh so sa nh so th i gian t  hoc trung b3nh tren hai nho m sinh vien nay. Cong cu Options  ẩay co thao ta c va y ngh2a giong cong cu Options ẩa! ẩe ca p trong phan kiem nghie m T mo t ma.u ẩa! ẩe ca p  phan tr c. Ca c gia ẩ1nh phai ẩ c thoa ma!n khi dung kiem nghie m T cho hai ma.u ẩo c la p • 0hi dung kiem nghie m t cho hai ma.u co ph ng sai bang nhau Dco the kiem ẩ1nh gia thiet nay bang thong ke L v n E, ca c /uan sa t phai ẩo c la p, ẩ c lay nga.u nhien t  ca c ẩa m ẩong co phan phoi chuan v i ph ng sai bang nhau • Dung kiem nghie m t cho hai ma.u co ph ng sai khong bang nhau khi ca c /uan sa t phai ẩo c la p, ẩ c lay nga.u nhien t  tong the co phan phoi chuan. IV. PAIRED-SAM PLES T TEST ay la dang kiem nghie m dung cho hai bien co lien he v i nhau, d ! lie u dang thang ẩo /ua!ng hoa+c ty le . No t%nh hie u so cua ca c gia tr1 cua hai bien cho mo.i tr ng h p va kiem nghie m (em hie u so trung b3nh co kha c 0 hay khong L i ẩiem cua vie c s  dung kiem nghie m T cho ma.u ca+p la ta loai tr  ẩ c nh !ng yeu to ta c ẩo ng ben ngoai vao nho m th . M% du ẩe khao sa t s  a th%ch cua hai loai n c hoa chuan b1 tung ra th1 tr ng, tien hanh th  nghie m tren cung mo t nho m ma.u se! cho nh !ng thong tin (a c th c h n ve s  a th%ch mui v1 hai loai n c hoa nay, t  ẩo co the ta p trung vao s  kha c bie t t  nhien cua chu ng. Neu ta tien hanh so sa nh gi !a hai nho m ma.u ẩo c la p v i nhau, ket /ua kha c bie t co the do nh !ng ta c nhan kha c gay ra nh s  kha c bie t ve con ng i, ve nha n th c, ve kinh nghie m cu!ng nh ca c yeu to ben ngoai kha c. Ch ng pha p nay th%ch h p cho vie c kiem nghie m san pham, no kiem nghie m gia thuyet cho rang s  kha c bie t gi !a hai trung b3nh ma.u la bang khong. Ta t  choi gia thuyet nay khi m c y ngh2a cua ket /ua kiem nghie m DsignificanteE nho h n m c y ngh2a cho tr c Dth ng la ABE. ieu kie n yeu cau cho loai kiem nghie m nay la k%ch c  hai ma.u so sa nh phai bang nhau. Ca c /uan sa t trong mo.i ma.u phai ẩ c th c hie n trong cung nh !ng ẩieu kie n giong nhau. 6ie u so ca c gia tr1 cua hai ma.u phai co phan phoi chuan hoa+c c  ma.u
  54. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam ẩu l n ẩe (ap (5 phan phoi chuan. Ch ng sai cua hai bien co the bang hoa+c khong bang nhau Dco the kiem nghie m /ua phe p kiem ph ng sai LeveneE Gia thiet 6 va cong th c t%nh t nh sau Pair d-Sampl s T T st 6- 4ean Difference q 0 0- 4ean Difference ≠ 0 Mean Difference  t = ↔ Sig.(2 tailed) Standard Error of Mean Difference e th c hie n vie c so sa nh nay ta vao Compar m ans\Pair d-sampl s t-t st[. T  4enus ta ẩ c ho p thoai nh h3nh 2A- 63nh 3f- Che p kiem T cho ma.u ca+p Chon hai bien can so sa nh bang ca ch di chuyen ve t ẩen lan l t ẩen hai bien can /uan sa t, di chuyen bien can /uan sa t vao ho p thoai Pair d Variabl s bang nu t mu!i ten. Pair d-sampl s t t st con cho ta ket /ua ve moi t ng /uan gi !a hai bien ẩang /uan sa t. Cho biet lie u hai bien nay co t ng /uan v i nhau hay khong, ẩo t ng /uan va chieu t ng /uan Dthe hie n  bang Caired samples correlationE. V. ONE-_ AY ANOVA SNOMS la mo t cong cu thong ke dung ẩe so sa nh nhieu gia tr1 trung b3nh v i nhau. M% du nh trong nong nghie p ng i ta muon biet ngu! coc se! pha t trien nh
  55. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam the nao khi s  dung ca c loai phan bo n kha c nhau. Nha nghien c u muon biet lie u tat ca ca c loai phan bo n tren co anh h ng nh nhau ẩen s  pha t trien cua ngu! coc hay mo t vai loai phan bo n se! co ta c dung tot h n mo t vai loai kha c. e lam ro ẩieu nay ng i ta dung SNOMS kiem nghie m toc ẩo pha t trien trung b3nh Dco the la l ng ngu! coc thu hoach, chieu cao cua cay, so l ng tra i trung b3nh thu hoach ẩ c, ? E khi dung ca c loai phan bo n kha c nhau, ẩay ch%nh la ca c gia tr1 trung b3nh ẩ c s  dung trong thong ke. SNOMS th ng kiem nghie m so l ng ma.u l n h n hai, neu so l ng ma.u bang 2 ta co the dung ph ng pha p t ng ẩoi ẩ n gian h n la phe p kiem t hai ma.u nh ẩa! ẩe ca p  phan tren. SNOMS ẩ c s  dung ro ng ra!i trong th c te b i v3 ta se! ga+p rat nhieu tr ng h p ẩoi hoi ta phai kiem nghie m nhieu ma.u cung mo t lu c. Chu y neu ta kiem t ng ca+p lan l t bang ph ng pha p kiem nghie m t hai ma.u, mo.i lan kiem kha na_ng sai la AB Dtuy thuo c vao m c y ngh2a ta mong muonE. Do ẩo khi kiem nghie m tat ca ca c ca+p ma.u lan l t ty le sai so t se! ta_ng len theo mo.i lan, trong khi SNOMS cho phe p ta kiem nghie m tat ca ca c ma.u cung mo t lu c v i m c ẩo sai so t la AB e th c hie n kiem nghie m SNOMS, d ! lie u ẩoi hoi phai thoa ma!n mo t so gia thuyet sau- • Ca c ma.u kiem nghie m phai ẩo c la p va ẩ c chon nga.u nhien • Ca c ma.u s  dung trong kiem nghie m phai co phan phoi chuan hoa+c k%ch th o c ma.u ẩu l n ẩe ẩ c (em nh phan phoi chuan. • Ch ng sai cua ca c ma.u phai ẩong nhat Dco the kiem nghie m ẩieu nay bang phe p kiem LeveneE Neu nh ca c ma.u nghien c u khong thoa ma!n ca c ẩieu kie n tren ta co the dung phe p kiem phi tham so DnonparametricE nh phe p kiem Kruskal-_ allis Gia thiet 6 va ca c cong th c t%nh toa n trong SNOMS nh sau ONE-W SY SNOMS- 6- à1 q à2 q q ài q q àn 2 2 Sum of S/uares Letween Groups q SSL q i Ni8i - N8 df q n -1 2 2 Sum of S/uares W ithin Groups q SSW q ivw Niwli - Ni8i x df q N p n 2 2 Sum of S/uares Total q SST q iw Niwliw - N8 df q N - 1
  56. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam ANOVA Sum of Squares df Mean Square F Sig. Current Between 88653535061.984 9 9850392784.665 92.779 .000 salary Groups Within 49262960374.356 464 106170173.221 Groups Total 137916495436.340 473 Neu ba c bo 6- à1 q à2 q q ài q q àn, tien hanh tiep Cost hoc ẩe (a c ẩ1nh ca c trung b3nh nao kha c nhau. Chai lam Levene test tr c ẩe (a c ẩ1nh (em ca c ph ng sai trong t ng nho m co ẩong nhat khong. M% du minh hoa- Ca c nha che bien va phan pho% coffee  th1 tr ng 6oa 0y ẩang ẩoi ma+t v i t3nh h3nh bat on ve gia cua hat coffee. Trong mo t na_m gia cua hat coffee bien ẩo ng t  $1.P0 R pound D0.3f3 kgE len $2.A0 R pound roi sau ẩo lai tut (uong $2.03 R pound. Ng i ta (a c ẩ1nh s  bat on ve gia coffee nay la do t3nh h3nh hoat ẩo ng cua ca c nha che bien va phan phoi coffee va mo t yeu to kha c rat /uan trong la van ẩe han ha n  Lraail, b i v3 Lraail san (uat ra 30B san l ng coffee tren the gi i, do ẩo th1 tr ng coffee rat nhay cam v i nh !ng bien chuyen ve th i tiet Dnguy c han ha nE  Lraail. e tao s  on ẩ1nh cho hoat ẩo ng cua m3nh mo t nha phan phoi coffee muon loai bo ma+t hang coffee Lraail ra khoi c cau hang ho a cua m3nh. Tuy nhien tr c khi th c hie n /uyet ẩ1nh nay can phai can nha<c lie u loai bo ma+t hang coffee Lraail co lam giam doanh so cua cong ty hay khong. M3 va y cong ty thue mo t cong ty nghien c u 4arketing tien hanh kiem nghie m s  a th%ch mui v1 coffee cua kha ch hang tieu dung coffee tren th1 tr ng. Cong ty tien hanh khao sa t ba nho m kha ch hang ẩ c chon nga.u nhien bao gom nho m kha ch hang chuyen tieu dung coffee Lraail, nho m kha ch hang chuyen tieu dung coffee Colombia va nho m kha ch hang chuyen tieu dung coffee Chau Chi Dẩay la 3 loai coffee ẩ c tieu dung chu yeu cua cong tyE. Chu y cong ty loai tr  nh !ng nho m kha ch hang tieu dung nhieu loai coffee kha c nhau ẩe bao ẩam t%nh ẩo c la p cua ca c ma.u ẩ c chon, va do nghien c u ve mui v1 nen ẩoi hoi phai chon nh !ng kha ch hang co gu tieu dung rieng bie t. bc ẩay cong ty muon (a c ẩ1nh (em lie u co s  kha c bie t ve m c ẩo a th%ch ẩoi v i ba loai coffee Dse! cho kha ch hanh th  ba loai coffee va khao sa t m c ẩo a th%ch chu ngE va neu co s  kha c nhau th3 s  kha c nhau ẩo (ay ra  nh !ng loai nao. D a vao ket /ua phan t%ch SNOMS ta biet lie u m c ẩo a th%ch trung b3nh cua ba nho m kha ch hang tren co giong nhau khong. Neu kha c nhau th3 ta tien hanh tiep ca c phe p kiem trong Post Hoc ẩe (a c ẩ1nh nh !ng kha c bie t cua t ng nho m kha ch hang ve loai coffee ẩa! th .
  57. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam Sau khi dung SNOMS khao sa t s  kha c bie t gi !a ca c ma.u. Neu ta co ẩu c s  ẩe ket lua n la khong co s  kha c bie t gi !a ca c ma.u, ta co the ket thu c cong vie c Dvie c loai bo coffee braail khong gay anh h ng ẩen doanh so, ng i tieu dung co the chuyen sang coffee comlobia hoa+c chau Chi mo t ca ch de. dangE. Tuy nhien khi ta loai bo gia thiet ve s  ngang bang gi !a ca c m c ẩo a th%ch, ta phai (a c ẩ1nh tiep s  kha c bie t (ay ra  ẩau gi !a ca c ma.u kiem nghie m. Chu ng ta can phai (a c ẩ1nh h ng va ẩo l n cua ca c kha c bie t nay bang ca ch lan l t so sa nh ca c ma.u v i nhau Dng i tieu dung coffee braail co the th%ch coffee comlombia h n coffe chau Chi, hoa+c ng i tieu dung coffee braail ẩa nh gia coffee braail ngang bang v i coffee colombia, trong khi m c ẩo a th%ch coffee chau Chi th3 thap h n do ẩo ẩe giam thieu s  mat doanh so ba n coffee braail khi loai bo ma+t hang nay cong ty nen ta_ng l ng coffee comlombia tieu thu tren th1 tr ngE, ca c cong cu thong ke trong Post Hoc cho phe p ta th c hie n cong vie c nay. Chan t%ch ph ng sai mo t yeu to la tien tr3nh phan t%ch ph ng sai mo t bien ẩ1nh l ng phu thuo c vao mo t yeu to ẩ n le hay con goi la bien ẩo c la p. Chan t%ch ph ng sai DSNOMSE ẩ c dung ẩe kiem nghie m gia thuyet cho rang tat ca ca c gia tr1 trung b3nh ẩeu bang nhau. 0y thua t nay la mo t dang m  ro ng cua kiem nghie m T hai ma.u. e (a c ẩ1nh s  kha c bie t gi !a ca c gia tr1 trung b3nh chu ng ta co the muon biet nh !ng gia tr1 trung b3nh nao kha c bie t. Co hai ca ch ẩe so sa nh s  kha c bie t nay la kiem nghie m priori contrasts va post hoc . Contrasts la kiem nghie m ẩ c ẩ a ra tr c khi th c hie n phe p th , va post hoc la kiem nghie m ẩ c th c hie n sau khi phe p th  ẩa! ẩ c th c hie n. Chu ng ta con co the kiem nghie m nh !ng (u h ng /ua ca c nho m On -_ ay ANOVA Contrasts Chu ng ta co the chia tong b3nh ph ng ẩo le ch gi !a ca c nho m DSSLE thanh ca c thanh phan the hie n (u h ng hay (a c ẩ1nh priori contrasts. Polynomial chia SSL thanh ca c thanh phan the hie n (u h ng. Chu ng ta co the kiem (em bien phu thuo c co thay ẩoi theo ca c m c ẩo Dtheo mo t th t  nao ẩo E cua bien yeu to theo mo t (u h ng nao khong. Cha8ng han nh chu ng ta co the kiem (em tien l ng co thay ẩoi theo (u h ng tuyen t%nh /ua ca c loai cong vie c t  thap ẩen cao khongY D gr Co the chon ẩa th c cap 1, 2, 3, P, hay A Co ffici nts Lang thong ke t chu ng ta ẩa! (a c ẩ1nh priori contrasts ẩe kiem nghie m. Nha p ca c he so cho t ng nho m cua bien yeu to va nhap Sdd sau mo.i lan
  58. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam nha p. 4o.i gia tr1 m i ẩ c ẩ a vao cuoi danh sa ch he so. e (a c ẩ1nh them mo t bo contrasts, nhap Ne(t. Dung Ne(t va Crevious ẩe (em ca c ta p contrasts. Th t  cua ca c he so rat /uan trong v3 no t ng ng v i th t  ta_ng dan cua ca c gia tr1 cua bien yeu to. 6e so th nhat t ng ng v i gia tr1 nho nhat va he so cuoi cung t ng ng v i gia tr1 l n nhat. Cha8ng han neu co e gia tr1 trong bien yeu to, ca c he so 1, 0, 0, 0, 0.A, va 0.A se! t ng phan nho m th nhat v i nho m th na_m va th sa u. Trong hau het ca c ng dung, tong ca c he so la 0. Neu tong kha c 0 /uy tr3nh cu!ng ẩ c th c hie n nh ng se! co thong ba o l u y M% du La nh ra n hap thu dau a_n hay m ! theo nh !ng so l ng kha c nhau khi ta ra n ba nh 4o t th% nghie m ẩ c th c hie n tren ba loai chat be o gom dau pho ng, dau ngu coc va m ! l n. Dau pho ng va dau ngu coc la chat be o khong bao hoa, m ! l n la chat be o bao hoa. Ngoai vie c (a c ẩ1nh l ng chat be o hap thu co phu thuo c vao loai dau s  dung hay khong, ta con co the tien hanh kiem nghie m priori contrasts ẩe (a c ẩ1nh l ng chat be o hap thu co phu thuo c vao t%nh chat bao hoa hay khong bao hoa cua chat beo ẩ c s  dung hay khong. 0hi ẩa! (a c ẩ1nh ẩ c s  kha c bie t gi !a ca c gia tr1 trung b3nh, ca c kiem nghie m post hoc rang va pairwis multipl comparisons co the (a c ẩ1nh ẩ c nh !ng gia tr1 trung b3nh nao kha c bie t. Rang t sts (a c ẩ1nh ẩ c nh !ng nho m gia tr1 trung b3nh ẩong nhat Dkhong ton tai s  kha c bie t gi !a ca c gia tr1 trung b3nh nayE. 0iem nghie m Pairwis multipl comparisons cho biet s  kha c bie t gi !a ca c ca+p gia tr1 trung b3nh va ẩ a ra mo t ma tra n ẩa nh dau hoa th1 ch5 ra nh !ng ca+p gia tr1 trung b3nh co kha c bie t ẩa ng ke  m c y ngh2a AB 0hi gia thuyet ve s  ẩong nhat cua ca c ph ng sai ẩ oc chap nha n Dthong /ua kiem nghie m LeveneE ta co ca c ph ng pha p kiem nghie m thong ke sau ẩe so sa nh ca c trung b3nh- • Th l ast significant diff r nc (LSD) la phe p kiem t ng ẩ ng v i vie c s  dung phe p kiem t lan l t cho toan bo ca c ca+p bien. Yeu ẩiem cua ph ng pha p nay la no khong ẩieu ch5nh m c y ngh2a cho t ng th%ch v i vie c so sa nh nhieu bien cung mo t lu c. Do ẩo da.n ẩen ẩo tin ca y khong cao. Ca c kiem nghie m sau ẩay loai bo ẩ c yeu ẩiem nay bang ca ch ẩieu ch5nh m c y ngh2a khi phai ẩong th i so sa nh nhieu bien. • Che p kiem Bonf rroni va Tuk yas hon stly significant diff r nc ẩ c s  dung cho hau het ca c so sa nh ẩa bo i. Sidakas t t st cu!ng ẩ c s  dung t ng t  nh Bonf rroni nh ng no cung cap nh !ng gi i han cha+t che h n DYE. 0hi tien hanh kiem nghie m mo t so l ng l n ca c ca+p trung b3nh Tuk yas hon stly significant diff r nc t st se! hie u /ua h n la Bonf rroni t st. Ma ng c lai Bonf rroni th%ch h p h n cho ca c kiem nghie m co so l ng ca+p so sa nh %t.
  59. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam • Hochb rgas GT2 cu!ng giong nh Tuk yas hon stly significant diff r nc t st nh ng thong th ng Tuk yas t st hie u /ua h n. Gabri las pairwis comparisons t st th3 giong nh Hochb rgas GT2 nh ng no th ng ẩ c s  dung khi ca c c  ma.u co s  sai bie t l n • Che p kiem Dunn ttas pairwis ẩ c dung ẩe so sa nh ca c gia tr1 trung b3nh cua ca c ma.u v i mo t g%a tr1 trung b3nh cu the ẩ c lay t  trong ta p ca c ma.u so sa nh. Thong th ng ma+c ẩ1nh ma.u cuoi cung la nho m kiem soa t, hoa+c ta co the l a chon nho m ẩau tien la nho m kiem soa t, lu c ẩo ca c gia tr1 trung b3nh cua ca c nho m trong bien ẩo c la p se! ẩ c so sa nh v i gia tr1 trung b3nh cua nho m ẩau tien hoa+c nho m sau cung cua bien ẩo c la p • Ryan, Einot, Gabri l, and _ lsch (R-E-G-_ ) ẩ a ra hai b c kiem nghie m. au tien tien hanh kiem nghie m toan bo ca c gia tr1 trung b3nh (em co bang nhau hay khong. Neu toan bo ca c gia tr1 trung b3nh khong bang nhau th3 b c th hai se! kiem nghie m s  kha c bie t gi !a ca c nho m nho v i nhau ẩe t3m ra nh !ng nho m nao tha t s  kha c bie t ve gia tr1 trung b3nh. Tuy nhien vie c kiem nghie m nay khong nen th c hie n ẩoi v i tr ng h p k%ch c  ma.u cua ca c nho m khong ngang bang nhau • Thong th ng khi k%ch th c ma.u khong ngang bang gi !a ca c nho m. Bonf rroni va Sch ff * la hai ph ng pha p kiem nghie m ẩ c l a chon h n la ph ng pha p Tuk y • Duncanas multipl rang t st, Stud nt-N wman-K uls (S-N-K), va Tuk yas b cu!ng t ng t  tuy nhien no %t ẩ c s  dung nh ca c ph ng pha p tren. • 0iem nghie m _ all r-Duncant ẩ c s  dung khi ca c k%ch th c ma.u khong bang nhau • Ch ng pha p Sch ff * cho phe p kiem nghie m ca c ket h p tuyen t%nh cua nh !ng gia tr1 trung b3nh, khong ch5 so sa nh gi !a ca c ca+p. Ch%nh v3 va y ket /ua cua kiem nghie m Sch ff * th ng tha n trong h n ca c ph ng pha p kiem nghie m kha c, no ẩoi hoi mo t s  kha c bie t l n gi !a ca c gia tr1 trung b3nh ẩe bao ẩam s  kha c bie t tha t s  • 0hi gia thiet ve s  ẩong nhat cua ca c ph ng sai khong ẩ c chap nha n ta se! s  dung ca c phe p kiem Tamhan as T2, Dunn ttas T3, Gam s-How ll, Dunn ttas C ẩe so sa nh ca c ca+p gia tr1 trung b3nh cua ca c nho m e th c hie n phe p kiem SNOMS ta vao Comapr m ans\On -_ ay ANOVA[ t  thanh menus ẩe truy (uat ra ho p thoai nh h3nh 2e. Di chuyen ve t toi ẩen ca c bien ẩ1nh l ng can phan t%ch, chuyen sang ho p thoai D p nd nt List. Chon bien kiem soa t, con goi la bien ẩo c la p Dyeu cau phai co ba gia tr1 tr  lenE, ẩ a vao ho p thoai Tactor. Lien kiem soa t nay cho phe p ta phan ca c gia tr1 cua bien phu thuo c thanh
  60. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam nhieu nho m ẩe so sa nh. SNOMS cho phe p ta ẩ a ra ket lua n lie u ca c trung b3nh cua ca c nho m co bang nhau hay khong. 63nh 38- Chan t%ch SNOMS mo t yeu to Neu m c y ngh2a cua phe p kiem SNOMS nho Dth ng so v i ABE, ta tien hanh so sa nh tiep ca c ca+p gia tr1 trung b3nh cua ca c nho m bang cong cu Post Hoc nh trong ho p thoai h3nh 3N va l a chon ca c ph ng pha p kiem nghie m th%ch h p 63nh 3N- Cong cu Cost 6oc ẩe so sa nh ca c ca+p trung b3nh trong SNOMS L a chon Options cho ta ho p thoai nh h3nh P0. Ta co the hien th1 ca c thong ke mo ta bang ca ch chon D scriptiv va kiem ẩ1nh t%nh ẩong nhat cua ph ng sai bang thong ke L v n Dket /ua kiem ẩ1nh nay /uyet ẩ1nh s  l a chon ph ng pha p
  61. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam kiem nghie m trong phan Post HocE. Cong cu M ans Plot dung ẩe hien th1 ẩo th1 ve gia tr1 trung b3nh cua ca c nho m. Cong cu M issing Valu s dung ẩe kiem soa t ca c gia tr1 khuyet nh ẩa! tr3nh bay  ca c phan tr c 63nh P0- L a chon Options trong SNOMS Ca c gia ẩ1nh phai ẩ c thoa ma!n khi dung phan t%ch SNOMS mo t yeu to • Ca c ma.u d ! lie u phai ẩo c la p, ẩ c chon nga.u nhien t  mo t tong the phan phoi chuan • Trong tong the ca c ph ng sai cua ca c ma.u d ! lie u phai bang nhau Dẩieu nay se! ẩ c kiem nghie m bang thong ke L v n Levene's Test: 6- 6omogeneity of Mariance • E/ual Mariances- Co the dung ca c tests nh LSD, Lonferroni, Sidak, Scheffe, Tukey • une/ual Mariances- Co the dung ca c tests nh Tamhaness T2, Dunnettss T3, Games-6owell Test of Homogeneity of Variances Current Salary Levene Statistic df1 df2 Sig. 14.473 9 464 .000
  62. Phan tch va x  ly soã lieu bang SPSS Tran uang Trung ! "a o hoa i Nam -AbI HObC KINH TE/ TP HCM PHAN TYCH VA c LY SO/ LIEU BAJNG SPSS TH.Sd TRAKN NUANG TRUNG KHOA NUA N TR. KINH DOANH -AO HOAI NAM KHOA TH NG M AbI-DU L.CH