Phân tích và xử lý số liệu bằng SPSS
Bạn đang xem 20 trang mẫu của tài liệu "Phân tích và xử lý số liệu bằng SPSS", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
phan_tich_va_xu_ly_so_lieu_bang_spss.pdf
Nội dung text: Phân tích và xử lý số liệu bằng SPSS
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam TO CHC C S D’ LIEU I. KIEM TRA VA M A’ HOA BANG CAU HOI 1. Ki !m tra ay la b c kiem tra chat l ng bang cau hoi nham bao ẩam khong co bang cau hoi nao thieu thong tin can thiet theo yeu cau thiet ke ban ẩau, b c nay can thiet ẩ c th c hie n tr c khi tien hanh ma! hoa va nha p d ! lie u vao may t%nh. Ng i kiem tra phai bao ẩam t%nh toan ven va t%nh ch%nh (ac cua t ng bang cau hoi ) t ng cau tra l i. Thong th ng kiem tra bang cau hoi la kiem tra nh !ng ẩa+c t%nh sau cua bang cau hoi- • T%nh logic cua cac cau tra l i • T%nh ẩay ẩu cua mo t cau tra l i va cua mo t bang cau hoi • T%nh h p ly va (ac th c cua cac cau tra l i Th nhat la t%nh logic cua cac cau tra l i trong mo t bang cau hoi. oi khi trong bang cau hoi, do yeu cau nghien c u se! co nh !ng ẩ ng da.n, nh !ng ẩieu kie n ẩe. ng i tra l i hoa+c co the tra l i tat ca cac cau hoi hoa+c co the bo /ua mo t vai cau hoi nao ẩo. 0iem tra t%nh logic cua bang cau hoi cho phep nha nghien c u loai bo nh !ng cau tra l i th a, cu!ng nh k1p th i bo sung nh !ng phan thieu trong bang cau hoi. T%nh logic cua cau tra l i con phu thuo c vao s ket noi va lien he la.n nhau gi !a cac cau hoi trong mo t bang cau hoi, da.n ẩen ẩoi khi mo t cau tra l i la co y ngh2a neu ẩ ng rieng mo t m3nh no nh ng lai vo ngh2a neu ket h p so sanh v i cac cau tra l i tr c hoa+c sau no Th hai la kiem tra t%nh ẩay ẩu cua mo t cau tra l i va cua mo t bang cau hoi. 4o t cau hoi trong nghien c u th1 tr ng ẩoi khi bao gom nhieu cau hoi nho, nh ẩoi v i cau hoi ve m c ẩo ẩong y ẩoi v i nh !ng cau noi the hie n nh !ng ẩa+c t%nh ve mo t san pham cu the nao ẩo se! bao gom nhieu ẩa+c t%nh khac nhau, neu nh thieu mo t ẩanh gia ve mo t ẩa+c t%nh nao ẩo th3 co the (em nh cau tra l i ẩo khong hoan ch5nh. 6ay ẩoi v i cac cau hoi m , ẩoi khi ng i tra l i do khong hieu ro! cau hoi, hay do s thieu nhie t t3nh cua ng i tra l i, cau tra l i cua ho th ng rat chung chung va vo ngh2a ẩoi v i muc tieu nghien c u. 0h%a canh khac la t%nh ẩay ẩu cua bang cau hoi, mo t bang cau hoi ch5 co gia tr1 neu nh tat ca nh !ng cau hoi theo yeu cau ẩeu ẩ c tra l i ẩay ẩu. 4o.i cau hoi trong bang cau hoi ẩeu co mo t gia tr1 nhat ẩ1nh, do ẩo thieu mo t cau tra l i cho mo t cau hoi nao ẩo se! lam mat ẩi gia tr1 cua bang cau hoi Cuoi cung la kiem tra t%nh h p ly va (ac th c cua cau tra l i. 4o t cau tra l i ẩay ẩu ch a ha8n la cau tra l i co gia tr1, do t%nh chan th c va h p ly cua cau tra l i cu!ng /uyet ẩ1nh ẩen gia tr1 cua cau tra l i va cua bang cau hoi, ẩa+c bie t la cac cau hoi cham ẩiem, cau hoi m va cac cau hoi mang t%nh logic
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam 9ua tr3nh kiem tra, ra soat lai bang cau hoi la nham muc ẩ%ch kiem tra, phat hie n, s a ch !a va thong bao k1p th i cho ng i thu tha p d ! lie u tranh nh !ng sai sot tiep theo. 4o t so sai sot th ng ga+p nh sau- • Nh !ng cuo c phong van gia tao • Nh !ng cau tra l i khong ẩay ẩu • Nh !ng cau tra l i thieu nhat /uan • Nh !ng cau tra l i khong th%ch h p • Nh !ng cau tra l i khong ẩoc ẩ c e ( ly cac lo.i trong kiem tra va hie u ẩ%nh, ta co the l a chon cach ( ly nh sau tuy thuo c vao m c ẩo sai sot cu the- • Tra ve cho bo pha n thu tha p d ! lie u ẩe lam sang to van ẩe • Suy lua n t cac cau tra l i khac • Loai bo toan bo bang cau hoi 2. M a' ho*a La /ua tr3nh chuyen d1ch cau tra l i th c cua ng i tra l i vao t ng nhom, t ng ma.u ẩai die n v i cac gia tr1 t ng ng nham lam cho /ua tr3nh tom ta n cac cau tra l i t tr c, ng i tra l i ch5 vie c l a chon cau tra l i nao phu h p nhat, do ẩo vie c ma! hoa cho cac cau hoi nay th ng ẩ c tien hanh t tr c, giai ẩoan thiet ke bang cau hoi • 4a! hoa- Trong bang cau hoi ngoai nh !ng cau hoi ẩong neu tren, con nh !ng cau hoi m , la nh !ng cau hoi ma nha nghien c u ẩe cac khoang trong trong bang cau hoi cho ng i tra l i t do ẩ a ra cau tra l i theo suy ngh2 va die.n gia!i cua ch%nh ho. oi v i cac cau hoi m , do cac cau tra l i khong ẩ c lie t ke tr c, nen kho (ac ẩ1nh ẩ c cac cau tra l i th c cua ng i tra l i. Cac bang cau hoi nha n ve th ng co nh !ng cau tra l i rat khac nhau, rat ẩa dang. Do ẩo cong vie c ma! hoa nh !ng cau tra l i nay la can thiet cho /ua tr3nh kiem tra, nha p lie u, tom ta<t va phan t%ch sau nay 4uc ẩ%ch cua ma! hoa la tao nha!n cho cac cau tra l i, th ng la bang cac con so. 4a! hoa con giup gia!m thieu so l ng cac cau tra l i bang cach nhom cac cau tra l i thanh nh !ng nhom co nh !ng ẩa+c ẩiem giong nhau, nh nh !ng nhom ve mau sa<c, ve chat l ng, ? khi ẩanh gia ve mo t nha!n hie u san pham cu the nao ẩo. Tien tr3nh ma! hoa co the ẩ c tien hanh nh sau-
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam • au tien, (ac ẩ1nh loai cau tra l i cho nh !ng cau hoi t ng ng. Nh !ng cau tra l i nay co the thu tha p t mo t ma.u cac bang cau hoi ẩa! hoan tat, th ng la 2AB tren tong so bang cau hoi • Tiep theo la (ay d ng mo t danh sach lie t ke cac cau tra l i, cac cau tra l i ẩ c lie t ke c ban d a tren nh !ng cau tra l i (ac ẩ1nh tren, va co tien hanh nhom cac cau tra l i theo nh !ng nhom ẩa+c tr ng. Nh !ng cau tra l i ẩ c nhom lai theo nh !ng yeu to nh s giong nhau ve ẩa+c t%nh, tan suat (uat hie n, ? • Cuoi cung, nh !ng nhom cau tra l i nay ẩ c gan cho mo t nha!n hie u, mo t gia tr1, th ng la mo t con so cu the II. NHAP D’ LIEU, -.NH BIE/N VA CAC THAO TAC TREN BIE/N 1. Nha0p d3' li 0u 4o t cau truc d ! lie u ẩien h3nh trong SCSS se! bao gom- • Co0t Cac co t trong man h3nh data SCSS se! /uan ly cac bien DvariablesE. 4o.i co t trong man h3nh bang t%nh SCSS se! ẩai die n cho mo t cau tra l i trong bang cau hoi. Tuy nhien chu y ẩen hai loai bien, bien mo t tra l i va bien nhieu tra l i Loa&i bieãn mot tra l'i- 4o.i co t trong bang t%nh se! la bien ẩai die n cho ket /ua duy nhat cua cau hoi mo t tra l i. Loa&i bieãn nhieu tra l'i- oi hoi phai s ! dung nhieu co t ẩe /uan ly cho cac ket /ua khac nhau co the co cho cau hoi nhieu tra l i. Chai bao ẩam khai bao ẩu so co t Dso bienE nham ch a ẩ ng ẩu cac cau tra l i co the (ay (a. • Do6ng Cac dong trong man h3nh bang t%nh SCSS se! /uan ly cac bang cau hoi, hay mo t /uan sat DobservationE. 4o.i dong se! ẩ c (em nh mo t bang cau hoi, so l ng ma.u nghien c u phai bang v i so l ng dong ch a thong tin. D ! lie u ẩ c nha p ngay trong man h3nh bang t%nh cua SCSS nh h3nh 1-
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam 63nh 1- 4an h3nh data Chung ta co the tien hanh nha p d ! lie u nh sau- • 0hai bao ten bien ch a ẩ ng thong tin can nha p vao thanh ben tren mo.i co t Dten ma+c ẩ1nh cua cac co t nay trong SCSS la var0001, var000(E. Chan nay se! ẩ c ẩe ca p chi tiet trong phan ẩ1nh bien. • Chon o can nha p d ! lie u, la phan giao nhau gi !a co t va hang. OI can nha p se! co khung vien chung /uanh bao cho ng i nha p biet ẩo la o ẩang hoat ẩo ng, ten bien va so hie u hang ẩ c hie n goc trai cua c a so. • Go! gia tr1 can nha p vao khung ẩa! chon, gia tr1 nay ẩ c hie n trong thanh s !a ẩoi Dcell editorE nam tren c a so. Chu y khi nha p d ! lie u phai bao ẩam ẩung v i kieu bien ẩa! ẩ c ẩ1nh ngh2a. Thong th ng cac kieu bien ẩ c khai bao la dang chuoi Ddai toi ẩa 8 ky t E hoa+c dang so, nham bao ẩam t%nh t ng th%ch cho vie c phan t%ch sau nay. 2. -9nh bi ;n Bi ;n (variabl )- La ta p h p nh !ng tra l i cho 1 cau hoi. Co hai loai bien nh sau- Theo yeu cau bang cau hoi: • Lien mo t tra l i- Lien danh cho cau hoi co mo t tra l i
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam • Lien nhieu tra l i- Cac bien danh cho nhieu cau tra l i tra l i ẩong th i trong cau hoi nhieu tra l i M% du nh trong bang cau hoi co hai cau hoi sau- Cau hoi 1- 6a!y cho biet ban nhom tuoi nao trong so nh !ng nhom tuoi sau- Nhom tuoi code D i 18 1 1N ẩen 30 2 31 ẩen P0 3 P1 ẩen A0 P Tren A0 A Cau hoi 2- Noi ẩen ẩie n thoai di ẩo ng, ban biet ẩ c nh !ng nha!n hie u nao trong danh sach lie t ke d i ẩay Nha!n hie u code Ericson 1 4otorola 2 Nokia 3 Siemens P Canasonic A ? .M.M Co the thay ẩoi v i cau hoi 1, ng i tra l i ch5 co the ẩ a ra mo t cau tra l i duy nhat ve tuoi cua m3nh, do ẩo bien ch a ẩ ng cau tra l i cua cau hoi 1 la bien mo t tra l i. Trong khi (em (et cau hoi 2, ng i tra l i co the neu ra nhieu nha!n hie u ma ho co biet /ua do ẩo phai co nhieu bien ch a ẩung cac tra l i co the co, ta goi bien ẩo la bien nhieu tra l i. Theo )ie*u d , lieu: • Lien ẩ1nh l ng D/uantitative variableE- La bien co the mo ta bang mo t con so va con so ẩo co the dung ẩe t%nh toan thanh nh !ng gia tr1 so hoc nh gia tr1 trung b3nh. • Lien ẩ1nh t%nh D/ualitative variableE- La cac bien the hie n trang thai cua bien nh mau sa<c, gi i t%nh. Loai bien nay co the ẩ c ma! hoa thanh cac con so nh ng lai khong co gia tr1 t%nh toan so hoc. Ta co the (em (et bang mo ta cac loai phong trong mo t khach san sau-
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam Loai Gia So l ng 4o ta phong D ongRphongE phong Tivi Tu lanh 4ay ẩieu hoa Loai S A00,000 10 Co Co Co Loai L 300,000 20 0hong Co Co Loai C 1A0,000 A0 0hong Co 0hong Ta co the phan loai bien trong bang tren nh sau- Lien ẩ1nh l ng- Lien gia va so l ng phong Lien ẩ1nh t%nh- Lien Loai phong va cac bien mo ta. Nh3'ng ca;p @o0 @o l3A6ng (l v ls of m asur m nt) Nh ẩa! ẩe ca p tren, bien dung ẩe ch a cac ket /ua tra l i, nh !ng hie n t ng ẩ c /uan sat sau khi cac ket /ua hay hie n t ng tren ẩa! ẩ c gan thanh nh !ng d ! kie n l ng hoa Dcon soE hay nh !ng ky ma! DcodeE. Mie c gan nh !ng d ! lie u nay ẩoi hoi chung ta phai phat trien mo t dang thang ẩo phu h p v i ẩa+c t%nh cua d ! lie u. Co bon loai thang ẩo- • Thang ẩo ẩ1nh danh Dnominal measurementE • Thang ẩo th t Dordinal measurementE • Thang ẩo /ua!ng Dinterval measurementE • Thang ẩo ty le Dratio measurementE Thang -o -.nh danh- Trong loai thang ẩo nay cac con so ẩ c s dung ẩ n thuan nh mo t gia tr1 (ac ẩ1nh mo t loai, hang DcategoryE khac nhau va ch5 ẩ c dung nh mo t cai ten hay nha!n cho loai, hang ẩo. oi v i loai thang ẩo ẩ1nh danh cac gia tr1 so ẩ c s dung nh la ky so nha n dang va khong co gia tr1 ve ma+t so hoc nh so sanh, co ng, tr , nhan, chia. Thang -o th t &- Trong thang ẩo nay d ! lie u ẩ c (a<p (ep th t cac gia tr1 theo mo t tieu chuan nao ẩo. 4o.i gia tr1 co v1 tr% cao h n hoa+c thap h n so v i gia tr1 khac, nh ng khong die.n ta ẩ c cao hay thap h n bao nhieu. Dang cau hoi nhom tuoi cua ng i tra l i D1- nho h n 18 tuoiT 2- 1N-30 tuoi, ? E hay khoang thu nha p D1- d i 1 trie u ẩongRthang, 2- T 1 trie u ẩong ẩen 2 trie u ẩongRthangE la v% du ro nhat ve dang thang ẩo nay. Tom lai thang ẩo th t bao gom ca thong tin ẩ1nh danh ẩong th i cung cap luon /uan he th t gi !a cac gia tr1 nh ng khong ẩo ẩ c khoang cach gi !a cac gia tr1 ẩo. Thang -o ua,ng- Giong nh ẩa+c t%nh cua thang ẩo th t , nh ng thang ẩo /ua!ng cho phep ta ẩo ẩ c khoang cach gi !a cac gia tr1. Tuy nhien do thang ẩo /ua!ng khong
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam (ac ẩ1nh ẩiem 0, do ẩo ta ch5 co the noi gia tr1 nay l n h n gia tr1 kia bao nhieu ẩ n v1 nh ng khong the ket lua n gia tr1 ẩo l n h n gia tr1 kia bao nhieu lan. M% du n c nhie t ẩo 80o C chenh le ch ve nhie t ẩo so v i n c P0o C giong nh m c ẩo chenh le ch ve nhie t ẩo cua n c A0o C va n c 10o C, nh ng ta khong the noi n c 80o C nong gap ẩoi n c P0o C Thang -o ty le- ay la thang ẩo co ẩu cac ẩa+c t%nh th t va khoang cach. Ngoai ra vie c (ac ẩ1nh ty so gi !a cac gia tr1 la co the th c hie n do thang ẩo nay ẩiem 0 ẩ c (ac ẩ1nh mo t cach co y ngh2a. M% du khi ta thu tha p so lie u ve thu nha p hang thang cua mo t ho thanh pho 6o ch% 4inh, ta co the so sanh thu nha p cua hai ho S va L co thu nha p lan l t la P trie u va 8 trie u nh ho L co thu nha p gap ẩoi ho S, hay ho S co thu nha p bang phan n a ho L -9nh bi ;n Sau khi ẩa! khao sat ve bien va cac dang gia tr1 trong bien, chung ta can phai co cong ẩoan gan nha!n cho cac bien va gan y ngh2a cho cac gia tr1 cua bien Trong SCSS co hai cong cu ẩ1nh bien ẩ1nh bien rieng bie t va ẩ1nh bien chung. • 1nh bien rieng bie t Ddefine variableE- Thong th ng ẩ c dung ẩe ẩ1nh bien mo t tra l i. • 1nh bien chung DtemplateE- 4o t cach lam nga<n gon, tiet kie m th i gian khi ẩ1nh cac bien co nh !ng ẩa+c t%nh giong nhau Dkieu bien, nha!n cua cac gia tr1 trong bienE nh cac bien trong cau hoi nhieu tra l i • M i phien ban SCSS 10.0A, ta co cach ẩ1nh bien ẩ n gian h n nhieu bang cach s dung Mariable Miew -9nh bi ;n ri Dng bi 0t e ẩ1nh m i hoa+c thay ẩoi ten, loai va cac ẩa+c t%nh khac cua mo t bien, co hai cach- Double-click len ten bien hien th1 tren ẩau mo.i co t tren man h3nh data cua SCSS 6oa+c chon bat ky o nao trong co t cua bien va chon tren menu- DataRDefine Mariable? 6o p thoai Define Mariable ẩ c m ra nh h3nh 2-
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam 63nh 2- 6o p thoai Define Mariable /hai bao ten bieãn, ten bien nay se! hien th1 tren man h3nh data cua SCSS va b1 han che ve so ky t hien th1, do ẩo can thiet phai khai bao nga<n gon va de. g i nh , thong th ng nen ẩa+t theo th t cau hoi trong bang cau hoi nh /1, /3, /Pa, ? Co mo t so /ui c sau ẩay phai tuan theo khi khai bao ten bien - La<t ẩau bang mo t ch cai va khong ba<t ẩau bang dau chamD.E. Ten bien khong ẩ c /ua 8 ky t 0hong ẩ c ch a khoang tra<ng va cac ky t ẩa+c bie t nh DXE, DYE, D*E. Cac t khoa sau ẩay khong ẩ c dung lam ten bien- SLL, NE, E9, TO, LE, LT, LY OR, GT, SND, NOT, GE, W IT6 e ẩ1nh ra loai bien, an thanh type trong h p thoai define variable, ta se! co ho p thoai Define Mariable Type nh h3nh 3- 63nh 3- 6o p thoai Define Mariable Type
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam Tuy thuo c vao yeu cau cua d ! lie u, ma ta se! ẩ1nh loai bien cho bien, SCSS ma+c ẩ1nh loai bien la kieu so DnumericE. Tiep theo la gan nha,n cho cac bieãn. Ta tr lai ho p thoai define variable va nhan vao thanh labels ẩe co ẩ c ho p thoai nh h3nh P- 63nh P- 6o p thoai Define Lables Cong vie c ẩau tien trong ho p thoai define labels la tien hanh gan nha!n cho bien Dvariable labelsE, nha!n cua bien se! ẩ c hie.n th1 v i chieu dai toi ẩa 120 ky t , ẩ c dung ẩe mo ta them y ngh2a cua bien. Thong th ng ta co the dung nh !ng cau hoi trong bang cau hoi ẩe s dung lam nha!n cua bien, ẩieu nay giup ta de. dang trong vie c ẩoc va hieu so lie u phan t%ch sau nay. Tiep theo la gan nha,n cho cac gia tr. cua bieãn DMalue labelsE va ẩay ch%nh la khai bao y ngh2a cua cac gia tr1 cua bien. 0hai bao nha!n cua bien tren ho p thoai Mariable lable. M i nha!n cua gia tr1 Dvalue lablesE co ba thao tac- • Gan mo t nha!n m i- Nha p gia tr1 vao ho p thoai Malue Nha p mo t nha!n vao ho p thoai Malue Label Sn nut Sdd • S !a ẩoi mo t nha!n- Di ve t sang ẩen nha!n can s a ẩoi Nha p ten nha!n m i, an nut Change ẩe thay ẩoi • Loai bo mo t nha!n- Di ve t sang ẩen nha!n can loai bo
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam Sn nut Remove ẩe loai bo 0ia tr. )huyeãt 12issing values3 ẩ c dung ẩe khai bao cac gia tr1 ma ta cho phep chung ẩai die n cho cac tr ng h p trong d ! lie u, khi ẩo cac gia tr1 nay se! khong ẩ c s dung trong /ua tr3nh ( ly thong ke sau nay. 1nh ngh2a 4issing Malues th ng ẩ c s dung ẩe biet tai sao thong tin b1 thieu. Cha8ng han ta co the muon phan bie t thong tin b1 thieu do ng i tra l i t choi tra l i hay do cau hoi khong th%ch h p ẩoi v i ẩoi t ng ẩo Trong ho p thoai tren ta co the nha p ba gia tr1 khuyet khac nhau, mo t khoang gia tr1 khuyet hay mo t khoang va mo t gia tr1 khuyet khac. 1nh ngh2a bang khoang ch5 co the ẩ c dung khi bien lay gia tr1 so Ta khong the ẩ1nh ngh2a gia tr1 khuyet cho cac bien chuo.i dai h n tam ky t . Tat ca cac gia tr1 chuo.i, ke ca trong hay khoang tra<ng, ẩ c (em nh co gia tr1 tr khi ta ẩ1nh ngh2a ẩo la gia tr1 khuyet. e ẩ1nh ngh2a trong hay khoang tra<ng la gia tr1 khuyet, ta nha p mo t khoang tra<ng Dsingle spaceE vao mo t trong ba vung cua Discrete missing values Ta con co the phan t%ch cac gia tr1 khuyet bang cong cu 4issing Malue Snalysis.
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam 4issing Malue Snalysis co ba ch c na_ng ch%nh 1. No la cong cu giup mo ta /uy lua t cua cac gia tr1 khuyet- cac gia tr1 khuyet nam ẩau, co nhieu gia tr1 khuyet khong, co nh !ng ca+p bien co (u h ng b1 thieu gia tr1 cac bang cau hoi khac nhau khong, cac d ! lie u /ua l n hay /ua nho, hay co phai cac gia tr1 b1 thieu mo t cach ngau nhien 2. ` c l ng trung b3nh, ẩo le ch chuan, hie p ph ng sai, va he so t ng /uan bang cac ph ng phap listwise, pairwise, regression, or E4 De(pectation- ma(imiaationE. Ch ng phap listwise bo /ua cac tr ng h p co gia tr1 khuyet bat ky bien nao, trong khi pairwise ch5 bo /ua cac tr ng h p co gia tr1 khuyet ca+p bien ẩang ( ly. Ch ng phap E4 c l ng cac gia tr1 khuyet bang /ua tr3nh la+p. bc mo.i b c la+p co mo t b c E t%nh gia tr1 trung b3nh cua cac tham so va mo t b c 4 t%nh cac c l ng h p ly nhat D ma(imum likelihood estimatesE. Ch ng phap hoi /uy th3 c l ng cac gia tr1 khuyet bang thua t toan hoi /uy. 3. ien cac gia tr1 b1 thieu bang cac gia tr1 c l ng cho b i hoi /uy hay E4 4issing value analysis giup giai /uyet nhieu van ẩe gay ra do thieu d ! lie u. Nh !ng tr ng h p b1 thieu gia tr1 khac mo t cach he thong v i nh !ng tr ng h p co ẩay ẩu gia tr1 co the lam cho ket /ua kho hieu, m ho. Cac d ! lie u b1 thieu co the lam giam ẩo ch%nh (ac cua cac thong ke ẩ c t%nh v3 co %t thong tin h n d t%nh ban ẩau. 4o t van ẩe n !a la cac gia thiet ẩang sau nhieu thu tuc thong ke d a tren cac
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam tr ng h p co ẩu thong tin, va cac gia tr1 khuyet co the lam ph c tap them phan ly thuyet s dung 2easurement. Tuy thuo c vao dang thang ẩo ẩ c s dung trong bien ma ta khai bao trong cong cu measurement, chu y khai bao scale ẩ c dung chung cho dang thang ẩo /ua!ng va thang ẩo ty le -9nh bi ;n chung ay la cong cu ẩ1nh bien nhanh cho cung mo t luc nhieu bien co cung chung kieu bien-type hoa+cRva cung chung kieu ma! hoa d ! lie u Dcac gia tr1 cua bien giong nhau-value labelsE. Tr c tien ta ẩanh dau khoi cac bien Dt co tE ma ta muon ẩ1nh bien chung tren man h3nh Data cua SCSS. T data tren thanh menu ta nhap template ẩe co ẩ c ho p thoai nh h3nh A 63nh A- 6o p thoai Template Sau khi co ho p thoai template, nhan thanh Definedd trong ho p thoai ẩe khai bao ten bien ho p thoai Name, phan ten khai bao nay se! ẩ c l u tr ! trong template va ta co the lay ra s dung trong tr ng h p khai bao cac bien khac co cung dang. Chan define template ẩ c dung khai bao loai, cac gia tr1 cua bien,? cho cac bien ẩang ẩ1nh ngh2a loai bien va gan nha!n cho cac gia tr1 cua bien. Chan apply trong ho p thoai cho ta l a chon nh !ng phan chung cua cac bien. Sau ẩo nhan Sdd ẩe (ac nha n vie c ẩ1nh bien chung nay. Neu phan ẩ1nh nghia! nay ẩa! ẩ c l u trong template sau nay khi muon ẩem no ra ẩe ẩ1nh ngh2a cho cac bien khac co s giong nhau ve loai hay nha!n gia tr1, ? ta ch5 vie c l a chon ten template ẩa! ẩ c l u trong cong cu template Dma+c ẩ1nh la defaultE E. TaFo la0p th Dm ca*c bi ;n Ta p h p 1 so bien Dtra l iE khac nhau ẩe tao thanh mo t bien m i co y ngh2a cho thong ke hay phan t%ch h n. Ngoai cac bien ẩa! ẩ c khai bao trong /ua tr3nh nha p
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam d ! lie u, mo t so bien khac co the ẩ c tao ra do nhu cau ( ! ly va phan t%ch d ! lie u. Co mo t so cong cu th ng ẩ c s dung nh Recode, Compute, Count R cod Recode into same variables- Recode tren cung mo t bien, t c la ẩ1nh lai nh !ng gia tr1 cua nh !ng bien hie n tai hoa+c rut nga<n b t da!y cac gia tr1 ton tai thanh nh !ng gia tr1 m i tren cung nh !ng bien ẩo. Nhap transformRrecode t thanh menu ch%nh. bc ẩay ta l a chon into same variable ẩe tien hanh ẩ1nh lai gia tr1 cho bien tren cung mo t bien. Ta co ho p thoai nh h3nh e 63nh e- 6o p thoai recode into same variables Chuyen cac bien can ẩ1nh lai gia tr1 sang ho p thoai variables. Nhan thanh Old and New Malues ẩe ẩ1nh cac gia tr1 cu can thay ẩoi thanh cac gia tr1 m i. Nhan thanh If ẩe (ac ẩ1nh cac ẩieu kie n ẩe th c hie n le nh Recode Tiep theo nhan thanh old and new values t ho p thoai Recode ta se! co ho p thoai nh h3nh f 63nh f- 6o p thoai Old and New Malues
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam Old value dung ẩe khai bao gia tr1 cu! can chuyen ẩoi. Gia tr1 cu! nay co the la mo t g%a tr1 ẩ n le, mo t gia tr1 khuyet, mo t da!y cac gia tr1. New value dung ẩe khai bao gia tr1 m i se! thay the cho gia tr1 cu! t ng ng. Nhan thanh Sdd ẩe l u s chuyen ẩoi nay. Cac gia tr1 chuyen ẩoi co the s a ch a hoa+c loai bo bang cach di chuyen vet toi ẩen bieu th c the hie n s chuyen ẩoi trong ho p thoai Old-dNew va nhan thanh Change cho s thay ẩoi hoa+c Remove ẩe loai bo. Neu vie c ẩ1nh lai gia tr1 cua cac gia tr1 cua bien co mo t so ẩieu kie n kem theo, ta co the dung cong cu if ẩe ẩ1nh ra cac ẩieu kie n cho le nh recode. Nhan thanh if t ho p thoai ta co ho p thoai con nh h3nh 8 63nh 8- 6o p thoai If cases Trong ho p thoai If Cases, ma+c ẩ1nh la khong co ẩieu kie n nao ca, phep ẩ1nh lai gia tr1 cua bien ẩ c th c hie n cho tat ca cac /uan sat, ẩay hien th1 la Include all cases. Chon le nh include if case satisfies condition ẩe (ac ẩ1nh ẩieu kie n trong vie c ẩ1nh lai gia tr1 cua bien. Chuyen ten bien can ẩ1nh lai cac gia tr1 vao ho p thoai ben phai. Luc nay phep ẩ1nh lai gia tr1 cua bien noi tren ch5 ẩ c th c hie n ẩoi v i cac /uan sat nao thoa ma!n ẩ c bieu th c ẩieu kie n ẩ c the hie n. Recode into different variables- Trong tr ng h p ẩ1nh lai gia tr1 hie n tai cua mo t bien thanh mo t gia tr1 m i trong mo t bien khac ta se! l a chon transformRrecodeR into different variable va ta co ho p thoai nh h3nh N-
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam 63nh N- 6o p thoai Recode into Different Mariables Chuyen cac bien can ẩ1nh lai gia tr1 vao trong ho p variables. 0hai bao ten bien m i va nha!n bien m i trong ho p thoai Output variable. Sau ẩo nhan thanh change ẩe (ac nha n. Cac cong cu If va Old and New Malues cu!ng co y ngh2a va thao tac giong nh tr ng h p ẩ1nh lai gia tr1 cho cung mo t bien. Comput Co ng cu compute ẩ c dung ẩe t%nh cac gia tr1 m i t cac bien sa>n co trong cau truc d ! lie u. 0et /ua t%nh toan th ng ẩ c ch a ẩ ng trong mo t bien m i, hoa+c la mo t bien khac sa8n co hoa+c bien ch a ẩ ng gia tr1 ẩang t%nh toan. Truy (uat cong cu compute variable t transform tren thanh menu ta co ho p thoai nh h3nh 10, 6o p thoai Target variable ch a ẩ ng ten bien se! nha n gia tr1 ẩ c t%nh. Ta co the khai bao kieu va gan nha!n cho cac gia tr1 cua bien bang cach nhan vao thanh Type)label. 6o p thoai Numeric E(pression ch a ẩung cac bieu th c so ẩ c dung ẩe t%nh gia tr1 cho bien ẩ%ch Dbien ch a ẩung gia tr1 m iE, bieu th c nay co the dung ten cac bien sa>n co, cac hang, cac toan t va cac ham so. Chung ta co the go! vao va soan bieu th c t%nh toan t ng t nh v i mo t va_n ban, va co the s ! dung cac cong cu ẩ c hien th1 trong ho p thoai nh cac phiem DgE, D-E, hunction,? Cong cu If dung ẩe ẩ1nh ra nh !ng ẩieu kie n can thiet kem theo trong t%nh toan neu co, ẩ c s dung giong nh cong cu If trong ho p thoai Recode
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam 63nh 10- 6o p thoai Compute Mariable Count Cong cu nay ẩ c dung ẩe tao ra mo t bien m i ch a tong so lan (uat hie n cua mo t gia tr1 hay cac gia tr1 ẩa! ẩ c ẩ1nh ra danh sach cac bien ẩ c chon. T menu ta chon TransformRcount ẩe co ẩ c ho p thoai nh h3nh 11 63nh 11- 6o p thoai Count 4o t bien m i se! ẩ c tao ra khi ta th c hie n thu tuc Count goi la bien ẩ%ch DTaget variableE se! ch a ẩ ng gia tr1 co ng don mo.i khi ga+p ẩ c gia tr1 can ẩem trong mo t hoa+c nhieu bien ẩa! ẩ c khai bao tr c trong ho p thoai Numeric variables. Gia tr1 can ẩem se! ẩ c ẩ1nh ro! trong phan Define values. Gia tr1 khai bao ẩe ẩem co the la nh !ng gia tr1 cu the nao ẩo DMalueE, hoa+c nh !ng gia tr1 ro.ng DSystem missingE hoa+c la mo t da!y cac gia tr1 DrangeE. Sau khi khai bao gia tr1 can ẩem ta dung thanh
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam Sdd ẩe (ac nha n gia tr1 can ẩem vao trong ho p thoai Malues to count. S dung Change hoa+c Remove ẩe thay the hoa+c loai bo gia tr1 can ẩem Dgia tr1 ẩa! ẩ c ẩanh dau bang vet ẩenE. 63nh 12- 63nh 12- 6o p thoai define values Cong cu If dung ẩe (ac ẩ1nh cac ẩieu kie n neu co khi th c hie n le nh Count, Dgiong nh cong cu If trong phan Recode ẩa! ẩ oc ẩe ca p trenE -9nh nghGa nho*m bi ;n nhi Hu traI lA6i (d fin multir spons s ts) Trong cau hoi nhieu tra l i se! bao gom nhieu bien ch a ẩ ng cac tra l i co the co, nh !ng bien nay goi la bien s cap. Do ẩo ẩe ( ! ly, chung ta phai go p cac bien s cap nay thanh mo t bien go p ch a cac bien s cap. Sau ẩo trong cac phan t%ch thong ke lien /uan ẩen cau hoi nhieu tra l i, chung ta se! dung ten bien go p nay thay the cho tat ca cac bien s cap. Lien go p nay ch a ẩung toan bo cac gia tr1 trong cac bien s cap cua mo t cau hoi nhieu tra l i. Chon menu StatisticsR4ultiple ResponseRDefine sets? se! m ho p thoai Define 4ultiple Response Sets nhu h3nh 13-
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam 63nh 13- 6o p thoai Define 4ultiple Response Sets Chon tat ca nh !ng bien s cap lien /uan ẩen mo t cau hoi nhieu tra l i ho p thoai ben trai chuyen sang ho p thoai Mariables in Set, ch5 ẩ1nh cach ma! hoa cac bien ẩo Ddichotomy hay categoryE, da!y gia tr1 ma! hoa Range ? Through, (ac ẩ1nh ten nhom ẩa tra l i roi an thanh Sdd ẩe ẩ a ten nhom v a (ac ẩ1nh vao ho p 4ult Response Sets. Sau khi mo.i nhom ẩ c ẩ1nh ngh2a, cac bien chon se! ẩ c tra ve ho p thoai thoai ben trai, cho phep ta co the dung nhieu bien t ng t cho nhieu nhom ẩa tra l i khac nhau Trong khung Mariable Sre Code Ss, chung ta co the chon mo t hay hai muc sau ẩay tuy theo ph ng phap ma! hoa- 4ichotomies- ay la trang thai ma+c ẩ1nh, mo.i bien s cap ch5 co hai gia tr1, va chung ta nha p gia tr1 nao cua bien can ẩem vao ho p Counted Malue Category- 4o.i bien s cap co nhieu h n hai gia tr1, va chung ta nha p cac gia tr1 nho nhat va l n nhat cua da!y gia tr1 ma! hoa vao cac o Range va thourgh Chung ta ẩa+t ten cho nhom ẩa bien Dtoi ẩa f ky t E va nha!n Dtoi ẩa P0 ky t E vao cac ho p Name va Label. L u y la ten cua cac nhom ẩa bien ch5 ẩ c s dung trong cac thu tuc ( ly bien nhieu tra l i ma thoi. e loai bo va s a ẩoi vie c ẩ1nh ngh2a mo t nhom bien ẩa tra l i nao ẩo ta di chuyen ve t sang ẩen ten nhom ẩo va nhap thanh Remove ẩe loai bo va thanh Change ẩe thay ẩoi. La0p baIng cho bi ;n nhi Hu traI lA6i e tien hanh la p bang cho cac bien nhieu tra l i, ta s dung cac ten nhom ẩa bien ẩa! ẩ c ẩ1nh ngh2a bang cong cu Define 4ulti Response Sets ẩa! ẩ c ẩe ca p phan tren sau ẩo vao Statisticsi4ultiple response va chon hre/uencies hoa+c Crosstabs tuy theo nhu cau la p bang mo t chieu hay ẩa chieu.
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam Ngoai ra khi chung ta tien hanh la p bang cho ket /ua cuoi cung cua van ẩe nghien c u co the dung cac cong cu trong statistics R custom table ẩe tao ra cac bang bieu, co the la bang mo t chieu, bang nhieu chieu va cac bang bieu mo ta thong ke tuy theo yeu cau cua van ẩe nghien c u Lang bieu the hie n tan so (uat hie n DTables of fre/uenciesE- cho phep chung ta tao ra nh !ng bang bieu the hie n tan so (uat hie n cua mo t hay nhieu bien ẩ n • Dang bang bieu c ban DLasic tablesE- The hie n cac d ! lie u nghien c u theo dang bang cheo Dcross-tabulationE gi !a hai bien hoa+c gi !a mo t bien va mo t nhom cac bien. • Dang bang ẩa bien D4ultiple response tablesE- Giong nh basic tables the hie n tan suat (uat hie n va bang cheo, tuy nhien dang bang bieu nay cho phep ta (ay d ng bang bieu cho cac cau tra l i ẩa bien • Dang bang bieu tong h p DGeneral tablesE- Giong nh bang bieu c ban va ẩa tra! l i. Cac d ! lie u ẩ c the hie n d i dang bang cheo, tuy nhien dang bang bieu nay cho phep ng i phan t%ch the hie n moi lien he gi !a mo t bien v i nhieu bien khac tren cung mo t bang e la p bang tan so cho bien nhieu tra l i ta ẩ a bien vao ho p thoai sau 63nh 1P- 6o p thoai 4ultiple Response hre/uencies Sau ẩay la ket /ua t%nh toan t SCSS
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam Group $NOI_lE4 DNoi (em bong daE Cct of Cct of Category label Code Count Responses Cases Nha 1 1eP e3.1 Nf.e 9uan caf<e 2 A0 1N.2 2N.8 Lar 3 P 1.A 2.P San va n ẩo ng P P1 1A.8 2P.P 9uan nha u e 1 .P .e Total responses 2e0 100.0 1AP.8 0 missing casesT 1e8 valid cases e la p bang cheo cho bien nhieu tra l i, ta chon mo t bien ẩ n Dkhong nhat thiet phai la bien thanh phan cua bien go pE va mo t bien go p D4ultiple Response setsE ẩ a vao cac hang va co t roi chon cac ket /ua can t%nh trong Options, co the t%nh t5 le phan tra_m theo so ng i ẩieu tra trong ma.u hay so ket /ua tra l i. Ta co the tach bang cheo thanh nhieu l p d a vao cac gia tr1 cua bien LayerDsE 63nh 1A- 6o p thoai 4ultiple Response Crosstabs 0et /ua t%nh toan cho trong bang sau ẩay
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam * * * C R O S S T A B U L A T I O N * * * $NOI_XEM (paired group) Noi xem bong da by Q15B_1 A/C thớch xem ụỷ ủaõu nhaỏt? Q15B_1 Count Nha Quan cafe Bar Sõn van Nha van Row pct dong hoa Row Col pct Total Tab pct 1 2 3 4 5 $NOI_XEM À À À À À À 1 80 19 3 59 2 163 Nha 49.1 11.7 1.8 36.2 1.2 63.2 86.0 42.2 50.0 53.2 66.7 31.0 7.4 1.2 22.9 .8 À À À À À À 2 9 18 1 20 1 49 Quan cafộ 18.4 36.7 2.0 40.8 2.0 19.0 9.7 40.0 16.7 18.0 33.3 3.5 7.0 .4 7.8 .4 À À À À À À 3 0 3 1 0 0 4 Bar .0 75.0 25.0 .0 .0 1.6 .0 6.7 16.7 .0 .0 .0 1.2 .4 .0 .0 À À À À À À 4 4 5 1 31 0 41 Sõn van dong 9.8 12.2 2.4 75.6 .0 15.9 4.3 11.1 16.7 27.9 .0 1.6 1.9 .4 12.0 .0 À À À À À À 6 0 0 0 1 0 1 Quan nhau .0 .0 .0 100.0 .0 .4 .0 .0 .0 .9 .0 .0 .0 .0 .4 .0 À À À À À À Column 93 45 6 111 3 258 Total 36.0 17.4 2.3 43.0 1.2 100.0 Percents and totals based on responses 167 valid cases; 1 missing cases
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam M O TA C S D’ LIEU I. M O TA D’ LIEU BAJNG BIEU -OK 1. Scatt r Chon mo t bien cho Y-a(is va bien khac cho l-a(is. Cac bien nay phai la so nh ng khong nen ẩ1nh dang ngay thang Co the chon bien cho vao Set 4arkers. 4o.i gia tr1 cua bien nay se! ẩ c ẩanh dau bang ky hie u khac nhau tren bieu ẩo scatter. Lien nay co the la so hay chuoi ky t Ta cu!ng co the chon bien so hay chuoi ky t ẩ a vao Label Cases ẩe ẩa+t nha!n cho cac ẩiem tren bieu ẩo M% du Neu ẩ c chon, cac nha!n gia tr1 Dhay gia tr1 neu khong ẩ1nh ngh2a nha!nE cua bien nay ẩ c dung ẩe gan nha!n cho cac ẩiem Neu khong chon, so tr ng h p co the ẩ c dung ẩe gan nha!n cho cac c c tr1 63nh 1e- 6o p thoai Scatterplot Ta co bon cach ẩe hien th1 ket /ua cua bieu ẩo- simple la cach hien th1 ẩ n gian mo t bien theo bien khac, overlay ẩe hien th1 nhieu bieu ẩo gi !a nhieu ca+p bien
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam cung mo t luc, matri( ẩe hien th1 bieu ẩo cua nhieu bien so t ng ca+p v i nhau, 3-D hien th1 bieu ẩo cua ba bien trong khong gian ba chieu. Co the (em cac bieu ẩo minh hoa d i ẩay tr3nh bay lan l t theo th t tren D i ẩay ta ch5 minh hoa tr ng h p simple scatterplot, cac tr ng h p khac lam t ng t
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam 63nh 1f- 6o p thoai Simple Scatterplot 22 20 18 16 ) s 14 r a e y ( l 12 e v e L 10 l a n Gender o i t 8 a Male c u d 6 Female E .5 1.0 1.5 2.0 2.5 3.0 3.5 Employment Category
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam 2. Histogram Lieu ẩo histogram nhom cac gia tr1 cua bien vao cac nhom cach ẩeu nhau vave! bieu ẩo t ng ng v i so tr ng h p trong mo.i nhom. So tr ng h p co the bieu th1 theo phan tra_m, rat tie n cho vie c so sanh cac ta p d ! lie u co k%ch th c khac nhau. So tr ng h p hay phan tra_m cu!ng co the ẩ c t%ch lu!y theo cac nhom Lieu ẩo histogram co the ch5 ra cac c c tr1 va ẩo le ch cua phan phoi. ieu nay cho biet co the dung cac thu tuc co gia ẩ1nh phan phoi chuan ẩe ( ly bien nay khong 63nh 18- 6o p thoai 6istogram 200 100 Std. Dev = 2.88 Mean = 13.5 0 N = 474.00 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 Educational Level (years)
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam 3. P-P Plots C-C Clots bieu die.n phan phoi t%ch lu!y cua bien theo phan phoi t%ch lu!y cua phan phoi ẩa! chon ẩe kiem tra. Neu cac ẩiem phan bo (ung /uanh ẩ ng tha8ng, phan phoi cua bien phu h p v i phan phoi ẩa! chon. Cac phan phoi co sa>n ẩe kiem tra la beta, chi-s/uare, e(ponential, gamma, half-normal, Laplace, Logistic, Lognormal, normal, pareto, Studentms t, W eibull, va uniform. Tuy theo phan phoi ẩa! chon ma (ac ẩ1nh ẩo t do va cac tham so Co the dung C-C Clots ẩoi v i cac so lie u ẩa! ẩ c bien ẩoi. Cac phep bien ẩoi co sa>n la natural log, standardiae values, difference, va seasonally difference. 63nh 1N- 6o p thoai C-C Clots
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam Detrended Normal P-P Plot of Educational Level (years) .1 l a m 0.0 r o N m o r f n o i t a i v e D -.1 -.2 0.0 .2 .4 .6 .8 1.0 1.2 Observed Cum Prob Transforms: natural log, difference (1) Normal P-P Plot of Educational Level (years) 1.00 .75 b .50 o r P m u C .25 d e t c e p x E 0.00 0.00 .25 .50 .75 1.00 Observed Cum Prob Transforms: natural log, difference (1)
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam E. N-N Plot Cong cu 9-9 Clot ve! ẩo th1 cua cac ẩiem phan v1 D/uantilesE cua phan phoi cua bien theo cac phan v1 cua mo t phan phoi muon kiem tra. Cac ẩo th1 (ac suat th ng ẩ c dung ẩe (ac ẩ1nh (em phan phoi cua bien co phu h p v i phoi muon kiem khong. Neu phu h p cac ẩiem cua ẩo th1 se! phan bo /uanh mo t ẩ ng tha8ng. Cac phan phoi co sa>n ẩe kiem tra la beta, chi-s/uare, e(ponential, gamma, half-normal, Laplace, Logistic, Lognormal, normal, pareto, Studentms t, W eibull, va uniform. Tuy theo phan phoi ẩa! chon ma chung ta (ac ẩ1nh ẩo t do hay cac tham so can thiet. Co the dung 9-9 Clots ẩoi v i cac so lie u ẩa! ẩ c bien ẩoi. Cac phep bien ẩoi co sa>n la natural log, standardiae values, difference, va seasonally difference. 63nh 20- 6o p thoai 9-9 Clots
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam Detrended Normal Q-Q Plot of Educational Level (years) .3 .2 .1 l 0.0 a m r o -.1 N m o r -.2 f n o i t -.3 a i v e D -.4 -4 -3 -2 -1 0 1 2 3 Standardized Observed Value Transforms: natural log, difference (1) Normal Q-Q Plot of Educational Level (years) 3 2 1 e 0 u l a V l -1 a m r o -2 N d e t c -3 e p x E -4 -4 -3 -2 -1 0 1 2 3 Standardized Observed Value Transforms: natural log, difference (1) O. BoP plot Cong cu Lo( plot cho ta chon loai bieu ẩo phu h p- simple hay clustered, va cach mo ta d ! lie u tot nhat /ua cac l a chon trong phan Data in Chart Sre. Yn
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam ngh2a cua l a chon nay se! ẩ c tr3nh bay d i ẩay. Lo(plots tr3nh bay median, inter/uartile range, outliers, va e(treme cases cua t ng bien 63nh 21- 6o p thoai Lo(plot a. Neu chon Simple, ta co the co cac bo( plots nh sau- S. Summaries for Groups of Cases 4o t bien lay gia tr1 so se! ẩ c tom ta<t theo ket /ua cua mo t bien khac. 4o.i ho p tr3nh bay median, /uartiles, va e(treme values cua mo t ket /ua. Can co cac (ac ẩ1nh toi thieu sau- • Lien lay gia tr1 so can tom ta<t • Lien tren truc Category a cac l a chon tren vao ho p thoai sau
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam 63nh 22- 6o p thoai Define Simple Lo(plot 0et /ua ( ly cua SCSS Employm nt Cat gory Cas Proc ssing Summary Cases Malid 4issing Total Employment Category N Cercent N Cercent N Cercent Educational Level Clerical 3e3 100.0B 0 .0B 3e3 100.0B DyearsE Custodial 2f 100.0B 0 .0B 2f 100.0B 4anager 8P 100.0B 0 .0B 8P 100.0B
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam Educational L v l (y ars) 22 20 18 16 ) s r 14 a e y ( l 12 e v e L l 10 a n o i t a 8 c u d E 6 N = 363 27 84 Clerical Custodial Manager Employment Category L. Summaries of Separate Mariables Nhieu bien lay gia tr1 so ẩ c tom ta<t. 4o.i ho p ẩai die n cho mo t bien can tom ta<t. Can co cac (ac ẩ1nh toi thieu sau- • ot nhat hai bien lay gia tr1 so a cac l a chon tren vao ho p thoai sau
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam 63nh 23- 6o p thoai Define Simple Lo(plot- Summaries of Separate Mariables 0et /ua ( ly b i SCSS nh sau Cas Proc ssing Summary Cases Malid 4issing Total N Cercent N Cercent N Cercent Educational Level DyearsE PfP 100.0B 0 .0B PfP 100.0B 4onths since 6ire PfP 100.0B 0 .0B PfP 100.0B
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam 120 100 80 60 40 20 Manager 0 N = 474 474 Educational Level (y Months since Hire b. Neu chon Scattered, ta co cac bo( plots nh sau- S. Summaries for Groups of Cases 4o t bien lay gia tr1 so se! ẩ c tom ta<t trong cac cum ẩ c (ac ẩ1nh b i mo t bien khac. 4o.i ho p trong cum ẩai die n cho mo t ket /ua cua bien dung ẩe ẩ1nh ngh2a cum. Can co cac (ac ẩ1nh toi thieu sau- • Lien lay gia tr1 so can tom ta<t • Lien tren truc Category DCategory Mariable 1E. • Lien ẩ1nh ngh2a cum DCat Mar 2E a cac l a chon tren vao ho p thoai sau
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam 63nh 2P- 6o p thoai Define Clustered Lo(plot- Summaries for Groups of Cases Ta ẩ c ket /ua cho b i SCSS nh sau Employm nt Cat goryRM inority Classification Cas Proc ssing Summary Cases Malid 4issing Total Employment 4inority N Cercent N Cercent N Cercent Category Classification Educational Clerical No 2fe 100.0B 0 .0B 2fe 100.0B Level DyearsE Yes 8f 100.0B 0 .0B 8f 100.0B Custodial No 1P 100.0B 0 .0B 1P 100.0B Yes 13 100.0B 0 .0B 13 100.0B 4anager No 80 100.0B 0 .0B 80 100.0B Yes P 100.0B 0 .0B P 100.0B
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam Educational L v l (y ars) 22 20 18 16 ) s r 14 a e y ( l 12 e v e L l 10 a Minority Classificat n o i t a 8 No c u d Yes E 6 N = 276 87 14 13 80 4 Clerical Custodial Manager Employment Category L. Summaries of Separate Mariables Nhieu bien lay gia tr1 so ẩ c tom ta<t. 4o.i ho p trong cum ẩai die n cho mo t bien can tom ta<t. Can co cac (ac ẩ1nh toi thieu sau- • ot nhat hai bien lay gia tr1 so DMar 1, Mar 2, etc.E • 4o t bien tren truc Category DCategory MariableE a cac l a chon tren vao ho p thoai sau
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam 63nh 2A- 6o p thoai Define Clustered Lo(plot- Summaries of Separate Mariables 0et /ua tr3nh bay trong SCSS nh sau Employm nt Cat gory Cas Proc ssing Summary Cases Malid 4issing Total Employment Category N Cercent N Cercent N Cercent Crevious E(perience Clerical 3e3 100.0B 0 .0B 3e3 100.0B DmonthsE Custodial 2f 100.0B 0 .0B 2f 100.0B 4anager 8P 100.0B 0 .0B 8P 100.0B 4onths since 6ire Clerical 3e3 100.0B 0 .0B 3e3 100.0B Custodial 2f 100.0B 0 .0B 2f 100.0B 4anager 8P 100.0B 0 .0B 8P 100.0B
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam 600 500 No No 400 No No YNeos NYeos No YNeos 300 No No YNeos 200 100 Previous Experience 0 (months) -100 Months since Hire N = 363 363 27 27 84 84 Clerical Custodial Manager Employment Category II. TOM TAST D’ LIEU Tr3nh bay cac d ! lie u nghien c u thanh bang bieu DtabulationE th ng ẩ c s ! dung ẩe tom ta<t va phan t%ch cac ket /ua nghien c u. Co hai cong cu ch%nh s ! dung trong vie c tom ta<t va gan loc d ! lie u nghien c u marketing- • Cong cu fre/uencies • Cong cu descriptives • Cong cu e(plore 1. La0p baIng phaDn bo; taHn sua;t (Tr Uu nci s) Cong cu hre/uencies s dung cac thong so thong ke ẩe mo ta cho nhieu loai bien, ẩay la mo t b c tot ẩe chung ta ba<t ẩau khao sat d ! lie u. Chung ta co the khao sat d ! lie u thong /ua cac cong cu nh - tan suat (uat hie n, phan tra_m, phan tra_m t%ch lu!y. Ngoai ra no con cung cap cho ta cac phep ẩo l ng thong ke nh ẩo ta p trung Dcentral tendency measurementE, ẩo phan tan DdispersionE, t phan v1 D9uartilesE va cac phan v1 DpercentilesE, phan phoi d ! lie u DdistributionE. La p bang nay ngoai vie c tom ta<t d ! lie u, no con giup ta phat hie n nh !ng sai sot trong d ! lie u nh , nh !ng gia tr1 bat th ng D/ua l n hay /ua nhoE co the lam sai
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam le ch ket /ua phan t%ch thong ke, nh !ng gia tr1 ma! hoa bat th ng do sai sot vie c nha p lie u hay ma! hoa e tien hanh la p bang ẩ n ta chon cong cu StatisticRsumariaeRfre/uencies ta co ho p thoai nh h3nh 2e 63nh 2e- 6o p thoai hre/uencies Chuyen bien can mo ta sang ho p thoai variableDsE, SCSS ch5 cho phep cac bien kieu so DnumericE va chuoi nga<n p to ẩa 8 ky t Dshort stringE. Ta co the l a chon mo t hoa+c nhieu bien can khao sat Cong cu Charts ẩ c dung ẩe ve! ẩo th1 cho d ! lie u, va cong cu hormat ẩ c s dung ẩ1nh ra kieu hien th1 cua d ! lie u, theo th t ta_ng dan hoa+c gia!m dan Cong cu Statistics ẩe truy (uat ho p thoai nh h3nh 2f. Trong ho p thoai statistics nay se! bao gom cac cong cu ẩe ẩo l ng cac gia tr1 thong ke cua d ! lie u nh v1 tr% t ng ẩoi cua cac nhom gia tr1, ma t ẩo ta p trung va phan tan cua d ! lie u, nh !ng ẩa+c t%nh ve phan phoi cua d ! lie u DDistributionE
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam 63nh 2f- 6o p thoai hre/uencies- Statistics Cac -ie*m phan v. 1percentile values3: c dung ẩe (ac ẩ1nh cac ranh gi i t ng ẩoi cua cac nhom /uan sat t ma.u /uan sat, ẩieu l u y la d ! lie u can /uan sat ẩa! ẩ c (a<p (ep thep th t t thap ẩen cao. Ta co cac ẩiem chia d ! lie u thanh P phan bang nhau goi la t phan v1 D/uartilesE. 6oa+c ta co the chia d ! lie u theo cac phan bang nhau cu the bang cach go! so phan muon chia vao cong cu cuts points for e/ual groups. 6oa+c ta co the (em cac ẩiem phan v1 cu the nao ẩo t cong cu percentileDsE. S dung thanh Sdd ẩe (ac nha n so th t phan v1 can /uan sat, s dung thanh Remove va Change ẩe loai bo hoa+c thay ẩoi s (ac nha n ban ẩau -o l3A6ng v9 trV cuIa d3' li 0u (c ntral t nd ncy m asur m nt) • Gia tr1 trung b3nh D4eanE- La gia tr1 trung b3nh so hoc cua mo t bien, ẩ c t%nh bang tong cac gia tr1 /uan sat chia cho so /uan sat. ay la ẩa+c tr ng th ng ẩ c dung cho thang ẩo /ua!ng va ty le . Gia tr1 trung b3nh co ẩa+c ẩiem la ch1u s tac ẩo ng cua gia tr1 cua mo.i /uan sat, do ẩo ẩay la thang ẩo nhay cam nhat ẩoi v i s thay ẩoi cua cac gia tr1 /uan sat • Trung v1 D4edianE- La gia tr1 nam gi !a da!y /uan sat Dneu l ng /uan sat la so le!E hoa+c la gia tr1 trung b3nh cua hai /uan sat nam gi !a Dneu so l ng /uan sat la so cha8nE da!y /uan sat ẩ c (a<p (ep theo th t t nho ẩen l n. ay la dang cong cu thong ke th ng ẩ c dung ẩe ẩo l ng m c ẩo ta p trung cua dang d ! lie u thang ẩo th t , no co ẩa+c ẩiem la khong b1 anh h ng cua cac gia tr1 ẩau mut cua da!y phan phoi, do ẩo rat th%ch h p ẩe phan t%ch ẩoi v i d ! lie u co s chenh le ch l n ve gia tr1 hay ẩau mut cua da!y phan phoi • 4ode- La gia tr1 co tan suat (uat hie n l n nhat cua mo t ta p h p cac so ẩo, dang nay th ng ẩ c dung ẩoi v i dang d ! lie u thang bieu danh. Giong nh trung v1, mode khong b1 anh h ng b i gia tr1 ẩau mut cua da!y phan phoi
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam -o l3Ang m3*c @o0 phaDn ta*n cuIa d3' li 0u (Disp rsion) • Ch ng sai DMarianceE- Dung ẩe ẩo l ng m c ẩo phan tan cua mo t ta p cac gia tr1 /uan sat (ung /uanh gia tr1 trung b3nh cua ta p /uan sat ẩo • o le ch chuan DStandard deviationE- la mo t cong cu khac dung ẩe ẩo l ng ẩo phan tan cua d ! lie u (ung /uanh gia tr1 trung b3nh cua no. o le ch chuan ch%nh bang ca_n ba c hai cua ph ng sai. M3 ph ong sai la trung b3nh cua cac b3nh ph ng sai le ch cua cac gia tr1 /uan sat t gia tr1 trung b3nh, do ẩo khao sat ph ng sai th ng cho cac gia tr1 rat l n, kho kha_n cho vie c die.n giai ket /ua. S dung o le ch chuan se! giup de. dang cho vie c die.n giai do cac ket /ua ẩ a ra sat v i d ! lie u goc h n. • 0hoang bien thien DRangeE- La khoang cach gi !a gia tr1 /uan sat nho nhat va gia tr1 /uan sat l n nhat • Standard Error of 4ean- c dung ẩe ẩo l ng ve s khac bie t ve gia tr1 trung b3nh cua ma.u nghien c u nay so v i ma.u nghien c u khac trong ẩieu kie n co cung phan phoi. No co the ẩ c dung trong so sanh gia tr1 trung b3nh /uan sat v i mo t gia tr1 ban ẩau nao ẩo Dgia thuyetE va ta co the ket lua n hai gia tr1 nay la khac nhau neu ty so gi !a hie u so cua hai gia tr1 ẩoi v i standard error of mean nam ngoai khoang D-2,g2E -aWc tVnh phaDn pho;i (Distribution)- Co hai ẩai l ng ẩo l ng nh !ng ẩa+c t%nh cua s phan phoi d ! lie u laT • o le ch DCoefficient of Skewness, CSE cho ta biet dang phan phoi cua cac gia tr1 /uan sat co ẩoi ( ng hay khong. Cong th c t%nh ẩo le ch nh sau 3 (( i − à) Skewness = nσ3 CS q 0- Cac /uan sat ẩ c phan phoi mo t cach ẩoi ( ng (ung /uanh gia tr1 trung b3nh CS d 0- Cac /uan sat ta p trung chu yeu gan cac gia tr1 nho nhat Dle ch phaiE CS r 0- Cac /uan sat ta p trung chu yeu gan cac gia tr1 l n nhat Dle ch traiE • o nhon DCoefficient of 0urtosis, C0E dung ẩe so sanh m c ẩo phan tan cua ẩ ng cong /uan sat v i dang ẩ ng cong phan phoi chuan. C0 cua phan phoi chuan bang 3. Cong th c t%nh ẩo nhon nh sau 4 (( i − à) Kurtosis = nσ 4 Tuy nhien trong cac phan mem ng dung he so 0urtosis la ẩo ẩo m c ẩo phan tan cua cac /uan sat (ung /uanh gia tr1 trung b3nh. oi v i phan phoi chuan gia tr1 nay la 0. 6e so 0urtosis d ng ngh2a la cac /uan sat phan tan nhieu h n va
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam ẩuoi phan phoi dai h n so v i phan phoi chuan, am ngh2a la cac /uan sat phan tan %t h n va ẩuoi phan phoi nga<n h n. 2. Tho;ng k D moD taI (D scriptiv ) S dung StatistictsiSummariesiDescriptives ẩe m ho p thoai mo ta thong ke nh h3nh 28 63nh 28- 6o p thoai descriptives va options ay la mo t dang cong cu khac co the ẩ c dung ẩe tom ta<t d ! lie u va ch5 cho phep thao tac tren dang d ! lie u so. c dung ẩe the hie n (u h ng ta p trung cua d ! lie u Dcentral tendencyE thong /ua gia tr1 trung b3nh cua cac gia tr1 trong bien DmeanE, va mo ta s phan tan cua d ! lie u thong /ua ph ng sai va ẩo le ch chuan. Chuyen cac bien can tom ta<t vao ho p thoai variables va nhap thanh options ẩe l a
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam chon cac thong so thong ke can mo ta, nh gia tr1 trung b3nhpmean, Gia tr1 toi thieu, gia tr1 toi ẩa, ph ng sai va ẩo le ch chuan, ? 3. CoDng cuF EPplor Thu tuc E(plore cho chung ta cac tom ta<t so lie u va cac bieu ẩo cua toan bo so lie u hay cua cac nhom so lie u rien bie t. Ta co the dung thu tuc nay l c /ua so lie u ẩe phat hie n cac gia tr1 bat th ng, (ac ẩ1nh cac c c tr1 DoutliersE, mo ta, kiem tra gia thiet ẩe (ac ẩ1nh (em cac ky! thua t thong ke ẩang dung ẩe phan t%ch so lie u co phu h p khong, co can phai bien ẩoi so lie u neu ky! thua t ẩang dung yeu cau so lie u co phan phoi chuan hay phai dung cac phep kiem phi tham so, thu tuc e(plore cu!ng neu ra cac khac bie t gi !a cac nhom nho Statistics va plots cho ta t%nh cac ẩa+c tr ng va ve! bieu ẩo cua so lie u. Cac thong ke ẩ c t%nh la mean, median, AB trimmed mean, standard error, variance, standard deviation, minimum, ma(imum, range, inter/uartile range, skewness va kurtosis va standard errors cua chung, khoang tin ca y cho trung b3nh Dconfidence interval for the meanE v i ẩo tin ca y tuy y, percentiles, 6uberms 4-estimator, Sndrewms wave estimator, 6ampelms redescending 4-estimator, Tukeyms biweight estimator, A gia tr1 l n nhat va A gia tr1 nho nhat, thong ke 0olmogorov-Smirnov statistic v i m c y ngh2a Lilliefors ẩe kiem tra gia thiet chuan, va thong ke Shapiro-W ilk, bo(plots, stem-and-leaf plots, histograms, normality plots, va spread-versus-level plots v i phep kiem Levene va cac phep bien ẩoi 63nh 2N- 6o p thoai E(plore Neu chon Statistics ta co ho p thoai sau
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam 63nh 30- 6o p thoaiE(plore- Statistics M-estimator la mo t c l ng cho khuynh h ng ta p trung co phan bie t trong so cho cac gia tr1 khac nhau. Cac c c tr1 ẩ c gan trong so thap h n cac gia tr1 gan tam. 0hi so lie u co phan phoi ẩoi ( ng trai dai ve hai ph%a hay co cac c c tr1, 4-estimators cho c l ng ve v1 tr% tot h n trung b3nh va trung v1. Ta co bon c l ng la 6uberss 4- estimator, Sndrewss wave estimator, 6ampelss redescending 4-estimator, va Tukeyss biweight estimator M-E stim ators Employment 6uberss 4- Tukeyss 6ampelss 4-Sndrewss Category Estimator Liweight Estimator W ave Current Salary Clerical 2e,fP8.NP 2e,3AA.A0 2e,fef.eA 2e,3PN.30 Custodial 30,ee3.e0 30,A81.11 30,AfN.2N 30,A83.0P 4anager e1,388.N0 AN,820.A2 e1,0AN.e3 AN,f80.3f a The weighting constant is 1.33N. b The weighting constant is P.e8A. c The weighting constants are 1.f00, 3.P00, and 8.A00 d The weighting constant is 1.3P0*pi.
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam St m-and-L af Plots Current Salary Stem-and-Leaf Clot for tOLCSTq Clerical hre/uency Stem ) Leaf 2.00 1 . A 1e.00 1 . eeeeefff 1A.00 1 . 88NNNNN 3A.00 2 . 00000011111111111 PP.00 2 . 2222222222222233333333 A3.00 2 . PPPPPPPPPPPPPPPAAAAAAAAAAA AA.00 2 . eeeeeeeeeeeeeffffffffffffff 3A.00 2 . 88888888NNNNNNNNN 30.00 3 . 00000001111111 1N.00 3 . 222333333 1f.00 3 . PPPPAAAA 11.00 3 . eeeff 8.00 3 . 88NN 8.00 P . 000) 3.00 P . 2) 12.00 E(tremes DdqP3NA0E Stem width- 10000 Each leaf- 2 caseDsE ) denotes fractional leaves.
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam PHAN TYCH D’ LIEU Co nhieu phep kiem ẩ c s dung trong SCSS • Neu ta muon so sanh trung b3nh cua ma.u v i mo t gia tr1 co ẩ1nh nao ẩo ta s dung phep kiem One-sample T test. • 6oa+c neu muon so sanh trung b3nh cua hai nhom, ta s dung kiem nghie m Independent-samples T test. • e so sanh means cua hai bien ẩ c khao sat t cung mo t ma.u ta s dung kiem nghie m Caired-samples T test. • 6oa+c v i tr ng h p ta co nhieu h n hai ma.u ẩo c la p, can kiem nghie m trung b3nh ta co the dung SNOMS mo t yeu to DOne-way SNOMSE. Trong cac tr ng h p tren cac bien ẩ c kiem nghie m trung b3nh ẩoi hoi phai la cac bien ẩ1nh l ng va phan phoi phai la phan phoi chuan hay ma.u nghien c u phai ẩu l n. Tuy nhien v i nh !ng tr ng h p bien /uan sat la bien ẩ1nh l ng nh ng la bien theo thang ẩo th t , hoa+c so l ng ma.u khong ẩu l n hoa+c khong thoa ma!n ẩieu kie n phan phoi chuan ta co the tien hanh kiem nghie m bang cong cu W ilco(on signed rank test Dse! tham khao trong phan Nonparametric test se! ẩ c gi i thie u trong ch ng tr3nh SCSS nang caoE Tr c tien ta se! nghien c u mo t cong cu ẩ n gian trong phan t%ch d ! lie u la 4eans I. M EANS Cong cu M ans dung ẩe t%nh toan cac gia tr1 trung b3nh theo cac nhom nho va ẩ a cac ch5 so thong ke lien /uan cho mo t bien phu thuo c trong pham vi cac nhom cua mo t hay nhieu bien ẩo c la p. Ta co the l a chon cac cong cu kem theo nh phan t%ch SNOMS mo t yeu to, eta, va cac kiem nghie m tuyen t%nh. M% du ta co the ẩo l ng m c ẩo ẩanh gia trung b3nh ve mo t show /uang cao cua ba nhom tieu dung khac nhau, cong nhan, sinh vien va cong ch c. Cong cu nay se! cho ta mo t bang cheo the hie n s ẩanh gia cua ba nhom ng i nay ve show /uang cao ẩ c (em. Cong cu nay ẩ n gian ch5 truy (uat cac ket /ua thong ke /uan sat ẩ c, cac phep kiem khong ẩ c ẩe ca p trong phan nay e th c hie n cong cu nay ta chon Compar M ans/M ans[. t menus, ta co ho p thoai nh h3nh 1N. Co the chon mo t hay nhieu bien phu thuo c. Di chuyen ve t ẩen ẩen bien ch a cac gia tr1 ẩ1nh l ng ma ta can /uan sat gia tr1 trung b3nh cua cac gia tr1 ẩ1nh l ng ẩo trong cac nhom (ac ẩ1nh b i bien ẩo c la p. S dung mui ten chuyen bien ẩa! chon vao ho p thoai d p nd nt list.
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam Cac bien phu thuo c trong bang 4eans phai la bien ẩ1nh l ng va cac bien ẩo c la p th ng la cac bien ẩ1nh danh. Cac ẩai l ng thong ke ẩ c s dung tuy thuo c vao dang d ! lie u. Nh mean va stadard deviation th3 d a tren ly thuyet phan phoi chuan va th%ch h p cho cac bien ẩ1nh l ng v i phan phoi ẩoi ( ng. Cac ẩai l ng khac nh median va range th3 th%ch h p cho cac bien ẩ1nh l ng ma ta khong biet lie u no co thoa ma!n cac ẩieu kie n ve phan phoi chuan hay khong. Ta co the l a chon SNOMS va eta ẩe th c hie n vie c phan t%ch s bien thien mo t chieu cho mo.i bien ẩo c la p. Eta va eta b3nh ph ng cho phep ẩo l ng cac moi t ng /uan Lien ẩo c la p la bien dung ẩe chia cac gia tr1 cua bien phu thuo c thanh nh !ng nhom nho. Co hai cach ẩe l a chon bien ẩo c la p • L a chon mo t hoa+c nhieu bien ẩo c la p. Luc nay cac ket /ua cu!ng nh cac ẩai l ng thong ke kem theo se! ẩ c the hie n tren cac bang rieng bie t cho mo.i bien ẩo c la p • L a chon bien ẩo c la p theo l p, mo.i bien ẩo c la p trong mo t l p, luc nay cac ket /ua va ẩai l ng thong ke ẩ c the hie n tren chung mo t bang 63nh 31- 6o p thoai 4eans Cong cu Options Dh3nh 32E. Cho phep ta l a chon cac ẩai l ng thong ke can khao sat va SNOMS, Eta, va Eta b3nh ph ng Dse! ẩ c ẩe ca p chi tiet ve y ngh2a phan sauE
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam 63nh 32- 6o p thoai Options II. ONE-SAM PLE T TEST Chep kiem mo t ma.u ẩ c dung ẩe kiem ẩ1nh (em gia tr1 trung b3nh cua mo t bien co khac v i mo t gia tr1 ẩa! cho khong. M% du mo t nha nghien c u co the kiem ẩ1nh (em ch5 so I9 trung b3nh cua mo t nhom sinh vien co bang 100 v i m c y ngh2a AB khong. Ch ng phap kiem nghie m nay dung cho cac bien co thang ẩo /ua!ng hay t5 le . Gia thiet 6 va cong th c t%nh t nh sau On -sampl T t st 6- 4ean q Test Malue 0- 4ean ≠ Test Malue Mean Difference t = ↔ Sig.(2 tailed) Standard Error of Mean Ta co /uy ta<c ket lua n ve gia thiet 6 nh sau- Sig. nho Dr 0.0A cha8ng hanE ngh2a la bac bo gia thiet 6, ngh2a la trung b3nh khac v i test value. L u y la /uy ta<c ket lua n ẩ n gian nay co the ap dung cho hau het cac phep kiem.
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam T 4enus ta chon Compar M an\On -Sampl T T st[ ta se! co ho p thoai 63nh 33- 6o p thoai One-Sample T Test L a chon bien can so sanh bang cach di chuyen ve t ẩen va chuyen ẩen vao ho p thoai T st Variabl (s), nha p gia tr1 can so sanh vao ho p thoai T st Valu . Chon cong cu Options ẩe (ac ẩ1nh ẩo tin ca y cho kiem nghie m, ma+c ẩ1nh la NAB va cach ( ! ly ẩoi v i cac gia tr1 khuyet. 0hi kiem nghie m cac bien ta se! ga+p mo t vai gia tr1 khuyet trong cac bien ẩo va van ẩe ẩay la ta phai chon cach loai bo cac gia tr1 khuyet ẩo • EPclud cas s analysis by analysis. 4o.i kiem nghie m T s dung toan bo cac tr ng h p DcasesE ch a ẩ ng gia tr1 co y ngh2a ẩoi v i bien ẩ c kiem nghie m. a+c ẩiem cua l a chon nay la k%ch th c ma.u luon thay ẩoi theo t ng kiem nghie m • EPclud cas s listwis . 4o.i kiem nghie m T s dung ch5 nh !ng tr ng h p co gia tr1 ẩay ẩu ẩoi v i tat ca cac bien . Trong tr ng h p nay k%ch th c ma.u luon khong ẩoi trong tat ca cac phep kiem 63nh 3P- L a chon cach ( ly gia tr1 khuyet e tien hanh kiem nghie m T mo t ma.u ẩoi hoi d ! lie u phai ẩap ng gia ẩ1nh sau • D ! lie u phai la phan phoi chuan, hoa+c
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam • 0%ch th c ma.u phai ẩu l n ẩe ẩ c (em la (ap (5 phan phoi chuan III. INDEPENDENT-SAM PLES T TEST 0iem nghie m nay dung cho hai ma.u ẩo c la p, dang d ! lie u la dang thang ẩo khang cach hoa+c ty le oi v i dang kiem nghie m nay, cac ẩoi t ng can kiem nghie m phai ẩ c (ep mo t cach nga.u nhien vao hai nhom sao cho bat ky mo t khac bie t nao t ket /ua nghien c u la do s tac ẩo ng cua ch%nh nhom th ẩo, ch khong phai do cac yeu to khac. M% du nh ta khong the dung ph ng phap nay ẩe so sanh thu nha p cua nam va n ! b i v3 thu nha p con b1 anh h ng l n b i tr3nh ẩo hoc van va nghe nghie p. 6oa+c ẩe ẩanh gia tac ẩo ng cua mo t ch ng tr3nh /uang cao ta l a chon ra hai nhom khach hang ẩo c la p, nhom ẩa! (em /ua ch ng tr3nh /uang cao va nhom ch a (em /ua ch ng tr3nh /uang cao ẩe ẩanh gia m c ẩo a th%ch cua san pham ẩa! ẩ c /uang cao. bc ẩay ngoai cong cu th la vie c (em /uang cao hoa+c khong (em, nha nghien c u phai bao ẩam khong ton tai yeu to nao ẩang ke tac ẩo ng ẩen s ẩanh gia ve san pham, nh gi i t%nh, s tieu dung, tr3nh ẩo , ? Tom lai ẩe so sanh gia tr1 trung b3nh Dve s a th%ch, thu nha p, chi tieu, ? E cua hai nhom ẩo c la p ta phai thiet ke th% nghie m sao cho cac phan ng thu ẩ c cua nhom nay khong b1 anh h ng b i nhom kia, va ngoai cac tac nhan can ẩanh gia can phai chu y ẩen cac tac ẩo ng khac co the lam thay ẩoi s phan ng thu nha n ẩ c gi !a hai nhom Me ma+t /uy tr3nh, tr c khi ẩi vao cac kiem nghie m trung b3nh ta can phai tham khao mo t kiem nghie m khac ma ket /ua cua no la rat /uan trong cho cac kiem nghie m trung b3nh sau nay. 0iem nghie m Levene la phep kiem t%nh ẩong nhat cua ph ng sai. bc ẩay ta kiem nghie m gia thuyet cho rang ph ng sai cua cac ma.u /uan sat la bang nhau. Neu ket /ua kiem nghie m cho ta m c y ngh2a nho h n AB, ta co the khong chap nha n gia! thuyet cho rang ph ong sai hai ma.u bang nhau. Chu y trong mo t so kiem nghie m nh SNOMS, kiem nghie m t, ? ẩoi hoi phai tien hanh phep kiem L v n tr c ẩe (ac ẩ1nh t%nh ẩong nhat cua cac ph ng sai. 0et /ua nay se! anh h ng ẩen vie c l a chon cac kiem nghie m trung b3nh khac D0iem nghie m trung b3nh v i ph ng sai ma.u bang nhau hoa+c kiem nghie m trung b3nh v i ph ng sai ma.u khong bang nhauE Gia thiet 6 va cong th c t%nh t trong cac tr ng h p ph ng sai bang nhau va khac nhau nh sau Ind p nd nt-Sampl s T T st: 6- 4ean Difference q 0 0- 4ean Difference ≠ 0 Levene's Test:
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam 6- E/ual Mariance 0- une/ual Mariance • E/ual Mariance- Mean Difference t = ↔ Sig.(2 tailed) Standard Error of Mean Difference l − l t = 1 2 2 2 ’ (N1 −1)S1 + (N 2 −1)S2 1 1 + N1 + N 2 − 2 N1 N 2 df q N1gN2 -2 • une/ual Mariance- Mean Difference t = ↔ Sig.(2 tailed) Standard Error of Mean Difference l − l t = 1 2 2 2 ’ S1 S2 + N1 N 2 2 2 S1 S2 ω1 = , ω2 = N1 N2 (ω + ω )2 df = 1 2 ω2 ω2 1 + 2 N1 −1 N 2 −1 e th c hie n vie c so sanh nay ta vao Compar m ans\Ind p nd nt sampl t- t st[. Cac d ! lie u can so sanh nam trong cung mo t bien ẩ1nh l ng. e so sanh ta tien hanh nhom cac gia tr1 thanh hai nhom nh bien grouping. T 4enus ta ẩ c ho p thoai nh h3nh 3A
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam 63nh 3A- 6o p thoai Independent sample T-test Di chuyen ve t ẩen vao bien ẩ1nh l ng ma ta can so sanh gia tr1 trung b3nh, chon bang cach nhan nut mu!i ten ẩe chuyen bien ẩ1nh l ng ẩo vao ho p thoai T st variabl (s). Ta co the chon nhieu bien ẩ1nh l ng ẩe so sanh. Di chuyen ve t toi ẩen bien ẩ1nh cac nhom can so sanh v i nhau Dth ng la bien ẩ1nh danhE di chuyen vao ho p thoai Gouping variabl . Cong cu D fin Groups[ cho phep ta ẩ1nh ra hai nhom can so sanh v i nhau, nh h3nh 3e 63nh 3e- 6o p thoai Define Groups Co hai cach ẩ1nh nhom so sanh- • S ! dung gia tr1 cu the- nha p hai gia tr1 ẩai die n cho hai nhom can so sanh trong bien vao o group 1 va6 group 2. M% du ẩe so sanh th i gian t hoc cua hai nhom sinh vien na_m nhat va sinh vien na_m cuoi, ta dung bien loai sinh vien v i P nhom sinh vien ẩ c ma! hoa nh sau- sinh vien na_m nhat, sinh vien na_m hai, sinh vien na_m ba, sinh vien na_m cuoi lan l t co ma! la 1,2,3,P. Ta nha p gia tr1 1 vao Group 1 va nha p gia tr1 P vao group 2. Luc ẩo th i gian t hoc trung b3nh se! ẩ c so sanh gi !a hai nhom sinh vien na_m nhat va sinh vien na_m cuoi.
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam • Cach th hai la s dung Cut point: nha p gia tri phan cach cac gia tr1 trong bien thanh hai nhom. Toan bo cac tr ng h p co gia tr1 nho h n gia tr1 ẩ c nha p vao trong cut point se! ẩ1nh ra mo t nhom, va toan bo cac tr ng h p co gia tr1 l n h n hoa+c bang gia tr1 trong Cut point se! tao ra mo t nhom khac. M% du ta muon so sanh th i gian t hoc cua sinh vien hai na_m ẩau va sinh vien hai na_m cuoi, ta nha p gia tr1 3 Dla gia tr1 ma! hoa cua nhom sinh vien na_m th baE vao cut point, luc ẩo ta tao ẩ c hai nhom sinh vien bao gom, sinh vien hai na_m ẩau Dsinh vien na_m th nhat va sinh vien na_n th haiE va nhom sinh vien hai na_m cuoi Dsinh vien na_m ba va sinh vien na_m cuoiE va se! tien hanh so sanh so th i gian t hoc trung b3nh tren hai nhom sinh vien nay. Cong cu Options ẩay co thao tac va y ngh2a giong cong cu Options ẩa! ẩe ca p trong phan kiem nghie m T mo t ma.u ẩa! ẩe ca p phan tr c. Cac gia ẩ1nh phai ẩ c thoa ma!n khi dung kiem nghie m T cho hai ma.u ẩo c la p • 0hi dung kiem nghie m t cho hai ma.u co ph ng sai bang nhau Dco the kiem ẩ1nh gia thiet nay bang thong ke L v n E, cac /uan sat phai ẩo c la p, ẩ c lay nga.u nhien t cac ẩam ẩong co phan phoi chuan v i ph ng sai bang nhau • Dung kiem nghie m t cho hai ma.u co ph ng sai khong bang nhau khi cac /uan sat phai ẩo c la p, ẩ c lay nga.u nhien t tong the co phan phoi chuan. IV. PAIRED-SAM PLES T TEST ay la dang kiem nghie m dung cho hai bien co lien he v i nhau, d ! lie u dang thang ẩo /ua!ng hoa+c ty le . No t%nh hie u so cua cac gia tr1 cua hai bien cho mo.i tr ng h p va kiem nghie m (em hie u so trung b3nh co khac 0 hay khong L i ẩiem cua vie c s dung kiem nghie m T cho ma.u ca+p la ta loai tr ẩ c nh !ng yeu to tac ẩo ng ben ngoai vao nhom th . M% du ẩe khao sat s a th%ch cua hai loai n c hoa chuan b1 tung ra th1 tr ng, tien hanh th nghie m tren cung mo t nhom ma.u se! cho nh !ng thong tin (ac th c h n ve s a th%ch mui v1 hai loai n c hoa nay, t ẩo co the ta p trung vao s khac bie t t nhien cua chung. Neu ta tien hanh so sanh gi !a hai nhom ma.u ẩo c la p v i nhau, ket /ua khac bie t co the do nh !ng tac nhan khac gay ra nh s khac bie t ve con ng i, ve nha n th c, ve kinh nghie m cu!ng nh cac yeu to ben ngoai khac. Ch ng phap nay th%ch h p cho vie c kiem nghie m san pham, no kiem nghie m gia thuyet cho rang s khac bie t gi !a hai trung b3nh ma.u la bang khong. Ta t choi gia thuyet nay khi m c y ngh2a cua ket /ua kiem nghie m DsignificanteE nho h n m c y ngh2a cho tr c Dth ng la ABE. ieu kie n yeu cau cho loai kiem nghie m nay la k%ch c hai ma.u so sanh phai bang nhau. Cac /uan sat trong mo.i ma.u phai ẩ c th c hie n trong cung nh !ng ẩieu kie n giong nhau. 6ie u so cac gia tr1 cua hai ma.u phai co phan phoi chuan hoa+c c ma.u
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam ẩu l n ẩe (ap (5 phan phoi chuan. Ch ng sai cua hai bien co the bang hoa+c khong bang nhau Dco the kiem nghie m /ua phep kiem ph ng sai LeveneE Gia thiet 6 va cong th c t%nh t nh sau Pair d-Sampl s T T st 6- 4ean Difference q 0 0- 4ean Difference ≠ 0 Mean Difference t = ↔ Sig.(2 tailed) Standard Error of Mean Difference e th c hie n vie c so sanh nay ta vao Compar m ans\Pair d-sampl s t-t st[. T 4enus ta ẩ c ho p thoai nh h3nh 2A- 63nh 3f- Chep kiem T cho ma.u ca+p Chon hai bien can so sanh bang cach di chuyen ve t ẩen lan l t ẩen hai bien can /uan sat, di chuyen bien can /uan sat vao ho p thoai Pair d Variabl s bang nut mu!i ten. Pair d-sampl s t t st con cho ta ket /ua ve moi t ng /uan gi !a hai bien ẩang /uan sat. Cho biet lie u hai bien nay co t ng /uan v i nhau hay khong, ẩo t ng /uan va chieu t ng /uan Dthe hie n bang Caired samples correlationE. V. ONE-_ AY ANOVA SNOMS la mo t cong cu thong ke dung ẩe so sanh nhieu gia tr1 trung b3nh v i nhau. M% du nh trong nong nghie p ng i ta muon biet ngu! coc se! phat trien nh
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam the nao khi s dung cac loai phan bon khac nhau. Nha nghien c u muon biet lie u tat ca cac loai phan bon tren co anh h ng nh nhau ẩen s phat trien cua ngu! coc hay mo t vai loai phan bon se! co tac dung tot h n mo t vai loai khac. e lam ro ẩieu nay ng i ta dung SNOMS kiem nghie m toc ẩo phat trien trung b3nh Dco the la l ng ngu! coc thu hoach, chieu cao cua cay, so l ng trai trung b3nh thu hoach ẩ c, ? E khi dung cac loai phan bon khac nhau, ẩay ch%nh la cac gia tr1 trung b3nh ẩ c s dung trong thong ke. SNOMS th ng kiem nghie m so l ng ma.u l n h n hai, neu so l ng ma.u bang 2 ta co the dung ph ng phap t ng ẩoi ẩ n gian h n la phep kiem t hai ma.u nh ẩa! ẩe ca p phan tren. SNOMS ẩ c s dung ro ng ra!i trong th c te b i v3 ta se! ga+p rat nhieu tr ng h p ẩoi hoi ta phai kiem nghie m nhieu ma.u cung mo t luc. Chu y neu ta kiem t ng ca+p lan l t bang ph ng phap kiem nghie m t hai ma.u, mo.i lan kiem kha na_ng sai la AB Dtuy thuo c vao m c y ngh2a ta mong muonE. Do ẩo khi kiem nghie m tat ca cac ca+p ma.u lan l t ty le sai sot se! ta_ng len theo mo.i lan, trong khi SNOMS cho phep ta kiem nghie m tat ca cac ma.u cung mo t luc v i m c ẩo sai sot la AB e th c hie n kiem nghie m SNOMS, d ! lie u ẩoi hoi phai thoa ma!n mo t so gia thuyet sau- • Cac ma.u kiem nghie m phai ẩo c la p va ẩ c chon nga.u nhien • Cac ma.u s dung trong kiem nghie m phai co phan phoi chuan hoa+c k%ch th oc ma.u ẩu l n ẩe ẩ c (em nh phan phoi chuan. • Ch ng sai cua cac ma.u phai ẩong nhat Dco the kiem nghie m ẩieu nay bang phep kiem LeveneE Neu nh cac ma.u nghien c u khong thoa ma!n cac ẩieu kie n tren ta co the dung phep kiem phi tham so DnonparametricE nh phep kiem Kruskal-_ allis Gia thiet 6 va cac cong th c t%nh toan trong SNOMS nh sau ONE-W SY SNOMS- 6- à1 q à2 q q ài q q àn 2 2 Sum of S/uares Letween Groups q SSL q i Ni8i - N8 df q n -1 2 2 Sum of S/uares W ithin Groups q SSW q ivw Niwli - Ni8i x df q N p n 2 2 Sum of S/uares Total q SST q iw Niwliw - N8 df q N - 1
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam ANOVA Sum of Squares df Mean Square F Sig. Current Between 88653535061.984 9 9850392784.665 92.779 .000 salary Groups Within 49262960374.356 464 106170173.221 Groups Total 137916495436.340 473 Neu bac bo 6- à1 q à2 q q ài q q àn, tien hanh tiep Cost hoc ẩe (ac ẩ1nh cac trung b3nh nao khac nhau. Chai lam Levene test tr c ẩe (ac ẩ1nh (em cac ph ng sai trong t ng nhom co ẩong nhat khong. M% du minh hoa- Cac nha che bien va phan pho% coffee th1 tr ng 6oa 0y ẩang ẩoi ma+t v i t3nh h3nh bat on ve gia cua hat coffee. Trong mo t na_m gia cua hat coffee bien ẩo ng t $1.P0 R pound D0.3f3 kgE len $2.A0 R pound roi sau ẩo lai tut (uong $2.03 R pound. Ng i ta (ac ẩ1nh s bat on ve gia coffee nay la do t3nh h3nh hoat ẩo ng cua cac nha che bien va phan phoi coffee va mo t yeu to khac rat /uan trong la van ẩe han han Lraail, b i v3 Lraail san (uat ra 30B san l ng coffee tren the gi i, do ẩo th1 tr ng coffee rat nhay cam v i nh !ng bien chuyen ve th i tiet Dnguy c han hanE Lraail. e tao s on ẩ1nh cho hoat ẩo ng cua m3nh mo t nha phan phoi coffee muon loai bo ma+t hang coffee Lraail ra khoi c cau hang hoa cua m3nh. Tuy nhien tr c khi th c hie n /uyet ẩ1nh nay can phai can nha<c lie u loai bo ma+t hang coffee Lraail co lam giam doanh so cua cong ty hay khong. M3 va y cong ty thue mo t cong ty nghien c u 4arketing tien hanh kiem nghie m s a th%ch mui v1 coffee cua khach hang tieu dung coffee tren th1 tr ng. Cong ty tien hanh khao sat ba nhom khach hang ẩ c chon nga.u nhien bao gom nhom khach hang chuyen tieu dung coffee Lraail, nhom khach hang chuyen tieu dung coffee Colombia va nhom khach hang chuyen tieu dung coffee Chau Chi Dẩay la 3 loai coffee ẩ c tieu dung chu yeu cua cong tyE. Chu y cong ty loai tr nh !ng nhom khach hang tieu dung nhieu loai coffee khac nhau ẩe bao ẩam t%nh ẩo c la p cua cac ma.u ẩ c chon, va do nghien c u ve mui v1 nen ẩoi hoi phai chon nh !ng khach hang co gu tieu dung rieng bie t. bc ẩay cong ty muon (ac ẩ1nh (em lie u co s khac bie t ve m c ẩo a th%ch ẩoi v i ba loai coffee Dse! cho khach hanh th ba loai coffee va khao sat m c ẩo a th%ch chungE va neu co s khac nhau th3 s khac nhau ẩo (ay ra nh !ng loai nao. D a vao ket /ua phan t%ch SNOMS ta biet lie u m c ẩo a th%ch trung b3nh cua ba nhom khach hang tren co giong nhau khong. Neu khac nhau th3 ta tien hanh tiep cac phep kiem trong Post Hoc ẩe (ac ẩ1nh nh !ng khac bie t cua t ng nhom khach hang ve loai coffee ẩa! th .
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam Sau khi dung SNOMS khao sat s khac bie t gi !a cac ma.u. Neu ta co ẩu c s ẩe ket lua n la khong co s khac bie t gi !a cac ma.u, ta co the ket thuc cong vie c Dvie c loai bo coffee braail khong gay anh h ng ẩen doanh so, ng i tieu dung co the chuyen sang coffee comlobia hoa+c chau Chi mo t cach de. dangE. Tuy nhien khi ta loai bo gia thiet ve s ngang bang gi !a cac m c ẩo a th%ch, ta phai (ac ẩ1nh tiep s khac bie t (ay ra ẩau gi !a cac ma.u kiem nghie m. Chung ta can phai (ac ẩ1nh h ng va ẩo l n cua cac khac bie t nay bang cach lan l t so sanh cac ma.u v i nhau Dng i tieu dung coffee braail co the th%ch coffee comlombia h n coffe chau Chi, hoa+c ng i tieu dung coffee braail ẩanh gia coffee braail ngang bang v i coffee colombia, trong khi m c ẩo a th%ch coffee chau Chi th3 thap h n do ẩo ẩe giam thieu s mat doanh so ban coffee braail khi loai bo ma+t hang nay cong ty nen ta_ng l ng coffee comlombia tieu thu tren th1 tr ngE, cac cong cu thong ke trong Post Hoc cho phep ta th c hie n cong vie c nay. Chan t%ch ph ng sai mo t yeu to la tien tr3nh phan t%ch ph ng sai mo t bien ẩ1nh l ng phu thuo c vao mo t yeu to ẩ n le hay con goi la bien ẩo c la p. Chan t%ch ph ng sai DSNOMSE ẩ c dung ẩe kiem nghie m gia thuyet cho rang tat ca cac gia tr1 trung b3nh ẩeu bang nhau. 0y thua t nay la mo t dang m ro ng cua kiem nghie m T hai ma.u. e (ac ẩ1nh s khac bie t gi !a cac gia tr1 trung b3nh chung ta co the muon biet nh !ng gia tr1 trung b3nh nao khac bie t. Co hai cach ẩe so sanh s khac bie t nay la kiem nghie m priori contrasts va post hoc . Contrasts la kiem nghie m ẩ c ẩ a ra tr c khi th c hie n phep th , va post hoc la kiem nghie m ẩ c th c hie n sau khi phep th ẩa! ẩ c th c hie n. Chung ta con co the kiem nghie m nh !ng (u h ng /ua cac nhom On -_ ay ANOVA Contrasts Chung ta co the chia tong b3nh ph ng ẩo le ch gi !a cac nhom DSSLE thanh cac thanh phan the hie n (u h ng hay (ac ẩ1nh priori contrasts. Polynomial chia SSL thanh cac thanh phan the hie n (u h ng. Chung ta co the kiem (em bien phu thuo c co thay ẩoi theo cac m c ẩo Dtheo mo t th t nao ẩoE cua bien yeu to theo mo t (u h ng nao khong. Cha8ng han nh chung ta co the kiem (em tien l ng co thay ẩoi theo (u h ng tuyen t%nh /ua cac loai cong vie c t thap ẩen cao khongY D gr Co the chon ẩa th c cap 1, 2, 3, P, hay A Co ffici nts Lang thong ke t chung ta ẩa! (ac ẩ1nh priori contrasts ẩe kiem nghie m. Nha p cac he so cho t ng nhom cua bien yeu to va nhap Sdd sau mo.i lan
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam nha p. 4o.i gia tr1 m i ẩ c ẩ a vao cuoi danh sach he so. e (ac ẩ1nh them mo t bo contrasts, nhap Ne(t. Dung Ne(t va Crevious ẩe (em cac ta p contrasts. Th t cua cac he so rat /uan trong v3 no t ng ng v i th t ta_ng dan cua cac gia tr1 cua bien yeu to. 6e so th nhat t ng ng v i gia tr1 nho nhat va he so cuoi cung t ng ng v i gia tr1 l n nhat. Cha8ng han neu co e gia tr1 trong bien yeu to, cac he so 1, 0, 0, 0, 0.A, va 0.A se! t ng phan nhom th nhat v i nhom th na_m va th sau. Trong hau het cac ng dung, tong cac he so la 0. Neu tong khac 0 /uy tr3nh cu!ng ẩ c th c hie n nh ng se! co thong bao l u y M% du Lanh ran hap thu dau a_n hay m ! theo nh !ng so l ng khac nhau khi ta ran banh 4o t th% nghie m ẩ c th c hie n tren ba loai chat beo gom dau pho ng, dau ngu coc va m ! l n. Dau pho ng va dau ngu coc la chat beo khong bao hoa, m ! l n la chat beo bao hoa. Ngoai vie c (ac ẩ1nh l ng chat beo hap thu co phu thuo c vao loai dau s dung hay khong, ta con co the tien hanh kiem nghie m priori contrasts ẩe (ac ẩ1nh l ng chat beo hap thu co phu thuo c vao t%nh chat bao hoa hay khong bao hoa cua chat beo ẩ c s dung hay khong. 0hi ẩa! (ac ẩ1nh ẩ c s khac bie t gi !a cac gia tr1 trung b3nh, cac kiem nghie m post hoc rang va pairwis multipl comparisons co the (ac ẩ1nh ẩ c nh !ng gia tr1 trung b3nh nao khac bie t. Rang t sts (ac ẩ1nh ẩ c nh !ng nhom gia tr1 trung b3nh ẩong nhat Dkhong ton tai s khac bie t gi !a cac gia tr1 trung b3nh nayE. 0iem nghie m Pairwis multipl comparisons cho biet s khac bie t gi !a cac ca+p gia tr1 trung b3nh va ẩ a ra mo t ma tra n ẩanh dau hoa th1 ch5 ra nh !ng ca+p gia tr1 trung b3nh co khac bie t ẩang ke m c y ngh2a AB 0hi gia thuyet ve s ẩong nhat cua cac ph ng sai ẩ oc chap nha n Dthong /ua kiem nghie m LeveneE ta co cac ph ng phap kiem nghie m thong ke sau ẩe so sanh cac trung b3nh- • Th l ast significant diff r nc (LSD) la phep kiem t ng ẩ ng v i vie c s dung phep kiem t lan l t cho toan bo cac ca+p bien. Yeu ẩiem cua ph ng phap nay la no khong ẩieu ch5nh m c y ngh2a cho t ng th%ch v i vie c so sanh nhieu bien cung mo t luc. Do ẩo da.n ẩen ẩo tin ca y khong cao. Cac kiem nghie m sau ẩay loai bo ẩ c yeu ẩiem nay bang cach ẩieu ch5nh m c y ngh2a khi phai ẩong th i so sanh nhieu bien. • Chep kiem Bonf rroni va Tuk yas hon stly significant diff r nc ẩ c s dung cho hau het cac so sanh ẩa bo i. Sidakas t t st cu!ng ẩ c s dung t ng t nh Bonf rroni nh ng no cung cap nh !ng gi i han cha+t che h n DYE. 0hi tien hanh kiem nghie m mo t so l ng l n cac ca+p trung b3nh Tuk yas hon stly significant diff r nc t st se! hie u /ua h n la Bonf rroni t st. Ma ng c lai Bonf rroni th%ch h p h n cho cac kiem nghie m co so l ng ca+p so sanh %t.
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam • Hochb rgas GT2 cu!ng giong nh Tuk yas hon stly significant diff r nc t st nh ng thong th ng Tuk yas t st hie u /ua h n. Gabri las pairwis comparisons t st th3 giong nh Hochb rgas GT2 nh ng no th ng ẩ c s dung khi cac c ma.u co s sai bie t l n • Chep kiem Dunn ttas pairwis ẩ c dung ẩe so sanh cac gia tr1 trung b3nh cua cac ma.u v i mo t g%a tr1 trung b3nh cu the ẩ c lay t trong ta p cac ma.u so sanh. Thong th ng ma+c ẩ1nh ma.u cuoi cung la nhom kiem soat, hoa+c ta co the l a chon nhom ẩau tien la nhom kiem soat, luc ẩo cac gia tr1 trung b3nh cua cac nhom trong bien ẩo c la p se! ẩ c so sanh v i gia tr1 trung b3nh cua nhom ẩau tien hoa+c nhom sau cung cua bien ẩo c la p • Ryan, Einot, Gabri l, and _ lsch (R-E-G-_ ) ẩ a ra hai b c kiem nghie m. au tien tien hanh kiem nghie m toan bo cac gia tr1 trung b3nh (em co bang nhau hay khong. Neu toan bo cac gia tr1 trung b3nh khong bang nhau th3 b c th hai se! kiem nghie m s khac bie t gi !a cac nhom nho v i nhau ẩe t3m ra nh !ng nhom nao tha t s khac bie t ve gia tr1 trung b3nh. Tuy nhien vie c kiem nghie m nay khong nen th c hie n ẩoi v i tr ng h p k%ch c ma.u cua cac nhom khong ngang bang nhau • Thong th ng khi k%ch th c ma.u khong ngang bang gi !a cac nhom. Bonf rroni va Sch ff * la hai ph ng phap kiem nghie m ẩ c l a chon h n la ph ng phap Tuk y • Duncanas multipl rang t st, Stud nt-N wman-K uls (S-N-K), va Tuk yas b cu!ng t ng t tuy nhien no %t ẩ c s dung nh cac ph ng phap tren. • 0iem nghie m _ all r-Duncant ẩ c s dung khi cac k%ch th c ma.u khong bang nhau • Ch ng phap Sch ff * cho phep kiem nghie m cac ket h p tuyen t%nh cua nh !ng gia tr1 trung b3nh, khong ch5 so sanh gi !a cac ca+p. Ch%nh v3 va y ket /ua cua kiem nghie m Sch ff * th ng tha n trong h n cac ph ng phap kiem nghie m khac, no ẩoi hoi mo t s khac bie t l n gi !a cac gia tr1 trung b3nh ẩe bao ẩam s khac bie t tha t s • 0hi gia thiet ve s ẩong nhat cua cac ph ng sai khong ẩ c chap nha n ta se! s dung cac phep kiem Tamhan as T2, Dunn ttas T3, Gam s-How ll, Dunn ttas C ẩe so sanh cac ca+p gia tr1 trung b3nh cua cac nhom e th c hie n phep kiem SNOMS ta vao Comapr m ans\On -_ ay ANOVA[ t thanh menus ẩe truy (uat ra ho p thoai nh h3nh 2e. Di chuyen ve t toi ẩen cac bien ẩ1nh l ng can phan t%ch, chuyen sang ho p thoai D p nd nt List. Chon bien kiem soat, con goi la bien ẩo c la p Dyeu cau phai co ba gia tr1 tr lenE, ẩ a vao ho p thoai Tactor. Lien kiem soat nay cho phep ta phan cac gia tr1 cua bien phu thuo c thanh
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam nhieu nhom ẩe so sanh. SNOMS cho phep ta ẩ a ra ket lua n lie u cac trung b3nh cua cac nhom co bang nhau hay khong. 63nh 38- Chan t%ch SNOMS mo t yeu to Neu m c y ngh2a cua phep kiem SNOMS nho Dth ng so v i ABE, ta tien hanh so sanh tiep cac ca+p gia tr1 trung b3nh cua cac nhom bang cong cu Post Hoc nh trong ho p thoai h3nh 3N va l a chon cac ph ng phap kiem nghie m th%ch h p 63nh 3N- Cong cu Cost 6oc ẩe so sanh cac ca+p trung b3nh trong SNOMS L a chon Options cho ta ho p thoai nh h3nh P0. Ta co the hien th1 cac thong ke mo ta bang cach chon D scriptiv va kiem ẩ1nh t%nh ẩong nhat cua ph ng sai bang thong ke L v n Dket /ua kiem ẩ1nh nay /uyet ẩ1nh s l a chon ph ng phap
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam kiem nghie m trong phan Post HocE. Cong cu M ans Plot dung ẩe hien th1 ẩo th1 ve gia tr1 trung b3nh cua cac nhom. Cong cu M issing Valu s dung ẩe kiem soat cac gia tr1 khuyet nh ẩa! tr3nh bay cac phan tr c 63nh P0- L a chon Options trong SNOMS Cac gia ẩ1nh phai ẩ c thoa ma!n khi dung phan t%ch SNOMS mo t yeu to • Cac ma.u d ! lie u phai ẩo c la p, ẩ c chon nga.u nhien t mo t tong the phan phoi chuan • Trong tong the cac ph ng sai cua cac ma.u d ! lie u phai bang nhau Dẩieu nay se! ẩ c kiem nghie m bang thong ke L v n Levene's Test: 6- 6omogeneity of Mariance • E/ual Mariances- Co the dung cac tests nh LSD, Lonferroni, Sidak, Scheffe, Tukey • une/ual Mariances- Co the dung cac tests nh Tamhaness T2, Dunnettss T3, Games-6owell Test of Homogeneity of Variances Current Salary Levene Statistic df1 df2 Sig. 14.473 9 464 .000
- Phan tch va x ly soã lieu bang SPSS Tran uang Trung ! "ao hoai Nam -AbI HObC KINH TE/ TP HCM PHAN TYCH VA c LY SO/ LIEU BAJNG SPSS TH.Sd TRAKN NUANG TRUNG KHOA NUAN TR. KINH DOANH -AO HOAI NAM KHOA TH NG M AbI-DU L.CH



