Giáo trình môn Cấu trúc dữ liệu

pdf 151 trang phuongnguyen 7370
Bạn đang xem 20 trang mẫu của tài liệu "Giáo trình môn Cấu trúc dữ liệu", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pdfgiao_trinh_mon_cau_truc_du_lieu.pdf

Nội dung text: Giáo trình môn Cấu trúc dữ liệu

  1. NGUYỄN VĂN LINH TRẦN CAO ĐỆ TRƯƠNG THỊ THANH TUYỀN LÂM HOÀI BẢO PHAN HUY CƯỜNG TRẦN NGÂN BÌNH CẤU TRÚC DỮ LIỆU Trang 1
  2. Cấu trúc dữ liệu Lời nói đầu ĐẠI HỌC CẦN THƠ – 12/2003 LỜI NÓI ĐẦU Để đáp ứng nhu cầu học tập của các bạn sinh viên, nhất là sinh viên chuyên ngành tin học, Khoa Công Nghệ Thông Tin Trường Đại Học Cần Thơ chúng tôi đã tiến hành biên soạn các giáo trình, bài giảng chính trong chương trình học. Giáo trình môn Cấu Trúc Dữ Liệu này được biên soạn cơ bản dựa trên quyển "Data Structures and Algorithms" của Alfred V. Aho, John E. Hopcroft và Jeffrey D. Ullman do Addison-Wesley tái bản năm 1987. Giáo trình này cũng được biên soạn dựa trên kinh nghiệm giảng dạy nhiều năm môn Cấu Trúc Dữ Liệu và Giải Thuật của chúng tôi. Tài liệu này được soạn theo đề cương chi tiết môn Cấu Trúc Dữ Liệu của sinh viên chuyên ngành tin học của Khoa Công Nghệ Thông Tin Trường Đại Học Cần Thơ. Mục tiêu của nó nhằm giúp các bạn sinh viên chuyên ngành có một tài liệu cô đọng dùng làm tài liệu học tập, nhưng chúng tôi cũng không loại trừ toàn bộ các đối tượng khác tham khảo. Chúng tôi nghĩ rằng các bạn sinh viên không chuyên tin và những người quan tâm tới cấu trúc dữ liệu và giải thuật sẽ tìm được trong này những điều hữu ích. Mặc dù đã rất cố gắng nhiều trong quá trình biên soạn giáo trình nhưng chắc chắn giáo trình sẽ còn nhiều thiếu sót và hạn chế. Rất mong nhận được sự đóng góp ý kiến quý báu của sinh viên và các bạn đọc để giáo trình ngày một hoàn thiện hơn. Cần thơ, ngày 10 tháng 11 năm 2003 Các tác giả Trần Cao Đệ Nguyễn Văn Linh Trương Thị Thanh Tuyền Lâm Hoài Bảo Phan Huy Cường Trần Ngân Bình Trang 2
  3. Cấu trúc dữ liệu Mục lục MỤC LỤC CHƯƠNG I MỞ ĐẦU 9U I. TỪ BÀI TOÁN ĐẾN CHƯƠNG TRÌNH 9 1. Mô hình hóa bài toán thực tế 9 2. Giải thuật (algorithms) 12 3. Ngôn ngữ giả và tinh chế từng bước (Pseudo-language and stepwise refinement) 15 4. Tóm tắt 17 II. KIỂU DỮ LIỆU TRỪU TƯỢNG (ABSTRACT DATA TYPE) 18 1. Khái niệm trừu tượng hóa 18 2. Trừu tượng hóa chương trình 18 3. Trừu tượng hóa dữ liệu 19 III. KIỂU DỮ LIỆU - CẤU TRÚC DỮ LIỆU VÀ KIỂU DỮ LIỆU TRỪU TƯỢNG (DATA TYPES, DATA STRUCTURES, ABSTRACT DATA TYPES) 20 CHƯƠNG II CÁC KIỂU DỮ LIỆU TRỪU TƯỢNG CƠ BẢN 22 (BASIC ABSTRACT DATA TYPES) 22 I. KIỂU DỮ LIỆU TRỪU TƯỢNG DANH SÁCH (LIST) 24 1. Khái niệm danh sách 24 2. Các phép toán trên danh sách 24 3. Cài đặt danh sách 26 II. NGĂN XẾP (STACK) 43 1. Định nghĩa ngăn xếp 43 2. Các phép toán trên ngăn xếp 44 3. Cài đặt ngăn xếp 45 4. Ứng dụng ngăn xếp để loại bỏ đệ qui của chương trình 48 III. HÀNG ĐỢI (QUEUE) 53 1. Định Nghĩa 53 2. Các phép toán cơ bản trên hàng 53 3. Cài đặt hàng 53 4. Một số ứng dụng của cấu trúc hàng 62 IV. DANH SÁCH LIÊN KẾT KÉP (double - lists) 62 BÀI TẬP 68 CHƯƠNG III CẤU TRÚC CÂY (TREES) 73 I. CÁC THUẬT NGỮ CƠ BẢN TRÊN CÂY 74 1. Định nghĩa 74 2. Thứ tự các nút trong cây 75 3. Các thứ tự duyệt cây quan trọng 75 4. Cây có nhãn và cây biểu thức 76 II. KIỂU DỮ LIỆU TRỪU TƯỢNG CÂY 78 III. CÀI ĐẶT CÂY 79 1. Cài đặt cây bằng mảng 79 Trang 3
  4. Cấu trúc dữ liệu Mục lục 2. Biểu diễn cây bằng danh sách các con 85 3. Biểu diễn theo con trái nhất và anh em ruột phải: 86 4. Cài đặt cây bằng con trỏ 87 IV. CÂY NHỊ PHÂN (BINARY TREES) 87 1. Định nghĩa 87 2. Duyệt cây nhị phân 88 3. Cài đặt cây nhị phân 89 V. CÂY TÌM KIẾM NHỊ PHÂN (BINARY SEARCH TREES) 92 1. Định nghĩa 92 2. Cài đặt cây tìm kiếm nhị phân 93 BÀI TẬP 100 CHƯƠNG IV TẬP HỢP 103 I. KHÁI NIỆM TẬP HỢP 104 II. KIỂU DỮ LIỆU TRỪU TƯỢNG TẬP HỢP 104 III. CÀI ĐẶT TẬP HỢP 105 1. Cài đặt tập hợp bằng vector Bit 105 2. Cài đặt bằng danh sách liên kết 107 IV. TỪ ĐIỂN (dictionary) 111 1. Cài đặt từ điển bằng mảng 111 2. Cài đặt từ điển bằng bảng băm 113 3. Các phương pháp xác định hàm băm 122 V. HÀNG ƯU TIÊN (priority queue) 123 1. Khái niệm hàng ưu tiên 123 2. Cài đặt hàng ưu tiên 124 BÀI TẬP 131 CHƯƠNG V ĐỒ THỊ (GRAPH) 133 I. CÁC ĐỊNH NGHĨA 134 II. KIỂU DỮ LIỆU TRỪU TƯỢNG ĐỒ THỊ 135 III. BIỂU DIỄN ĐỒ THỊ 136 1. Biểu diễn đồ thị bằng ma trận kề 136 2. Biểu diễn đồ thị bằng danh sách các đỉnh kề: 138 IV. CÁC PHÉP DUYỆT ĐỒ THỊ (traversals of graph) 138 1. Duyệt theo chiều sâu (depth-first search) 139 2. Duyệt theo chiều rộng (breadth-first search) 140 V. MỘT SỐ BÀI TOÁN TRÊN ĐỒ THỊ 143 1. Bài toán tìm đuờng đi ngắn nhất từ một đỉnh của đồ thị (the single source shorted path problem) 143 2. Tìm đường đi ngắn nhất giữa tất cả các cặp đỉnh 145 3. Bài toán tìm bao đóng chuyển tiếp (transitive closure) 146 Trang 4
  5. Cấu trúc dữ liệu Mục lục 4. Bài toán tìm cây bao trùm tối thiểu (minimum-cost spanning tree) 147 BÀI TẬP 150 Trang 5
  6. Cấu trúc dữ liệu Phần tổng quan PHẦN TỔNG QUAN 1. Mục đích yêu cầu Môn học cấu trúc dữ liệu cung cấp cho sinh viên một khối lượng lớn các kiến thức cơ bản về các kiểu dữ liệu trừu tượng và các phép toán trên kiểu dữ liệu đó. Sau khi học xong môn này, sinh viên cần phải: - Nắm vững khái niệm kiểu dữ liệu, kiểu dữ liệu trừu tượng. - Nắm vững và cài đặt được các kiểu dữ liệu trừu tượng cơ bản như danh sách, ngăn xếp, hàng đợi, cây, tập hợp, bảng băm, đồ thị bằng một ngôn ngữ lập trình căn bản. - Vận dụng được các kiểu dữ liệu trừu tượng để giải quyết bài toán đơn giản trong thực tế. 2. Đối tượng sử dụng Môn học cấu trúc dữ liệu được dùng để giảng dạy cho các sinh viên sau: - Sinh viên năm thứ 2 chuyên ngành Tin học (môn bắt buộc ) - Sinh viên năm thứ 2 chuyên ngành Toán tin, Lý tin (môn bắt buộc) - Sinh viên năm thứ hai chuyên ngành Điện tử - Viễn thông và tự động hóa (môn tự chọn) 3. Nội dung cốt lõi Nội dung giáo trình gồm 5 chương và đuợc trình bày trong 60 tiết cho sinh viên, trong đó có khoảng 40 tiết lý thuyết và 20 tiết bài tập mà giáo viên sẽ hướng dẫn cho sinh viên trên lớp. Bên cạnh tài liệu này còn có tài liệu thực hành cấu trúc dữ liệu, do vậy nội dung giáo trình hơi chú trọng về các cấu trúc dữ liệu và các giải thuật trên các cấu trúc dữ liệu đó hơn là các chương trình hoàn chỉnh trong ngôn ngữ lập trình C. Chương 1: Trình bày cách tiếp cận từ một bài toán đến chương trình, nó bao gồm mô hình hoá bài toán, thiết lập cấu trúc dữ liệu theo mô hình bài toán, viết giải thuật giải quyết bài toán và các bước tinh chế giải thuật đưa đến cài đặt cụ thể trong một ngôn ngữ lập trình Chương 2: Trình bày kiểu dữ liệu trừu tượng danh sách, các cấu trúc dữ liệu để cài đặt danh sách. Ngăn xếp và hàng đợi cũng được trình bày trong chương này như là hai cấu trúc danh sách đăc biệt. Ở đây chúng tôi cũng muốn trình bày việc ứng dụng ngăn xếp để khử đệ qui của chương trình và nêu một số ứng dụng của hàng đợi. Cuối chương, chúng tôi trình bày cấu trúc danh sách liên kết kép cho những bài toán cần duyệt danh sách theo hai chiều xuôi, ngược một cách thuận lợi. Chương này có nhiều cài đặt tương đối chi tiết Trang 6
  7. Cấu trúc dữ liệu Phần tổng quan để các bạn sinh viên mới tiếp cận với lập trình có cơ hội nâng cao khả năng lập trình trong ngôn ngữ C đồng thời cũng nhằm minh hoạ việc cài đặt một kiểu dữ liệu trừu tượng trong một ngôn ngữ lập trình cụ thể. Chương 3: Chương này giới thiệu về kiểu dữ liệu trừu tượng cây, khái niệm cây tổng quát, các phép duyệt cây tổng quát và cài đặt cây tổng quát. Kế đến chúng tôi trình bày về cây nhị phân, các cách cài đặt cây nhị phân và ứng dụng cây nhị phân để xây dựng mã Huffman. Cuối cùng, chúng tôi trình bày cây tìm kiếm nhị phân như là một ứng dụng của cây nhị phân để lưu trữ và tìm kiếm dữ liệu. Chương 4: Chương này dành để nói về kiểu dữ liệu trừu tượng tập hợp, các cách đơn giản để cài đặt tập hợp như cài đặt bằng vectơ bít hay bằng danh sách có hoặc không có thứ tự. Phần chính của chương này trình bày cấu trúc dữ liệu tự điển, đó là tập hợp với ba phép toán thêm, xoá và tìm kiếm phần tử, cùng với các cấu trúc thích hợp cho nó như là bảng băm và hàng ưu tiên. Chương 5: Trình bày kiểu dữ liệu trừu tượng đồ thị, các cách biểu diễn đồ thị hay là cài đặt đồ thị. Ở đây chúng tôi cũng trình bày các phép duyệt đồ thị bao gồm duyệt theo chiều rộng và duyệt theo chiều sâu một đồ thị. Do hạn chế về thời lượng lên lớp nên chúng tôi không tách riêng ra để trình bày đồ thị có hướng, đồ thị vô hướng nhưng chúng tôi sẽ phân biệt nó ở những chổ cần thiết. Chương này đề cập một số bài toán thường gặp trên đồ thị như là bài toán tìm đường đi ngắn nhất, bài toán tìm cây phủ tối thiểu. Chương này được giới thiệu để sinh viên tham khảo thêm về cách cài đặt đồ thị và các bài toán trên đồ thị. 4. Kiến thức tiên quyết Để học tốt môn học cấu trúc dữ liệu này, sinh viên cần phải có các kiến thức cơ bản sau: - Kiến thức và kỹ năng lập trình căn bản. - Kiến thức toán rời rạc. 5. Danh mục tài liệu tham khảo [1] Aho, A. V. , J. E. Hopcroft, J. D. Ullman. "Data Structure and Algorihtms", Addison– Wesley; 1983 [2] Đỗ Xuân Lôi . "Cấu trúc dữ liệu và giải thuật". Nhà xuất bản khoa học và kỹ thuật. Hà nội, 1995. [3] N. Wirth " Cấu trúc dữ liệu + giải thuật= Chương trình", 1983. [4] Nguyễn Trung Trực, "Cấu trúc dữ liệu". BK tp HCM, 1990. [5] Lê Minh Trung ; “Lập trình nâng cao bằng Pascal với các cấu trúc dữ liệu “; 1997 Trang 7
  8. Cấu trúc dữ liệu Phần tổng quan [6] Ngô Trung Việt, “Ngôn ngữ lập trình C và C++ Bài giảng- Bài tập – Lời giải mẫu”; NXB Giao thông vận tải, 2000. [7] Nguyễn Đình Tê, Hoàng Đức Hải, “ Giáo trình lý thuyết và bài tập ngôn ngữ C” , NXB Giáo dục; 1998. [8] Lê Xuân Trường, “ Giáo trình cấu trúc dữ liệu bằng ngôn ngữ C++”; NXB thống kê; 1999. [9] Nguyễn Thanh Thủy, Nguyễn Quang Huy ,” Bài tập lập trình ngôn ngữ C”, NXB Khoa học kỹ thuật, 1999. [10] Michel T. Goodrich, Roberto Tamassia, David Mount, “Data Structures and Algorithms in C++”. Weley International Edition; 2004. [11] [12] [13] Trang 8
  9. Cấu trúc dữ liệu Chương I:Mở đầu CHƯƠNG I MỞ ĐẦU TỔNG QUAN 1. Mục tiêu Sau khi học xong chương này, sinh viên sẽ: Nắm được các bước trong lập trình để giải quyết cho một bài toán. Nắm vững khái niệm kiểu dữ liệu trừu tượng, sự khác nhau giữa kiểu dữ liệu, kiểu dữ liệu trừu tượng và cấu trúc dữ liệu. 2. Kiến thức cơ bản cần thiết Các kiến thức cơ bản cần thiết để học chương này bao gồm: Khả năng nhận biết và giải quyết bài toán theo hướng tin học hóa. 3. Tài liệu tham khảo Aho, A. V. , J. E. Hopcroft, J. D. Ullman. "Data Structure and Algorihtms", Addison– Wesley; 1983 (chapter 1) Đỗ Xuân Lôi . "Cấu trúc dữ liệu và giải thuật". Nhà xuất bản khoa học và kỹ thuật. Hà nội, 1995. (Chương 1) 4. Nội dung cốt lõi Chương này chúng ta sẽ nghiên cứu các vấn đề sau: - Cách tiếp cận từ bài toán đến chương trình - Kiểu dữ liệu trừu tượng (Abstract Data Type). - Kiểu dữ liệu – Kiểu dữ liệu trừu tượng – Cấu trúc dữ liệu. I. TỪ BÀI TOÁN ĐẾN CHƯƠNG TRÌNH 1. Mô hình hóa bài toán thực tế Để giải một bài toán trong thực tế bằng máy tính ta phải bắt đầu từ việc xác định bài toán. Nhiều thời gian và công sức bỏ ra để xác định bài toán cần giải quyết, tức là phải trả lời rõ ràng câu hỏi "phải làm gì?" sau đó là "làm như thế nào?". Thông thường, khi khởi đầu, hầu Trang 9
  10. Cấu trúc dữ liệu Chương I: Mở đầu hết các bài toán là không đơn giản, không rõ ràng. Để giảm bớt sự phức tạp của bài toán thực tế, ta phải hình thức hóa nó, nghĩa là phát biểu lại bài toán thực tế thành một bài toán hình thức (hay còn gọi là mô hình toán). Có thể có rất nhiều bài toán thực tế có cùng một mô hình toán. Ví dụ 1: Tô màu bản đồ thế giới. Ta cần phải tô màu cho các nước trên bản đồ thế giới. Trong đó mỗi nước đều được tô một màu và hai nước láng giềng (cùng biên giới) thì phải được tô bằng hai màu khác nhau. Hãy tìm một phương án tô màu sao cho số màu sử dụng là ít nhất. Ta có thể xem mỗi nước trên bản đồ thế giới là một đỉnh của đồ thị, hai nước láng giềng của nhau thì hai đỉnh ứng với nó được nối với nhau bằng một cạnh. Bài toán lúc này trở thành bài toán tô màu cho đồ thị như sau: Mỗi đỉnh đều phải được tô màu, hai đỉnh có cạnh nối thì phải tô bằng hai màu khác nhau và ta cần tìm một phương án tô màu sao cho số màu được sử dụng là ít nhất. Ví dụ 2: Đèn giao thông Cho một ngã năm như hình I.1, trong đó C và E là các đường một chiều theo chiều mũi tên, các đường khác là hai chiều. Hãy thiết kế một bảng đèn hiệu điều khiển giao thông tại ngã năm này một cách hợp lý, nghĩa là: phân chia các lối đi tại ngã năm này thành các nhóm, mỗi nhóm gồm các lối đi có thể cùng đi đồng thời nhưng không xảy ra tai nạn giao thông (các hướng đi không cắt nhau), và số lượng nhóm là ít nhất có thể được. Ta có thể xem đầu vào (input) của bài toán là tất cả các lối đi tại ngã năm này, đầu ra (output) của bài toán là các nhóm lối đi có thể đi đồng thời mà không xảy ra tai nạn giao thông, mỗi nhóm sẽ tương ứng với một pha điều khiển của đèn hiệu, vì vậy ta phải tìm kiếm lời giải với số nhóm là ít nhất để giao thông không bị tắc nghẽn vì phải chờ đợi quá lâu. Trước hết ta nhận thấy rằng tại ngã năm này có 13 lối đi: AB, AC, AD, BA, BC, BD, DA, DB, DC, EA, EB, EC, ED. Tất nhiên, để có thể giải được bài toán ta phải tìm một cách Trang 10
  11. Cấu trúc dữ liệu Chương I: Mở đầu nào đó để thể hiện mối liên quan giữa các lối đi này. Lối nào với lối nào không thể đi đồng thời, lối nào và lối nào có thể đi đồng thời. Ví dụ cặp AB và EC có thể đi đồng thời, nhưng AD và EB thì không, vì các hướng giao thông cắt nhau. Ở đây ta sẽ dùng một sơ đồ trực quan như sau: tên của 13 lối đi được viết lên mặt phẳng, hai lối đi nào nếu đi đồng thời sẽ xảy ra đụng nhau (tức là hai hướng đi cắt qua nhau) ta nối lại bằng một đoạn thẳng, hoặc cong, hoặc ngoằn ngoèo tuỳ thích. Ta sẽ có một sơ đồ như hình I.2. Như vậy, trên sơ đồ này, hai lối đi có cạnh nối lại với nhau là hai lối đi không thể cho đi đồng thời. Với cách biểu diễn như vậy ta đã có một đồ thị (Graph), tức là ta đã mô hình hoá bài toán giao thông ở trên theo mô hình toán là đồ thị; trong đó mỗi lối đi trở thành một đỉnh của đồ thị, hai lối đi không thể cùng đi đồng thời được nối nhau bằng một đoạn ta gọi là cạnh của đồ thị. Bây giờ ta phải xác định các nhóm, với số nhóm ít nhất, mỗi nhóm gồm các lối đi có thể đi đồng thời, nó ứng với một pha của đèn hiệu điều khiển giao thông. Giả sử rằng, ta dùng màu để tô lên các đỉnh của đồ thị này sao cho: ¾ Các lối đi cho phép cùng đi đồng thời sẽ có cùng một màu: Dễ dàng nhận thấy rằng hai đỉnh có cạnh nối nhau sẽ không được tô cùng màu. ¾ Số nhóm là ít nhất: ta phải tính toán sao cho số màu được dùng là ít nhất. Tóm lại, ta phải giải quyết bài toán sau: "Tô màu cho đồ thị ở hình I.2 sao cho: ¾ Hai đỉnh có cạnh nối với nhau (hai còn gọi là hai đỉnh kề nhau) không cùng màu. ¾ Số màu được dùng là ít nhất." Trang 11
  12. Cấu trúc dữ liệu Chương I: Mở đầu Hai bài toán thực tế “tô màu bản đồ thế giới” và “đèn giao thông” xem ra rất khác biệt nhau nhưng sau khi mô hình hóa, chúng thực chất chỉ là một, đó là bài toán “tô màu đồ thị”. Đối với một bài toán đã được hình thức hoá, chúng ta có thể tìm kiếm cách giải trong thuật ngữ của mô hình đó và xác định có hay không một chương trình có sẵn để giải. Nếu không có một chương trình như vậy thì ít nhất chúng ta cũng có thể tìm được những gì đã biết về mô hình và dùng các tính chất của mô hình để xây dựng một giải thuật tốt. 2. Giải thuật (algorithms) Khi đã có mô hình thích hợp cho một bài toán ta cần cố gắng tìm cách giải quyết bài toán trong mô hình đó. Khởi đầu là tìm một giải thuật, đó là một chuỗi hữu hạn các chỉ thị (instruction) mà mỗi chỉ thị có một ý nghĩa rõ ràng và thực hiện được trong một lượng thời gian hữu hạn. Knuth (1973) định nghĩa giải thuật là một chuỗi hữu hạn các thao tác để giải một bài toán nào đó. Các tính chất quan trọng của giải thuật là: ¾ Hữu hạn (finiteness): giải thuật phải luôn luôn kết thúc sau một số hữu hạn bước. ¾ Xác định (definiteness): mỗi bước của giải thuật phải được xác định rõ ràng và phải được thực hiện chính xác, nhất quán. ¾ Hiệu quả (effectiveness): các thao tác trong giải thuật phải được thực hiện trong một lượng thời gian hữu hạn. Ngoài ra một giải thuật còn phải có đầu vào (input) và đầu ra (output). Nói tóm lại, một giải thuật phải giải quyết xong công việc khi ta cho dữ liệu vào. Có nhiều cách để thể hiện giải thuật: dùng lời, dùng lưu đồ, Và một lối dùng rất phổ biến là dùng ngôn ngữ giả, đó là sự kết hợp của ngôn ngữ tự nhiên và các cấu trúc của ngôn ngữ lập trình. Ví dụ: Thiết kế giải thuật để giải bài toán “ tô màu đồ thị” trên Bài toán tô màu cho đồ thị không có giải thuật tốt để tìm lời giải tối ưu, tức là, không có giải thuật nào khác hơn là "thử tất cả các khả năng" hay "vét cạn" tất cả các trường hợp có thể có, để xác định cách tô màu cho các đỉnh của đồ thị sao cho số màu dùng là ít nhất. Thực tế, ta chỉ có thể "vét cạn" trong trường hợp đồ thị có số đỉnh nhỏ, trong trường hợp ngược lại ta không thể "vét cạn" tất cả các khả năng trong một lượng thời gian hợp lý, do vậy ta phải suy nghĩ cách khác để giải quyết vấn đề: Thêm thông tin vào bài toán để đồ thị có một số tính chất đặc biệt và dùng các tính chất đặc biệt này ta có thể dễ dàng tìm lời giải, hoặc Thay đổi yêu cầu bài toán một ít cho dễ giải quyết, nhưng lời giải tìm được chưa chắc là lời giải tối ưu. Một cách làm như thế đối với bài toán trên là "Cố gắng tô màu cho đồ thị Trang 12
  13. Cấu trúc dữ liệu Chương I: Mở đầu bằng ít màu nhất một cách nhanh chóng". Ít màu nhất ở đây có nghĩa là số màu mà ta tìm được không phải luôn luôn là số màu của lời giải tối ưu (ít nhất) nhưng trong đa số trường hợp thì nó sẽ trùng với đáp số của lời giải tối ưu và nếu có chênh lệch thì nó "không chênh lệch nhiều" so với lời giải tối ưu, bù lại ta không phải "vét cạn" mọi khả năng có thể! Nói khác đi, ta không dùng giải thuật "vét cạn" mọi khả năng để tìm lời giải tối ưu mà tìm một giải pháp để đưa ra lời giải hợp lý một cách khả thi về thời gian. Một giải pháp như thế gọi là một HEURISTIC. HEURISTIC cho bài toán tô màu đồ thị, thường gọi là giải thuật "háu ăn" (GREEDY) là: ¾ Chọn một đỉnh chưa tô màu và tô nó bằng một màu mới C nào đó. ¾ Duyệt danh sách các đỉnh chưa tô màu. Đối với một đỉnh chưa tô màu, xác định xem nó có kề với một đỉnh nào được tô bằng màu C đó không. Nếu không có, tô nó bằng màu C đó. Ý tưởng của Heuristic này là hết sức đơn giản: dùng một màu để tô cho nhiều đỉnh nhất có thể được (các đỉnh được xét theo một thứ tự nào đó), khi không thể tô được nữa với màu đang dùng thì dùng một màu khác. Như vậy ta có thể "hi vọng" là số màu cần dùng sẽ ít nhất. Ví dụ: Đồ thị hình I.3 và cách tô màu cho nó Tô theo GREEDY Tối ưu (xét lần lượt theo số thứ tự các (thử tất cả các khả năng) đỉnh) 1: đỏ; 2: đỏ 1,3,4 : đỏ 3: xanh;4: xanh 2,5 : xanh 5: vàng Trang 13
  14. Cấu trúc dữ liệu Chương I: Mở đầu Rõ ràng cách tô màu trong giải thuật "háu ăn" không luôn luôn cho lời giải tối ưu nhưng nó được thực hiện một cách nhanh chóng. Trở lại bài toán giao thông ở trên và áp dụng HEURISTIC Greedy cho đồ thị trong hình I.2 (theo thứ tự các đỉnh đã liệt kê ở trên), ta có kết quả: Tô màu xanh cho các đỉnh: AB,AC,AD,BA,DC,ED Tô màu đỏ cho các đỉnh: BC,BD,EA Tô màu tím cho các đỉnh: DA,DB Tô màu vàng cho các đỉnh: EB,EC Như vậy ta đã tìm ra một lời giải là dùng 4 màu để tô cho đồ thị hình I.2. Như đã nói, lời giải này không chắc là lời giải tối ưu. Vậy liệu có thể dùng 3 màu hoặc ít hơn 3 màu không? Ta có thể trở lại mô hình của bài toán và dùng tính chất của đồ thị để kiểm tra kết quả. Nhận xét rằng: Một đồ thị có k đỉnh và mỗi cặp đỉnh bất kỳ đều được nối nhau thì phải dùng k màu để tô. Hình I.4 chỉ ra hai ví dụ với k=3 và k=4. Hình I.4 ¾ Một đồ thị trong đó có k đỉnh mà mỗi cặp đỉnh bất kỳ trong k đỉnh này đều được nối nhau thì không thể dùng ít hơn k màu để tô cho đồ thị. Đồ thị trong hình I.2 có 4 đỉnh: AC,DA,BD,EB mà mỗi cặp đỉnh bất kỳ đều được nối nhau vậy đồ thị hình I.2 không thể tô với ít hơn 4 màu. Điều này khẳng định rằng lời giải vừa tìm được ở trên trùng với lời giải tối ưu. Như vậy ta đã giải được bài toán giao thông đã cho. Lời giải cho bài toán là 4 nhóm, mỗi nhóm gồm các lối có thể đi đồng thời, nó ứng với một pha điều khiển của đèn hiệu. Ở đây cần nhấn mạnh rằng, sở dĩ ta có lời giải một cách rõ ràng chặt chẽ như vậy là vì chúng ta đã giải bài toán thực tế này bằng cách mô hình hoá nó theo một mô hình thích hợp (mô hình đồ thị) và nhờ các kiến thức trên mô hình này (bài toán tô màu và heuristic để giải) ta đã giải quyết được bài toán. Điều này khẳng định vai trò của việc mô hình hoá bài toán. Trang 14
  15. Cấu trúc dữ liệu Chương I: Mở đầu 3. Ngôn ngữ giả và tinh chế từng bước (Pseudo-language and stepwise refinement) Một khi đã có mô hình thích hợp cho bài toán, ta cần hình thức hoá một giải thuật trong thuật ngữ của mô hình đó. Khởi đầu là viết những mệnh đề tổng quát rồi tinh chế dần thành những chuỗi mệnh đề cụ thể hơn, cuối cùng là các chỉ thị thích hợp trong một ngôn ngữ lập trình. Chẳng hạn với heuristic GREEDY, giả sử đồ thị là G, heuristic sẽ xác định một tập hợp Newclr các đỉnh của G được tô cùng một màu, mà ta gọi là màu mới C ở trên. Để tiến hành tô màu hoàn tất cho đồ thị G thì Heuristic này phải được gọi lặp lại cho đến khi toàn thể các đỉnh đều được tô màu. void GREEDY ( GRAPH *G, SET *Newclr ) { /*1*/ Newclr = ∅; /*2*/ for (mỗi đỉnh v chưa tô màu của G) /*3*/ if (v không được nối với một đỉnh nào trong Newclr) { /*4*/ đánh dấu v đã được tô màu; /*5*/ thêm v vào Newclr; } } Trong thủ tục bằng ngôn ngữ giả này chúng ta đã dùng một số từ khoá của ngôn ngữ C xen lẫn các mệnh đề tiếng Việt. Điều đặc biệt nữa là ta dùng các kiểu GRAPH, SET có vẻ xa lạ, chúng là các "kiểu dữ liệu trừu tượng" mà sau này chúng ta sẽ viết bằng các khai báo thích hợp trong ngôn ngữ lập trình cụ thể. Dĩ nhiên, để cài đặt thủ tục này ta phải cụ thể hoá dần những mệnh đề bằng tiếng Việt ở trên cho đến khi mỗi mệnh đề tương ứng với một đoạn mã thích hợp của ngôn ngữ lập trình. Chẳng hạn mệnh đề if ở /*3*/ có thể chi tiết hoá hơn nữa như sau: void GREEDY ( GRAPH *G, SET *Newclr ) { /*1*/ Newclr= ∅; /*2*/ for (mỗi đỉnh v chưa tô màu của G) { /*3.1*/ int found=0; Trang 15
  16. Cấu trúc dữ liệu Chương I: Mở đầu /*3.2*/ for (mỗi đỉnh w trong Newclr) /*3.3*/ if (có cạnh nối giữa v và w) /*3.4*/ found=1; /*3.5*/ if found==0 { /*4*/ đánh dấu v đã được tô màu; /*5*/ thêm v vào Newclr; } } } Hình I.5: Biểu diễn tập hợp các đỉnh như là một danh sách (LIST) GRAPH và SET ta coi như tập hợp. Có nhiều cách để biểu diễn tập hợp trong ngôn ngữ lập trình, để đơn giản ta xem các tập hợp như là một danh sách (LIST) các số nguyên biểu diễn chỉ số của các đỉnh và kết thúc bằng một giá trị đặc biệt NULL (hình I.5). Với những qui ước như vậy ta có thể tinh chế giải thuật GREEDY một bước nữa như sau: void GREEDY ( GRAPH *G, LIST *Newclr ) { int found; int v,w ; Newclr= ∅; v= đỉnh đầu tiên chưa được tô màu trong G; while (v null) && (found=0) { Trang 16
  17. Cấu trúc dữ liệu Chương I: Mở đầu if có cạnh nối giữa v và w found=1; else w= đỉnh kế tiếp trong newclr; } if found==0 { Đánh dấu v đã được tô màu; Thêm v vào Newclr; } v= đỉnh chưa tô màu kế tiếp trong G; } } 4. Tóm tắt Từ những thảo luận trên chúng ta có thể tóm tắt các bước tiếp cận với một bài toán bao gồm: 1. Mô hình hoá bài toán bằng một mô hình toán học thích hợp. 2. Tìm giải thuật trên mô hình này. Giải thuật có thể mô tả một cách không hình thức, tức là nó chỉ nêu phương hướng giải hoặc các bước giải một cách tổng quát. 3. Phải hình thức hoá giải thuật bằng cách viết một thủ tục bằng ngôn ngữ giả, rồi chi tiết hoá dần ("mịn hoá") các bước giải tổng quát ở trên, kết hợp với việc dùng các kiểu dữ liệu trừu tượng và các cấu trúc điều khiển trong ngôn ngữ lập trình để mô tả giải thuật. Ở bước này, nói chung, ta có một giải thuật tương đối rõ ràng, nó gần giống như một chương trình được viết trong ngôn ngữ lập trình, nhưng nó không phải là một chương trình chạy được vì trong khi viết giải thuật ta không chú trọng nặng đến cú pháp của ngôn ngữ và các kiểu dữ liệu còn ở mức trừu tượng chứ không phải là các khai báo cài đặt kiểu trong ngôn ngữ lập trình. 4. Cài đặt giải thuật trong một ngôn ngữ lập trình cụ thể (Pascal,C, ). Ở bước này ta dùng các cấu trúc dữ liệu được cung cấp trong ngôn ngữ, ví dụ Array, Record, để thể hiện các kiểu dữ liệu trừu tượng, các bước của giải thuật được thể hiện bằng các lệnh và các cấu trúc điều khiển trong ngôn ngữ lập trình được dùng để cài đặt giải thuật. Tóm tắt các bước như sau: Trang 17
  18. Cấu trúc dữ liệu Chương I: Mở đầu Mô hình toán học Kiểu dữ liệu trừu tượng Cấu trúc dữ liệu Giải thuật không hình thức Chương trình ngôn ngữ giả Chương trình Pascal, C, II. KIỂU DỮ LIỆU TRỪU TƯỢNG (ABSTRACT DATA TYPE -ADT) 1. Khái niệm trừu tượng hóa Trong tin học, trừu tượng hóa nghĩa là đơn giản hóa, làm cho nó sáng sủa hơn và dễ hiểu hơn. Cụ thể trừu tượng hóa là che đi những chi tiết, làm nổi bật cái tổng thể. Trừu tượng hóa có thể thực hiện trên hai khía cạnh là trừu tượng hóa dữ liệu và trừu tượng hóa chương trình. 2. Trừu tượng hóa chương trình Trừu tượng hóa chương trình là sự định nghĩa các chương trình con để tạo ra các phép toán trừu tượng (sự tổng quát hóa của các phép toán nguyên thủy). Chẳng hạn ta có thể tạo ra một chương trình con Matrix_Mult để thực hiện phép toán nhân hai ma trận. Sau khi Matrix_mult đã được tạo ra, ta có thể dùng nó như một phép toán nguyên thủy (chẳng hạn phép cộng hai số). Trừu tượng hóa chương trình cho phép phân chia chương trình thành các chương trình con. Sự phân chia này sẽ che dấu tất cả các lệnh cài đặt chi tiết trong các chương trình con. Ở cấp độ chương trình chính, ta chỉ thấy lời gọi các chương trình con và điều này được gọi là sự bao gói. Ví dụ như một chương trình quản lý sinh viên được viết bằng trừu tượng hóa có thể là: void Main() { Nhap( Lop); Xu_ly (Lop); Xuat (Lop); } Trong chương trình trên, Nhap, Xu_ly, Xuat là các phép toán trừu tượng. Chúng che dấu bên trong rất nhiều lệnh phức tạp mà ở cấp độ chương trình chính ta không nhìn thấy được. Còn Lop là một biến thuộc kiểu dữ liệu trừu tượng mà ta sẽ xét sau. V Chương trình được viết theo cách gọi các phép toán trừu tượng có lệ thuộc vào cách cài đặt kiểu dữ liệu không? Trang 18
  19. Cấu trúc dữ liệu Chương I: Mở đầu 3. Trừu tượng hóa dữ liệu Trừu tượng hóa dữ liệu là định nghĩa các kiểu dữ liệu trừu tượng Một kiểu dữ liệu trừu tượng là một mô hình toán học cùng với một tập hợp các phép toán (operator) trừu tượng được định nghĩa trên mô hình đó. Ví dụ tập hợp số nguyên cùng với các phép toán hợp, giao, hiệu là một kiểu dữ liệu trừu tượng. Trong một ADT các phép toán có thể thực hiện trên các đối tượng (toán hạng) không chỉ thuộc ADT đó, cũng như kết quả không nhất thiết phải thuộc ADT. Tuy nhiên phải có ít nhất một toán hạng hoặc kết quả phải thuộc ADT đang xét. ADT là sự tổng quát hoá của các kiểu dữ liệu nguyên thuỷ. Để minh hoạ ta có thể xét bản phác thảo cuối cùng của thủ tục GREEDY. Ta đã dùng một danh sách (LIST) các số nguyên và các phép toán trên danh sách newclr là: ¾ Tạo một danh sách rỗng. ¾ Lấy phần tử đầu tiên trong danh sách và trả về giá trị null nếu danh sách rỗng. ¾ Lấy phần tử kế tiếp trong danh sách và trả về giá trị null nếu không còn phần tử kế tiếp. ¾ Thêm một số nguyên vào danh sách. Nếu chúng ta viết các chương trình con thực hiện các phép toán này, thì ta dễ dàng thay các mệnh đề hình thức trong giải thuật bằng các câu lệnh đơn giản Câu lệnh Mệnh đề hình thức MAKENULL(newclr) newclr= ∅ w=FIRST(newclr) w=phần tử đầu tiên trong newclr w=NEXT(w,newclr) w=phần tử kế tiếp trong newclr INSERT( v,newclr) Thêm v vào newclr Điều này cho thấy sự thuận lợi của ADT, đó là ta có thể định nghĩa một kiểu dữ liệu tuỳ ý cùng với các phép toán cần thiết trên nó rồi chúng ta dùng như là các đối tượng nguyên thuỷ. Hơn nữa chúng ta có thể cài đặt một ADT bằng bất kỳ cách nào, chương trình dùng chúng cũng không thay đổi, chỉ có các chương trình con biểu diễn cho các phép toán của ADT là thay đổi. Trang 19
  20. Cấu trúc dữ liệu Chương I: Mở đầu Cài đặt ADT là sự thể hiện các phép toán mong muốn (các phép toán trừu tượng) thành các câu lệnh của ngôn ngữ lập trình, bao gồm các khai báo thích hợp và các thủ tục thực hiện các phép toán trừu tượng. Để cài đặt ta chọn một cấu trúc dữ liệu thích hợp có trong ngôn ngữ lập trình hoặc là một cấu trúc dữ liệu phức hợp được xây dựng lên từ các kiểu dữ liệu cơ bản của ngôn ngữ lập trình. V Sự khác nhau giữa kiểu dữ liệu và kiểu dữ liệu trừu tượng là gì? III. KIỂU DỮ LIỆU - CẤU TRÚC DỮ LIỆU VÀ KIỂU DỮ LIỆU TRỪU TƯỢNG (DATA TYPES, DATA STRUCTURES, ABSTRACT DATA TYPES) Mặc dù các thuật ngữ kiểu dữ liệu (hay kiểu - data type), cấu trúc dữ liệu (data structure), kiểu dữ liệu trừu tượng (abstract data type) nghe như nhau, nhưng chúng có ý nghĩa rất khác nhau. Kiểu dữ liệu là một tập hợp các giá trị và một tập hợp các phép toán trên các giá trị đó. Ví dụ kiểu Boolean là một tập hợp có 2 giá trị TRUE, FALSE và các phép toán trên nó như OR, AND, NOT . Kiểu Integer là tập hợp các số nguyên có giá trị từ -32768 đến 32767 cùng các phép toán cộng, trừ, nhân, chia, Div, Mod Kiểu dữ liệu có hai loại là kiểu dữ liệu sơ cấp và kiểu dữ liệu có cấu trúc hay còn gọi là cấu trúc dữ liệu. Kiểu dữ liệu sơ cấp là kiểu dữ liệu mà giá trị dữ liệu của nó là đơn nhất. Ví dụ: kiểu Boolean, Integer . Kiểu dữ liệu có cấu trúc hay còn gọi là cấu trúc dữ liệu là kiểu dữ liệu mà giá trị dữ liệu của nó là sự kết hợp của các giá trị khác. Ví dụ: ARRAY là một cấu trúc dữ liệu. Một kiểu dữ liệu trừu tượng là một mô hình toán học cùng với một tập hợp các phép toán trên nó. Có thể nói kiểu dữ liệu trừu tượng là một kiểu dữ liệu do chúng ta định nghĩa ở mức khái niệm (conceptual), nó chưa được cài đặt cụ thể bằng một ngôn ngữ lập trình. Khi cài đặt một kiểu dữ liệu trừu tượng trên một ngôn gnữ lập trình cụ thể, chúng ta phải thực hiện hai nhiệm vụ: 1. Biểu diễn kiểu dữ liệu trừu tượng bằng một cấu trúc dữ liệu hoặc một kiểu dữ liệu trừu tượng khác đã được cài đặt. 2. Viết các chương trình con thực hiện các phép toán trên kiểu dữ liệu trừu tượng mà ta thường gọi là cài đặt các phép toán. Trang 20
  21. Cấu trúc dữ liệu Chương I: Mở đầu TỔNG KẾT CHƯƠNG Trong chương này, chúng ta cần phải nắm vững các vấn đề sau: 1. Các bước phân tích và lập trình để quyết một bài toán thực tế. 2. Hiểu rõ khái niệm về kiểu dữ liệu, kiểu dữ liệu trừu tượng và cấu trúc dữ liệu. Trang 21
  22. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản CHƯƠNG II CÁC KIỂU DỮ LIỆU TRỪU TƯỢNG CƠ BẢN (BASIC ABSTRACT DATA TYPES) TỔNG QUAN 1. Mục tiêu Sau khi học xong chương này, sinh viên - Nắm vững các kiểu dữ liệu trừu tượng như: danh sách, ngăn xếp, hàng đợi. - Cài đặt các kiểu dữ liệu bằng ngôn ngữ lập trình cụ thể. - Ứng dụng được các kiểu dữ liệu trừu tượng trong bài toán thực tế. 2. Kiến thức cơ bản cần thiết Để học tốt chương này, sinh viên phải nắm vững kỹ năng lập trình căn bản như: - Kiểu cấu trúc (struct) , kiểu mảng và kiểu con trỏ. - Các cấu trúc điều khiển, lệnh vòng lặp. - Lập trình theo từng modul (chương trình con) và cách gọi chương trình con đó. 3. Tài liệu tham khảo [1] Aho, A. V. , J. E. Hopcroft, J. D. Ullman. "Data Structure and Algorithms", Addison– Wesley; 1983 (chapter 2) [2] Đỗ Xuân Lôi . "Cấu trúc dữ liệu và giải thuật". Nhà xuất bản khoa học và kỹ thuật. Hà nội, 1995 (chương 4,5 trang 71-119). [3] Nguyễn Trung Trực, "Cấu trúc dữ liệu". BK tp HCM, 1990 (chương 2 trang 22-109). [4] Lê Minh Trung ; “Lập trình nâng cao bằng Pascal với các cấu trúc dữ liệu “; 1997 (chương 7, 8) 4. Nội dung cốt lõi Trong chương này chúng ta sẽ nghiên cứu một số kiểu dữ liệu trừu tượng cơ bản như sau: - Kiểu dữ liệu trừu tượng danh sách (LIST) - Kiểu dữ liệu trừu tượng ngăn xếp (STACK) Trang 22
  23. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản - Kiểu dữ liệu trừu tượng hàng đợi (QUEUE) Trang 23
  24. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản I. KIỂU DỮ LIỆU TRỪU TƯỢNG DANH SÁCH (LIST) 1. Khái niệm danh sách Mô hình toán học của danh sách là một tập hợp hữu hạn các phần tử có cùng một kiểu, mà tổng quát ta gọi là kiểu phần tử (Elementtype). Ta biểu diễn danh sách như là một chuỗi các phần tử của nó: a1, a2, . . ., anvới n ≥ 0. Nếu n=0 ta nói danh sách rỗng (empty list). Nếu n > 0 ta gọi a1 là phần tử đầu tiên và an là phần tử cuối cùng của danh sách. Số phần tử của danh sách ta gọi là độ dài của danh sách. Một tính chất quan trọng của danh sách là các phần tử của danh sách có thứ tự tuyến tính theo vị trí (position) xuất hiện của các phần tử. Ta nói ai đứng trước ai+1, với i từ 1 đến n-1; Tương tự ta nói ailà phần tử đứng sau ai-1, với i từ 2 đến n. Ta cũng nói ai là phần tử tại vị trí thứ i, hay phần tử thứ i của danh sách. Ví dụ: Tập hợp họ tên các sinh viên của lớp TINHOC 28 được liệt kê trên giấy như sau: 1. Nguyễn Trung Cang 2. Nguyễn Ngọc Chương 3. Lê Thị Lệ Sương 4. Trịnh Vũ Thành 5. Nguyễn Phú Vĩnh là một danh sách. Danh sách này gồm có 5 phần tử, mỗi phần tử có một vị trí trong danh sách theo thứ tự xuất hiện của nó. 2. Các phép toán trên danh sách Để thiết lập kiểu dữ liệu trừu tượng danh sách (hay ngắn gọn là danh sách) ta phải định nghĩa các phép toán trên danh sách. Và như chúng ta sẽ thấy trong toàn bộ giáo trình, không có một tập hợp các phép toán nào thích hợp cho mọi ứng dụng (application). Vì vậy ở đây ta sẽ định nghĩa một số phép toán cơ bản nhất trên danh sách. Để thuận tiện cho việc định nghĩa ta giả sử rằng danh sách gồm các phần tử có kiểu là kiểu phần tử (elementType); vị trí của các phần tử trong danh sách có kiểu là kiểu vị trí và vị trí sau phần tử cuối cùng trong danh sách L là ENDLIST(L). Cần nhấn mạnh rằng khái niệm vị trí (position) là do ta định nghĩa, nó không phải là giá trị của các phần tử trong danh sách. Vị trí có thể là đồng nhất với vị trí lưu trữ phần tử hoặc không. Các phép toán được định nghĩa trên danh sách là: INSERT_LIST(x,p,L): xen phần tử x ( kiểu ElementType ) tại vị trí p (kiểu position) trong danh sách L. Tức là nếu danh sách là a1, a2, . , ap-1, ap ,. . , an thì sau khi xen ta Trang 24
  25. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản có kết quả a1, a2, . . ., ap-1, x, ap, . . . , an. Nếu vị trí p không tồn tại trong danh sách thì phép toán không được xác định. LOCATE(x,L) thực hiện việc định vị phần tử có nội dung x đầu tiên trong danh sách L. Locate trả kết quả là vị trí (kiểu position) của phần tử x trong danh sách. Nếu x không có trong danh sách thì vị trí sau phần tử cuối cùng của danh sách được trả về, tức là ENDLIST(L). RETRIEVE(p,L) lấy giá trị của phần tử ở vị trí p (kiểu position) của danh sách L; nếu vị trí p không có trong danh sách thì kết quả không xác định (có thể thông báo lỗi). DELETE_LIST(p,L) chương trình con thực hiện việc xoá phần tử ở vị trí p (kiểu position) của danh sách. Nếu vị trí p không có trong danh sách thì phép toán không được định nghĩa và danh sách L sẽ không thay đổi NEXT(p,L) cho kết quả là vị trí của phần tử (kiểu position) đi sau phần tử p; nếu p là phần tử cuối cùng trong danh sách L thì NEXT(p,L) cho kết quả là ENDLIST(L). Next không xác định nếu p không phải là vị trí của một phần tử trong danh sách. PREVIOUS(p,L) cho kết quả là vị trí của phần tử đứng trước phần tử p trong danh sách. Nếu p là phần tử đầu tiên trong danh sách thì Previous(p,L) không xác định. Previous cũng không xác định trong trường hợp p không phải là vị trí của phần tử nào trong danh sách. FIRST(L) cho kết quả là vị trí của phần tử đầu tiên trong danh sách. Nếu danh sách rỗng thì ENDLIST(L) được trả về. EMPTY_LIST(L) cho kết quả TRUE nếu danh sách có rỗng, ngược lại nó cho giá trị FALSE. MAKENULL_LIST(L) khởi tạo một danh sách L rỗng. Trong thiết kế các giải thuật sau này chúng ta dùng các phép toán trừu tượng đã được định nghĩa ở đây như là các phép toán nguyên thủy. V Muốn thêm phần tử vào đầu hay cuối danh sách ta gọi phép toán nào và gọi phép toán đó như thế nào? Ví dụ: Dùng các phép toán trừu tượng trên danh sách, viết một chương trình con nhận một tham số là danh sách rồi sắp xếp danh sách theo thứ tự tăng dần (giả sử các phần tử trong danh sách thuộc kiểu có thứ tự). Giả sử SWAP(p,q) thực hiện việc đổi chỗ hai phần tử tại vị trí p và q trong danh sách, chương trình con sắp xếp được viết như sau: Trang 25
  26. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản void SORT(LIST L){ Position p,q; //kiểu vị trí của các phần tử trong danh sách p= FIRST(L); //vị trí phần tử đầu tiên trong danh sách while (p!=ENDLIST(L)){ q=NEXT(p,L); //vị trí phần tử đứng ngay sau phần tử p while (q!=ENDLIST(L)){ if (RETRIEVE(p,L) > RETRIEVE(q,L)) swap(p,q); // dịch chuyển nội dung phần tử q=NEXT(q,L); } p=NEXT(p,L); } } Tuy nhiên, cần phải nhấn mạnh rằng, đây là các phép toán trừu tượng do chúng ta định nghĩa, nó chưa được cài đặt trong các ngôn ngữ lập trình. Do đó để cài đặt giải thuật thành một chương trình chạy được thì ta cũng phải cài đặt các phép toán thành các chương trình con trong chương trình. Hơn nữa, trong khi cài đặt cụ thể, một số tham số hình thức trong các phép toán trừu tượng không đóng vai trò gì trong chương trình con cài đặt chúng, do vậy ta có thể bỏ qua nó trong danh sách tham số của chương trình con. Ví dụ: phép toán trừu tượng INSERT_LIST(x,p,L) có 3 tham số hình thức: phần tử muốn thêm x, vị trí thêm vào p và danh sách được thêm vào L. Nhưng khi cài đặt danh sách bằng con trỏ (danh sách liên kết đơn), tham số L là không cần thiết vì với cấu trúc này chỉ có con trỏ tại vị trí p phải thay đổi để nối kết với ô chứa phần tử mới. Trong bài giảng này, ta vẫn giữ đúng những tham số trong cách cài đặt để làm cho chương trình đồng nhất và trong suốt đối với các phương pháp cài đặt của cùng một kiểu dữ liệu trừu tượng. 3. Cài đặt danh sách a. Cài đặt danh sách bằng mảng (danh sách đặc) Trang 26
  27. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản Ta có thể cài đặt danh sách bằng mảng như sau: dùng một mảng để lưu giữ liên tiếp các phần tử của danh sách từ vị trí đầu tiên của mảng. Với cách cài đặt này, dĩ nhiên, ta phải ước lượng số phần tử của danh sách để khai báo số phần tử của mảng cho thích hợp. Dễ thấy rằng số phần tử của mảng phải được khai báo không ít hơn số phần tử của danh sách. Nói chung là mảng còn thừa một số chỗ trống. Mặt khác ta phải lưu giữ độ dài hiện tại của danh sách, độ dài này cho biết danh sách có bao nhiêu phần tử và cho biết phần nào của mảng còn trống như trong hình II.1. Ta định nghĩa vị trí của một phần tử trong danh sách là chỉ số của mảng tại vị trí lưu trữ phần tử đó + 1(vì phần tử đầu tiên trong mảng là chỉ số 0). Chỉ số 0 1 Last-1 Maxlength-1 Nội dung Phần tử thứ 1 Phần tử thứ 2 Phần tử cuối cùng phần tử trong danh sách Hình II.1: Cài đặt danh sách bằng mảng Với hình ảnh minh họa trên, ta cần các khai báo cần thiết là #define MaxLength //Số nguyên thích hợp để chỉ độ dài của danh sách typedef ElementType;//kiểu của phần tử trong danh sách typedef int Position; //kiểu vị trí cuả các phần tử typedef struct { ElementType Elements[MaxLength]; //mảng chứa các phần tử của danh sách Position Last; //giữ độ dài danh sách } List; Trên đây là sự biểu diễn kiểu dữ liệu trừu trượng danh sách bằng cấu trúc dữ liệu mảng. Phần tiếp theo là cài đặt các phép toán cơ bản trên danh sách. Khởi tạo danh sách rỗng Danh sách rỗng là một danh sách không chứa bất kỳ một phần tử nào (hay độ dài danh sách bằng 0). Theo cách khai báo trên, trường Last chỉ vị trí của phần tử cuối cùng trong danh sách và đó cũng độ dài hiện tại của danh sách, vì vậy để khởi tạo danh sách rỗng ta chỉ việc gán giá trị trường Last này bằng 0. void MakeNull_List(List *L) { L->Last=0; } Trang 27
  28. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản V 1. Hãy trình bày cách gọi thực thi chương trình con tạo danh sách rỗng trên? 2. Hãy giải thích cách khai báo tham số hình thức trong chương trình con và cách truyền tham số khi gọi chương trình con đó? Kiểm tra danh sách rỗng Danh sách rỗng là một danh sách mà độ dài của nó bằng 0. int Empty_List(List L){ return L.Last==0; } Xen một phần tử vào danh sách Khi xen phần tử có nội dung x vào tại vị trí p của danh sách L thì sẽ xuất hiện các khả năng sau: ¾ Mảng đầy: mọi phần tử của mảng đều chứa phần tử của danh sách, tức là phần tử cuối cùng của danh sách nằm ở vị trí cuối cùng trong mảng. Nói cách khác, độ dài của danh sách bằng chỉ số tối đa của mảng; Khi đó không còn chỗ cho phần tử mới, vì vậy việc xen là không thể thực hiện được, chương trình con gặp lỗi. ¾ Ngược lại ta tiếp tục xét: Nếu p không hợp lệ (p>last+1 hoặc p L.last+1 thì khi xen sẽ làm cho danh sách L không còn là một danh sách đặc nữa vì nó có một vị trí trong mảng mà chưa có nội dung.) Nếu vị trí p hợp lệ thì ta tiến hành xen theo các bước sau: + Dời các phần tử từ vị trí p đến cuối danh sách ra sau 1 vị trí. + Độ dài danh sách tăng 1. + Đưa phần tử mới vào vị trí p Chương trình con xen phần tử x vào vị trí p của danh sách L có thể viết như sau: void Insert_List(ElementType X, Position P, List *L){ if (L->Last==MaxLength) printf("Danh sach day"); Trang 28
  29. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản else if ((P L->Last+1)) printf("Vi tri khong hop le"); else{ Position Q; /*Dời các phần tử từ vị trí p (chỉ số trong mảng là p-1) đến cuối danh sách sang phải 1 vị trí*/ for(Q=(L->Last-1)+1;Q>P-1;Q ) L->Elements[Q]=L->Elements[Q-1]; //Đưa x vào vị trí p L->Elements[P-1]=X; //Tăng độ dài danh sách lên 1 L->Last++; } } Xóa phần tử ra khỏi danh sách Xoá một phần tử ở vị trí p ra khỏi danh sách L ta làm công việc ngược lại với xen. Trước tiên ta kiểm tra vị trí phần tử cần xóa xem có hợp lệ hay chưa. Nếu p>L.last hoặc p L->Last)) printf("Vi tri khong hop le"); else if (EmptyList(*L)) printf("Danh sach rong!"); else{ Position Q; Trang 29
  30. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản /*Dời các phần tử từ vị trí p+1 (chỉ số trong mảng là p) đến cuối danh sách sang trái 1 vị trí*/ for(Q=P-1;Q Last-1;Q++) L->Elements[Q]=L->Elements[Q+1]; L->Last ; } } Định vị một phần tử trong danh sách Để định vị vị trí phần tử đầu tiên có nội dung x trong danh sách L, ta tiến hành dò tìm từ đầu danh sách. Nếu tìm thấy x thì vị trí của phần tử tìm thấy được trả về, nếu không tìm thấy thì hàm trả về vị trí sau vị trí của phần tử cuối cùng trong danh sách, tức là ENDLIST(L) (ENDLIST(L)= L.Last+1). Trong trường hợp có nhiều phần tử cùng giá trị x trong danh sách thì vị trí của phần tử được tìm thấy đầu tiên được trả về. Position Locate(ElementType X, List L){ Position P; int Found = 0; P = First(L); //vị trí phần tử đầu tiên /*trong khi chưa tìm thấy và chưa kết thúc danh sách thì xét phần tử kế tiếp*/ while ((P != EndList(L)) && (Found == 0)) if (Retrieve(P,L) == X) Found = 1; else P = Next(P, L); return P; } Lưu ý : Các phép toán sau phải thiết kế trước Locate o First(L)=1 o Retrieve(P,L)=L.Elements[P-1] o EndList(L)=L.Last+1 Trang 30
  31. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản o Next(P,L)=P+1 V Hãy giải thích tại sao nội dung phần tử tại vị trí P trên danh sách L là L.Elements[P-1]? Các phép toán khác cũng dễ dàng cài đặt nên xem như bài tập dành cho bạn đọc. Ví dụ : Vận dụng các phép toán trên danh sách đặc để viết chương trình nhập vào một danh sách các số nguyên và hiển thị danh sách vừa nhập ra màn hình. Thêm phần tử có nội dung x vào danh sách tại ví trí p (trong đó x và p được nhập từ bàn phím). Xóa phần tử đầu tiên có nội dung x (nhập từ bàn phím) ra khỏi danh sách. Hướng giải quyết : Giả sử ta đã cài đặt đầy đủ các phép toán cơ bản trên danh sách. Để thực hiện yêu cầu như trên, ta cần thiết kế thêm một số chương trình con sau : - Nhập danh sách từ bàn phím (READ_LIST(L)) (Phép toán này chưa có trong kiểu danh sách) - Hiển thị danh sách ra màn hình (in danh sách) (PRINT_LIST(L)) (Phép toán này chưa có trong kiểu danh sách). Thực ra thì chúng ta chỉ cần sử dụng các phép toán MakeNull_List, Insert_List, Delete_List, Locate và các chương trình con Read_List, Print_List vừa nói trên là có thể giải quyết được bài toán. Để đáp ứng yêu cầu đặt ra, ta viết chương trình chính để nối kết những chương trình con lại với nhau như sau: int main(){ List L; ElementType X; Position P; MakeNull_List(&L); //Khởi tạo danh sách rỗng Read_List(&L); printf("Danh sach vua nhap: "); Print_List(L); // In danh sach len man hinh printf("Phan tu can them: ");scanf("%d",&X); printf("Vi tri can them: ");scanf("%d",&P); Insert_List(X,P,&L); printf("Danh sach sau khi them phan tu la: "); Trang 31
  32. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản PrintList(L); printf("Noi dung phan tu can xoa: ");scanf("%d",&X); P=Locate(X,L); Delete_List(P,&L); printf("Danh sach sau khi xoa %d la: ",X); Print_List(L); return 0; } b. Cài đặt danh sách bằng con trỏ ( danh sách liên kết) Cách khác để cài đặt danh sách là dùng con trỏ để liên kết các ô chứa các phần tử. Trong cách cài đặt này các phần tử của danh sách được lưu trữ trong các ô, mỗi ô có thể chỉ đến ô chứa phần tử kế tiếp trong danh sách. Bạn đọc có thể hình dung cơ chế này qua ví dụ sau: Giả sử 1 lớp có 4 bạn: Đông, Tây, Nam, Bắc có địa chỉ lần lượt là d,t,n,b. Giả sử: Đông có địa chỉ của Nam, Tây không có địa chỉ của bạn nào, Bắc giữ địa chỉ của Đông, Nam có địa chỉ của Tây (xem hình II.2). Hình II.2 Như vậy, nếu ta xét thứ tự các phần tử bằng cơ chế chỉ đến này thì ta có một danh sách: Bắc, Đông, Nam, Tây. Hơn nữa để có danh sách này thì ta cần và chỉ cần giữ địa chỉ của Bắc. Trong cài đặt, để một ô có thể chỉ đến ô khác ta cài đặt mỗi ô là một mẩu tin (record, struct) có hai trường: trường Element giữ giá trị của các phần tử trong danh sách; trường next là một con trỏ giữ địa chỉ của ô kế tiếp.Trường next của phần tử cuối trong danh sách chỉ đến một giá trị đặc biệt là NULL. Cấu trúc như vậy gọi là danh sách cài đặt bằng con trỏ hay danh sách liên kết đơn hay ngắn gọn là danh sách liên kết. Trang 32
  33. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản Hình II.3 Danh sách liên kết đơn Để quản lý danh sách ta chỉ cần một biến giữ địa chỉ ô chứa phần tử đầu tiên của danh sách, tức là một con trỏ trỏ đến phần tử đầu tiên trong danh sách. Biến này gọi là chỉ điểm đầu danh sách (Header) . Để đơn giản hóa vấn đề, trong chi tiết cài đặt, Header là một biến cùng kiểu với các ô chứa các phần tử của danh sách và nó có thể được cấp phát ô nhớ y như một ô chứa phần tử của danh sách (hình II.3). Tuy nhiên Header là một ô đặc biệt nên nó không chứa phần tử nào của danh sách, trường dữ liệu của ô này là rỗng, chỉ có trường con trỏ Next trỏ tới ô chứa phần tử đầu tiên thật sự của danh sách. Nếu danh sách rỗng thì Header->next trỏ tới NULL. Việc cấp phát ô nhớ cho Header như là một ô chứa dữ liệu bình thường nhằm tăng tính đơn giản của các giải thuật thêm, xoá các phần tử trong danh sách. Ở đây ta cần phân biệt rõ giá trị của một phần tử và vị trí (position) của nó trong cấu trúc trên. Ví dụ giá trị của phần tử đầu tiên của danh sách trong hình II.3 là a1, Trong khi vị trí của nó là địa chỉ của ô chứa nó, tức là giá trị nằm ở trường next của ô Header. Giá trị và vị trí của các phần tử của danh sách trong hình II.3 như sau: Phần tử Giá trị Vị trí thứ 1 1 a1 HEADER 2 a2 1 n an (n-1) Sau phần Không N và n->next có giá trị là tử cuối cùng xác định NULL Như đã thấy trong bảng trên, vị trí của phần tử thứ i là (i-1), như vậy để biết được vị trí của phần tử thứ i ta phải truy xuất vào ô thứ (i-1). Khi thêm hoặc xoá một phần tử trong Trang 33
  34. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản danh sách liên kết tại vị trí p, ta phải cập nhật lại con trỏ trỏ tới vị trí này, tức là cập nhật lại (p-1). Nói cách khác, để thao tác vào vị trí p ta phải biết con trỏ trỏ vào p mà con trỏ này chính là (p-1). Do đó ta định nghĩa p-1 như là vị trí của p. Có thể nói nôm na rằng vị trí của phần tử ai là địa chỉ của ô đứng ngay phía trước ô chứa ai. Hay chính xác hơn, ta nói, vị trí của phần tử thứ i là con trỏ trỏ tới ô có trường next trỏ tới ô chứa phần tử ai Như vậy vị trí của phần tử thứ 1 là con trỏ trỏ đến Header, vị trí phần tử thứ 2 là con trỏ trỏ ô chứa phần tử a1, vị trí của phần tử thứ 3 là con trỏ trỏ ô a2, , vị trí phần tử thứ n là con trỏ trỏ ô chứa an-1. Vậy vị trí sau phần tử cuối trong danh sách, tức là ENDLIST, chính là con trỏ trỏ ô chứa phần tử an (xem hình II.3). Theo định nghĩa này ta có, nếu p là vị trí của phần tử thứ p trong danh sách thì giá trị của phần tử ở vị trí p này nằm trong trường element của ô được trỏ bởi p->next. Nói cách khác p->next->element chứa nội dung của phần tử ở vị trí p trong danh sách. Các khai báo cần thiết là typedef ElementType; //kiểu của phần tử trong danh sách typedef struct Node{ ElementType Element;//Chứa nội dung của phần tử Node* Next; /*con trỏ chỉ đến phần tử kế tiếp trong danh sách*/ }; typedef Node* Position; // Kiểu vị trí typedef Position List; V Trong khai báo trên, tại sao phải đặt tên kiểu Node trước khi đưa ra các trường trong kiểu đó? Cách khai báo sau còn đúng không? typedef struct { ElementType Element; Node* Next; } Node; Tạo danh sách rỗng Như đã nói ở phần trên, ta dùng Header như là một biến con trỏ có kiểu giống như kiểu của một ô chứa một phần tử của danh sách. Tuy nhiên trường Element của Header không Trang 34
  35. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản bao giờ được dùng, chỉ có trường Next dùng để trỏ tới ô chứa phần tử đầu tiên của danh sách. Vậy nếu như danh sách rỗng thì trường ô Header vẫn phải tồn tại và ô này có trường next chỉ đến NULL (do không có một phần tử nào). Vì vậy khi khởi tạo danh sách rỗng, ta phải cấp phát ô nhớ cho HEADER và cho con trỏ trong trường next của nó trỏ tới NULL. void MakeNull_List(List *Header){ (*Header)=(Node*)malloc(sizeof(Node)); (*Header)->Next= NULL; } Kiểm tra một danh sách rỗng Danh sách rỗng nếu như trường next trong ô Header trỏ tới NULL. int Empty_List(List L){ return (L->Next==NULL); } Xen một phần tử vào danh sách : Xen một phần tử có giá trị x vào danh sách L tại vị trí p ta phải cấp phát một ô mới để lưu trữ phần tử mới này và nối kết lại các con trỏ để đưa ô mới này vào vị trí p. Sơ đồ nối kết và thứ tự các thao tác được cho trong hình II.4. Hình II.4: Thêm một phần tử vào danh sách tại vị trí p void Insert_List(ElementType X, Position P, List *L){ Position T; T=(Node*)malloc(sizeof(Node)); T->Element=X; Trang 35
  36. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản T->Next=P->Next; P->Next=T; } Tham số L (danh sách) trong chương trình con trên có bỏ được không? Tại sao? V Xóa phần tử ra khỏi danh sách Hình II.5: Xoá phần tử tại vị trí p Tương tự như khi xen một phần tử vào danh sách liên kết, muốn xóa một phần tử khỏi danh sách ta cần biết vị trí p của phần tử muốn xóa trong danh sách L. Nối kết lại các con trỏ bằng cách cho p trỏ tới phần tử đứng sau phần tử thứ p. Trong các ngôn ngữ lập trình không có cơ chế thu hồi vùng nhớ tự động như ngôn ngữ Pascal, C thì ta phải thu hồi vùng nhớ của ô bị xóa một các tường minh trong giải thuật. Tuy nhiên vì tính đơn giản của giải thuật cho nên đôi khi chúng ta không đề cập đến việc thu hồi vùng nhớ cho các ô bị xoá. Chi tiết và trình tự các thao tác để xoá một phần tử trong danh sách liên kết như trong hình II.5. Chương trình con có thể được cài đặt như sau: void Delete_List(Position P, List *L){ Position T; if (P->Next!=NULL){ T=P->Next; /*/giữ ô chứa phần tử bị xoá để thu hồi vùng nhớ*/ P->Next=T->Next; /*nối kết con trỏ trỏ tới phần tử thứ p+1*/ free(T); //thu hồi vùng nhớ Trang 36
  37. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản } } Định vị một phần tử trong danh sách liên kết Để định vị phần tử x trong danh sách L ta tiến hành tìm từ đầu danh sách (ô header) nếu tìm thấy thì vị trí của phần tử đầu tiên được tìm thấy sẽ được trả về nếu không thì ENDLIST(L) được trả về. Nếu x có trong sách sách và hàm Locate trả về vị trí p mà trong đó ta có x = p->next->element. Position Locate(ElementType X, List L){ Position P; int Found = 0; P = L; while ((P->Next != NULL) && (Found == 0)) if (P->Next->Element == X) Found = 1; else P = P->Next; return P; } Thực chất, khi gọi hàm Locate ở trên ta có thể truyền giá trị cho L là bất kỳ giá trị nào. Nếu L là Header thì chương trình con sẽ tìm x từ đầu danh sách. Nếu L là một vị trí p bất kỳ trong danh sách thì chương trình con Locate sẽ tiến hành định vị phần tử x từ vị trí p. Xác định nội dung phần tử: Nội dung phần tử đang lưu trữ tại vị trí p trong danh sách L là p->next->Element Do đó, hàm sẽ trả về giá trị p->next->element nếu phần tử có tồn tại, ngược lại phần tử không tồn tại (p->next=NULL) thì hàm không xác định ElementType Retrieve(Position P, List L){ if (P->Next!=NULL) return P->Next->Element; } VHãy thiết kế hàm Locate bằng cách sử dụng các phép toán trừu tượng cơ bản trên danh sách? Trang 37
  38. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản c. So sánh hai phương pháp cài đặt Không thể kết luận phương pháp cài đặt nào hiệu quả hơn, mà nó hoàn toàn tuỳ thuộc vào từng ứng dụng hay tuỳ thuộc vào các phép toán trên danh sách. Tuy nhiên ta có thể tổng kết một số ưu nhược điểm của từng phương pháp làm cơ sở để lựa chọn phương pháp cài đặt thích hợp cho từng ứng dụng: ¾ Cài đặt bằng mảng đòi hỏi phải xác định số phần tử của mảng, do đó nếu không thể ước lượng được số phần tử trong danh sách thì khó áp dụng cách cài đặt này một cách hiệu quả vì nếu khai báo thiếu chỗ thì mảng thường xuyên bị đầy, không thể làm việc được còn nếu khai báo quá thừa thì lãng phí bộ nhớ. ¾ Cài đặt bằng con trỏ thích hợp cho sự biến động của danh sách, danh sách có thể rỗng hoặc lớn tuỳ ý chỉ phụ thuộc vào bộ nhớ tối đa của máy. Tuy nhiên ta phải tốn thêm vùng nhớ cho các con trỏ (trường next). ¾ Cài đặt bằng mảng thì thời gian xen hoặc xoá một phần tử tỉ lệ với số phần tử đi sau vị trí xen/ xóa. Trong khi cài đặt bằng con trỏ các phép toán này mất chỉ một hằng thời gian. ¾ Phép truy nhập vào một phần tử trong danh sách, chẳng hạn như PREVIOUS, chỉ tốn một hằng thời gian đối với cài đặt bằng mảng, trong khi đối với danh sách cài đặt bằng con trỏ ta phải tìm từ đầu danh sách cho đến vị trí trước vị trí của phần tử hiện hành.Nói chung danh sách liên kết thích hợp với danh sách có nhiều biến động, tức là ta thường xuyên thêm, xoá các phần tử. V Cho biết ưu khuyết điểm của danh sách đặc và danh sách liên kết? d. Cài đặt bằng con nháy Một số ngôn ngữ lập trình không có cung cấp kiểu con trỏ. Trong trường hợp này ta có thể "giả" con trỏ để cài đặt danh sách liên kết. Ý tưởng chính là: dùng mảng để chứa các phần tử của danh sách, các "con trỏ" sẽ là các biến số nguyên (int) để giữ chỉ số của phần tử kế tiếp trong mảng. Để phân biệt giữa "con trỏ thật" và "con trỏ giả" ta gọi các con trỏ giả này là con nháy (cursor). Như vậy để cài đặt danh sách bằng con nháy ta cần một mảng mà mỗi phần tử xem như là một ô gồm có hai trường: trường Element như thông lệ giữ giá trị của phần tử trong danh sách (có kiểu Elementtype) trường Next là con nháy để chỉ tới vị trí trong mảng của phần tử kế tiếp. Chẳng hạn hình II.6 biểu diễn cho mảng SPACE đang chứa hai danh sách L1, L2. Để quản lí các danh sách ta cũng cần một con nháy chỉ đến phần tử đầu của mỗi danh sách (giống như header trong danh sách liên kết). Phần tử cuối cùng của danh sách ta cho chỉ tới giá trị đặc biệt Null, có thể xem Null = -1 với một giả thiết là mảng SPACE không có vị trí nào có chỉ số -1. Trang 38
  39. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản Trong hình II.6, danh sách L1 gồm 3 phần tử : f, o ,r. Chỉ điểm đầu của L1 là con nháy có giá trị 5, tức là nó trỏ vào ô lưu giữ phần tử đầu tiên của L1, trường next của ô này có giá trị 1 là ô lưu trữ phần tử kế tiếp (tức là o). Trường next tại ô chứa o là 4 là ô lưu trữ phần tử kế tiếp trong danh sách (tức là r). Cuối cùng trường next của ô này chứa Null nghĩa là danh sách không còn phần tử kế tiếp. Phân tích tương tự ta có L2 gồm 4 phần tử : w, i, n, d 0 d Null 1 o 4 2 3 n 0 4 r Null Chỉ điểm của danh sách thứ nhất → 5 f 1 L1 6 i 3 Chỉ điểm của danh sách thứ hai → 7 w 6 L2 8 9 Chỉ số Elements Next Mảng SPACE Hình II.6 Mảng đang chứa hai danh sách L1 và L2 Khi xen một phần tử vào danh sách ta lấy một ô trống trong mảng để chứa phần tử mới này và nối kết lại các con nháy. Ngược lại, khi xoá một phần tử khỏi danh sách ta nối kết lại các con nháy để loại phần tử này khỏi danh sách, điều này kéo theo số ô trống trong mảng tăng lên 1. Vấn đề là làm thế nào để quản lí các ô trống này để biết ô nào còn trống ô nào đã dùng? một giải pháp là liên kết tất cả các ô trống vào một danh sách đặc biệt gọi là AVAILABLE, khi xen một phần tử vào danh sách ta lấy ô trống đầu AVAILABLE để chứa phần tử mới này. Khi xoá một phần tử từ danh sách ta cho ô bị xoá nối vào đầu AVAILABLE. Tất nhiên khi mới khởi đầu việc xây dựng cấu trúc thì mảng chưa chứa phần tử nào của bất kỳ một danh sách nào. Lúc này tất cả các ô của mảng đều là ô trống, và như vậy, tất cả các ô đều được liên kết vào trong AVAILABLE. Việc khởi tạo AVAILABLE ban đầu có thể thực hiện bằng cách cho phần tử thứ i của mảng trỏ tới phần tử i+1. Các khai báo cần thiết cho danh sách Trang 39
  40. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản #define MaxLength //Chieu dai mang #define Null -1 //Gia tri Null typedef ElementType; /*kiểu của các phần tử trong danh sách*/ typedef struct{ ElementType Elements; /*trường chứa phần tử trong danh sách*/ int Next; //con nháy trỏ đến phần tử kế tiếp } Node; Node Space[MaxLength]; //Mang toan cuc int Available; AVAILLABLE → 0 1 1 2 . . . Maxlength-2 Maxlength-1 Maxlength-1 Null Chỉ số Elements Next Mảng SPACE Hình II.7: Khởi tạo Available ban đầu Khởi tạo cấu trúc – Thiết lập available ban đầu Ta cho phần tử thứ 0 của mảng trỏ đến phần tử thứ 1, , phần tử cuối cùng trỏ Null. Chỉ điểm đầu của AVAILABLE là 0 như trong hình II.7 void Initialize(){ int i; for(i=0;i<MaxLength-1;i++) Space[i].Next=i+1; Trang 40
  41. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản Space[MaxLength-1].Next=NULL; Available=0; } Chuyển một ô từ danh sách này sang danh sách khác Ta thấy thực chất của việc xen hay xoá một phần tử là thực hiện việc chuyển một ô từ danh sách này sang danh sách khác. Chẳng hạn muốn xen thêm một phần tử vào danh sách L1 trong hình II.6 vào một vị trí p nào đó ta phải chuyển một ô từ AVAILABLE (tức là một ô trống) vào L1 tại vị trí p; muốn xoá một phần tử tại vị trí p nào đó trong danh sách L2, chẳng hạn, ta chuyển ô chứa phần tử đó sang AVAILABLE, thao tác này xem như là giải phóng bộ nhớ bị chiếm bởi phần tử này. Do đó tốt nhất ta viết một hàm thực hiện thao tác chuyển một ô từ danh sách này sang danh sách khác và hàm cho kết quả kiểu int tùy theo chuyển thành công hay thất bại (là 0 nếu chuyển không thành công, 1 nếu chuyển thành công). Hàm Move sau đây thực hiện chuyển ô được trỏ tới bởi con nháy P vào danh sách khác được trỏ bởi con nháy Q như trong hình II.8. Hình II.8 trình bày các thao tác cơ bản để chuyển một ô (ô được chuyển ta tạm gọi là ô mới): Hình II.8 Chuyển 1 ô từ danh sách này sang danh sách khác (các liên kết vẽ bằng nét đứt biểu diễn cho các liên kết cũ - trước khi giải thuật bắt đầu) - Dùng con nháy temp để trỏ ô được trỏ bởi Q. - Cho Q trỏ tới ô mới. - Cập nhật lại con nháy P bằng cách cho nó trỏ tới ô kế tiếp. - Nối con nháy trường next của ô mới (ô mà Q đang trỏ) trỏ vào ô mà temp đang trỏ. int Move(int *p, int *q){ int temp; if (*p==Null) Trang 41
  42. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản return 0; //Khong co o de chuyen else { temp=*q; *q=*p; *p=Space[*q].Next; Space[*q].Next=temp; return 1; //Chuyen thanh cong } } Trong cách cài đặt này, khái niệm vị trí tương tự như khái niệm vị trí trong trường hợp cài đặt bằng con trỏ, tức là, vị trí của phần tử thứ I trong danh sách là chỉ số của ô trong mảng chứa con nháy trỏ đến ô chứa phần tử thứ i. Ví dụ xét danh sách L1 trong hình II. 6, vị trí của phần tử thứ 2 trong danh sách (phần tử có giá trị o) là 5, không phải là 1; vị trí của phần tử thứ 3 (phần tử có giá trị r ) là 1, không phải là 4. Vị trí của phần tử thứ 1 (phần tử có giá trị f) được định nghĩa là -1, vì không có ô nào trong mảng chứa con nháy trỏ đến ô chứa phần tử f. Xen một phần tử vào danh sách Muốn xen một phần tử vào danh sách ta cần biết vị trí xen, gọi là p, rồi ta chuyển ô đầu của available vào vị trí này. Chú ý rằng vị trí của phần tử đầu tiên trong danh sách được định nghĩa là -1, do đó nếu p=-1 có nghĩa là thực hiện việc thêm vào đầu danh sách. void Insert_List(ElementType X, int P, int *L){ if (P==-1) //Xen dau danh sach { if (Move(&Available,L)) Space[*L].Elements=X; else printf("Loi! Khong con bo nho trong"); } else //Chuyen mot o tu Available vao vi tri P Trang 42
  43. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản { if (Move(&Available,&Space[P].Next)) // O nhan X la o tro boi Space[p].Next Space[Space[P].Next].Elements=X; else printf("Loi! Khong con bo nho trong"); } } Xoá một phần tử trong danh sách Muốn xoá một phần tử tại vị trí p trong danh sách ta chỉ cần chuyển ô chứa phần tử tại vị trí này vào đầu AVAILABLE. Tương tự như phép thêm vào, nếu p=-1 thì xoá phần tử đầu danh sách. void Delete_List(int p, int *L){ if (p==-1) //Neu la o dau tien { if (!Move(L,&Available)) printf("Loi trong khi xoa"); // else Khong lam gi ca } else if (!Move(&Space[p].Next,&Available)) printf("Loi trong khi xoa"); //else Khong lam gi } II. NGĂN XẾP (STACK) 1. Định nghĩa ngăn xếp Ngăn xếp (Stack) là một danh sách mà ta giới hạn việc thêm vào hoặc loại bỏ một phần tử chỉ thực hiện tại một đầu của danh sách, đầu này gọi là đỉnh (TOP) của ngăn xếp. Trang 43
  44. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản Ta có thể xem hình ảnh trực quan của ngăn xếp bằng một chồng đĩa đặt trên bàn. Muốn thêm vào chồng đó 1 đĩa ta để đĩa mới trên đỉnh chồng, muốn lấy các đĩa ra khỏi chồng ta cũng phải lấy đĩa trên trước. Như vậy ngăn xếp là một cấu trúc có tính chất “vào sau - ra trước” hay “vào trước – ra sau“ (LIFO (last in - first out ) hay FILO (first in – last out)). 2. Các phép toán trên ngăn xếp ¾ MAKENULL_STACK(S): tạo một ngăn xếp rỗng. ¾ TOP(S) xem như một hàm trả về phần tử tại đỉnh ngăn xếp. Nếu ngăn xếp rỗng thì hàm không xác định. Lưu ý rằng ở đây ta dùng từ "hàm" để ngụ ý là TOP(S) có trả kết quả ra. Nó có thể không đồng nhất với khái niệm hàm trong ngôn ngữ lập trình như C chẳng hạn, vì có thể kiểu phần tử không thể là kiểu kết quả ra của hàm trong C. ¾ POP(S) chương trình con xoá một phần tử tại đỉnh ngăn xếp. ¾ PUSH(x,S) chương trình con thêm một phần tử x vào đầu ngăn xếp. ¾ EMPTY_STACK(S) kiểm tra ngăn xếp rỗng. Hàm cho kết quả 1 (true) nếu ngăn xếp rỗng và 0 (false) trong trường hợp ngược lại. Như đã nói từ trước, khi thiết kế giải thuật ta có thể dùng các phép toán trừu tượng như là các "nguyên thủy" mà không cần phải định nghĩa lại hay giải thích thêm. Tuy nhiên để giải thuật đó thành chương trình chạy được thì ta phải chọn một cấu trúc dữ liệu hợp lí để cài đặt các "nguyên thủy" này. Ví dụ: Viết chương trình con Edit nhận một chuỗi kí tự từ bàn phím cho đến khi gặp kí tự @ thì kết thúc việc nhập và in kết quả theo thứ tự ngược lại. void Edit(){ Stack S; char c; MakeNull_Stack(&S); do{// Lưu từng ký tự vào ngăn xếp c=getche(); Push(c,&S); }while (c!='@'); printf("\nChuoi theo thu tu nguoc lai\n"); // In ngan xep while (!Empty_Stack(S)){ printf("%c\n",Top(S)); Pop(&S); } } V Ta có thể truy xuất trực tiếp phần tử tại vị trí bất kỳ trong ngăn xếp được không? Trang 44
  45. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản 3. Cài đặt ngăn xếp: a. Cài đặt ngăn xếp bằng danh sách: Do ngăn xếp là một danh sách đặc biệt nên ta có thể sử dụng kiểu dữ liệu trừu tượng danh sách để biểu diễn cách cài đặt nó (như đã đề cập trong mục III chương 1). Như vậy, ta có thể khai báo ngăn xếp như sau: typedef List Stack; Khi chúng ta đã dùng danh sách để biểu diễn cho ngăn xếp thì ta nên sử dụng các phép toán trên danh sách để cài đặt các phép toán trên ngăn xếp. Sau đây là phần cài đặt ngăn xếp bằng danh sách. Tạo ngăn xếp rỗng: void MakeNull_Stack(Stack *S){ MakeNull_List(S); } Kiểm tra ngăn xếp rỗng: int Empty_Stack(Stack S){ return Empty_List(S); } Thêm phần tử vào ngăn xếp void Push(Elementtype X, Stack *S){ Insert_List (x, First (*S), &S); } Xóa phần tử ra khỏi ngăn xếp void Pop (Stack *S){ Delete_List (First (*S), &S); } Tuy nhiên để tăng tính hiệu quả của ngăn xếp ta có thể cài đặt ngăn xếp trực tiếp từ các cấu trúc dữ liệu như các phần sau. b. Cài đặt bằng mảng Trang 45
  46. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản Dùng một mảng để lưu trữ liên tiếp các phần tử của ngăn xếp. Các phần tử đưa vào ngăn xếp bắt đầu từ vị trí có chỉ số cao nhất của mảng, xem hình II.9. Ta còn phải dùng một biến số nguyên (TOP_IDX) giữ chỉ số của phần tử tại đỉnh ngăn xếp. 0 1 top_idx → Phần tử thứ 1 Phần tử thứ 2 Maxlength-1 Phần tử cuối cùng (phần tử đầu tiên được thêm vào ngăn xếp) Hình II.9 Ngăn xếp Khai báo ngăn xếp #define MaxLength //độ dài của mảng typedef ElementType; //kiểu các phần tử trong ngăn xếp typedef struct { ElementType Elements[MaxLength]; //Lưu nội dung của các phần tử int Top_idx; //giữ vị trí đỉnh ngăn xếp } Stack; Tạo ngăn xếp rỗng Ngăn xếp rỗng là ngăn xếp không chứa bất kỳ một phần tử nào, do đó đỉnh của ngăn xếp không được phép chỉ đến bất kỳ vị trí nào trong mảng. Để tiện cho quá trình thêm và xóa phần tử ra khỏi ngăn xếp, khi tạo ngăn xếp rỗng ta cho đỉnh ngăn xếp nằm ở vị trí maxlength. void MakeNull_Stack(Stack *S){ S->Top_idx=MaxLength; } Kiểm tra ngăn xếp rỗng Trang 46
  47. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản int Empty_Stack(Stack S){ return S.Top_idx==MaxLength; } Kiểm tra ngăn xếp đầy int Full_Stack(Stack S){ return S.Top_idx==0; } Lấy nội dung phần tử tại đỉnh của ngăn xếp : Hàm trả về nội dung phần tử tại đỉnh của ngăn xếp khi ngăn xếp không rỗng. Nếu ngăn xếp rỗng thì hàm hiển thị câu thông báo lỗi. ElementType Top(Stack S){ if (!Empty_Stack(S)) return S.Elements[S.Top_idx]; else printf("Loi! Ngan xep rong"); } Chú ý Nếu ElementType không thể là kiểu kết quả trả về của một hàm thì ta có thể viết Hàm Top như sau: void TOP(Stack S, Elementtype *X){ //Trong đó x sẽ lưu trữ nội dung phần tử tại đỉnh của ngăn xếp if (!Empty_Stack(S)) *X = S.Elements[S.Top_idx]; else printf(“Loi: Ngan xep rong “); } Chương trình con xóa phần tử ra khỏi ngăn xếp Phần tử được xóa ra khỏi ngăn xếp là tại đỉnh của ngăn xếp. Do đó, khi xóa ta chỉ cần dịch chuyển đỉnh của ngăn xếp xuống 1 vị trí (top_idx tăng 1 đơn vị ) void Pop(Stack *S){ if (!Empty_Stack(*S)) Trang 47
  48. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản S->Top_idx=S->Top_idx+1; else printf("Loi! Ngan xep rong!"); } Chương trình con thêm phần tử vào ngăn xếp : Khi thêm phần tử có nội dung x (kiểu ElementType) vào ngăn xếp S (kiểu Stack), trước tiên ta phải kiểm tra xem ngăn xếp có còn chỗ trống để lưu trữ phần tử mới không. Nếu không còn chỗ trống (ngăn xếp đầy) thì báo lỗi; Ngược lại, dịch chuyển Top_idx lên trên 1 vị trí và đặt x vào tại vị trí đỉnh mới. void Push(ElementType X, Stack *S){ if (Full_Stack(*S)) printf("Loi! Ngan xep day!"); else{ S->Top_idx=S->Top_idx-1; S->Elements[S->Top_idx]=X; } } Tất nhiên ta cũng có thể cài đặt ngăn xếp bằng con trỏ, trường hợp này xin dành cho bạn đọc xem như một bài tập nhỏ. 4. Ứng dụng ngăn xếp để loại bỏ đệ qui của chương trình Nếu một chương trình con đệ qui P(x) được gọi từ chương trình chính ta nói chương trình con được thực hiện ở mức 1. Chương trình con này gọi chính nó, ta nói nó đi sâu vào mức 2 cho đến một mức k. Rõ ràng mức k phải thực hiện xong thì mức k-1 mới được thực hiện tiếp tục, hay ta còn nói là chương trình con quay về mức k-1. Trong khi một chương trình con từ mức i đi vào mức i+1 thì các biến cục bộ của mức i và địa chỉ của mã lệnh còn dang dở phải được lưu trữ, địa chỉ này gọi là địa chỉ trở về. Khi từ mức i+1 quay về mức i các giá trị đó được sử dụng. Như vậy những biến cục bộ và địa chỉ lưu sau được dùng trước. Tính chất này gợi ý cho ta dùng một ngăn xếp để lưu giữ các giá trị cần thiết của mỗi lần gọi tới chương trình con. Mỗi khi lùi về một mức thì các giá trị này được lấy ra để tiếp tục thực hiện mức này. Ta có thể tóm tắt quá trình như sau: Bước 1: Lưu các biến cục bộ và địa chỉ trở về. Trang 48
  49. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản Bước 2: Nếu thoả điều kiện ngừng đệ qui thì chuyển sang bước 3. Nếu không thì tính toán từng phần và quay lại bước 1 (đệ qui tiếp). Bước 3: Khôi phục lại các biến cục bộ và địa chỉ trở về. Ví dụ sau đây minh hoạ việc dùng ngăn xếp để loại bỏ chương trình đệ qui của bài toán "tháp Hà Nội" (tower of Hanoi). Bài toán "tháp Hà Nội" được phát biểu như sau: Có ba cọc A,B,C. Khởi đầu cọc A có một số đĩa xếp theo thứ tự nhỏ dần lên trên đỉnh. Bài toán đặt ra là phải chuyển toàn bộ chồng đĩa từ A sang B. Mỗi lần thực hiện chuyển một đĩa từ một cọc sang một cọc khác và không được đặt đĩa lớn nằm trên đĩa nhỏ (hình II.10) Hình II.10: Bài toán tháp Hà Nội Chương trình con đệ qui để giải bài toán tháp Hà Nội như sau: void Move(int N, int A, int B, int C) //n: số đĩa, A,B,C: cọc nguồn , đích và trung gian { if (n==1) printf("Chuyen 1 dia tu %c sang %c\n",Temp.A,Temp.B); else { Move(n-1, A,C,B); //chuyển n-1 đĩa từ cọc nguồn sang cọc trung gian Move(1,A,B,C); //chuyển 1 đĩa từ cọc nguồn sang cọc đích Move(n-1,C,B,A); Trang 49
  50. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản //chuyển n-1 đĩa từ cọc trung gian sang cọc đích } } Quá trình thực hiện chương trình con được minh hoạ với ba đĩa (n=3) như sau: move(1,A,B,C) Move(2,A,C,B) move(1,A,C,B) move(1,B,C,A) Move(3,A,B,C) Move(1,A,B,C) move(1,C,A,B) Move(2,C,B,A) move(1,C,B,A) move(1,A,B,C) Mức 1 mức 2 mức 3 Để khử đệ qui ta phải nắm nguyên tắc sau đây: Mỗi khi chương trình con đệ qui được gọi, ứng với việc đi từ mức i vào mức i+1, ta phải lưu trữ các biến cục bộ của chương trình con ở bước i vào ngăn xếp. Ta cũng phải lưu "địa chỉ mã lệnh" chưa được thi hành của chương trình con ở mức i. Tuy nhiên khi lập trình bằng ngôn ngữ cấp cao thì đây không phải là địa chỉ ô nhớ chứa mã lệnh của máy mà ta sẽ tổ chức sao cho khi mức i+1 hoàn thành thì lệnh tiếp theo sẽ được thực hiện là lệnh đầu tiên chưa được thi hành trong mức i. Tập hợp các biến cục bộ của mỗi lần gọi chương trình con xem như là một mẩu tin hoạt động (activation record). Mỗi lần thực hiện chương trình con tại mức i thì phải xoá mẩu tin lưu các biến cục bộ ở mức này trong ngăn xếp. Như vậy nếu ta tổ chức ngăn xếp hợp lí thì các giá trị trong ngăn xếp chẳng những lưu trữ được các biến cục bộ cho mỗi lần gọi đệ qui, mà còn "điều khiển được thứ tự trở về" của các chương trình con. Ý tưởng này thể hiện trong cài đặt khử đệ qui cho bài toán tháp Hà Nội là: mẩu tin lưu trữ các biến cục bộ của chương trình con thực hiện sau thì được đưa vào ngăn xếp trước để nó được lấy ra dùng sau. //Kiểu cấu trúc lưu trữ biến cục bộ Trang 50
  51. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản typedef struct{ int N; int A, B, C; } ElementType; // Chương trình con MOVE không đệ qui void Move(ElementType X){ ElementType Temp, Temp1; Stack S; MakeNull_Stack(&S); Push(X,&S); do { Temp=Top(S); //Lay phan tu dau Pop(&S); //Xoa phan tu dau if (Temp.N==1) printf("Chuyen 1 dia tu %c sang %c\n",Temp.A,Temp.B); else { // Luu cho loi goi Move(n-1,C,B,A) Temp1.N=Temp.N-1; Temp1.A=Temp.C; Temp1.B=Temp.B; Temp1.C=Temp.A; Push(Temp1,&S); // Luu cho loi goi Move(1,A,B,C) Temp1.N=1; Temp1.A=Temp.A; Temp1.B=Temp.B; Temp1.C=Temp.C; Push(Temp1,&S); //Luu cho loi goi Move(n-1,A,C,B) Temp1.N=Temp.N-1; Trang 51
  52. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản Temp1.A=Temp.A; Temp1.B=Temp.C; Temp1.C=Temp.B; Push(Temp1,&S); } } while (!Empty_Stack(S)); } Minh họa cho lời gọi Move(x) với 3 đĩa, tức là x.N=3. Ngăn xếp khởi đầu: 3,A,B,C Ngăn xếp sau lần lặp thứ nhất: 2,A,C,B 1,A,B,C 2,C,B,A Ngăn xếp sau lần lặp thứ hai 1,A,B,C 1,A,C,B 1,B,C,A 1,A,B,C 2,C,B,A Các lần lặp 3,4,5,6 thì chương trình con xử lý trường hợp chuyển 1 đĩa (ứng với trường hợp không gọi đệ qui), vì vậy không có mẩu tin nào được thêm vào ngăn xếp. Mỗi lần xử lý, phần tử đầu ngăn xếp bị xoá. Ta sẽ có ngăn xếp như sau. 2,C,B,A Tiếp tục lặp bước 7 ta có ngăn xếp như sau: Trang 52
  53. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản 1,C,A,B 1,C,B,A 1,A,B,C Các lần lặp tiếp tục chỉ xử lý việc chuyển 1 đĩa (ứng với trường hợp không gọi đệ qui). Chương trình con in ra các phép chuyển và dẫn đến ngăn xếp rỗng. III. HÀNG ĐỢI (QUEUE) 1. Định Nghĩa Hàng đợi, hay ngắn gọn là hàng (queue) cũng là một danh sách đặc biệt mà phép thêm vào chỉ thực hiện tại một đầu của danh sách, gọi là cuối hàng (REAR), còn phép loại bỏ thì thực hiện ở đầu kia của danh sách, gọi là đầu hàng (FRONT). Xếp hàng mua vé xem phim là một hình ảnh trực quan của khái niệm trên, người mới đến thêm vào cuối hàng còn người ở đầu hàng mua vé và ra khỏi hang, vì vậy hàng còn được gọi là cấu trúc FIFO (first in - first out) hay "vào trước - ra trước". Bây giờ chúng ta sẽ thảo luận một vài phép toán cơ bản nhất trên hàng 2. Các phép toán cơ bản trên hàng ¾ MAKENULL_QUEUE(Q) khởi tạo một hàng rỗng. ¾ FRONT(Q) hàm trả về phần tử đầu tiên của hàng Q. ¾ ENQUEUE(x,Q) thêm phần tử x vào cuối hàng Q. ¾ DEQUEUE(Q) xoá phần tử tại đầu của hàng Q. ¾ EMPTY_QUEUE(Q) hàm kiểm tra hàng rỗng. ¾ FULL_QUEUE(Q) kiểm tra hàng đầy. 3. Cài đặt hàng Như đã trình bày trong phần ngăn xếp, ta hoàn toàn có thể dùng danh sách để biểu diễn cho một hàng và dùng các phép toán đã được cài đặt của danh sách để cài đặt các phép toán trên hàng. Tuy nhiên làm như vậy có khi sẽ không hiệu quả, chẳng hạn dùng danh sách cài đặt bằng mảng ta thấy lời gọi INSERT_LIST(x,ENDLIST(Q),Q) tốn một hằng thời gian trong khi lời gọi DELETE_LIST(FIRST(Q),Q) để xoá phần tử đầu hàng (phần tử ở vị trí 0 của mảng) ta phải tốn thời gian tỉ lệ với số các phần tử trong hàng để thực hiện việc dời toàn Trang 53
  54. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản bộ hàng lên một vị trí. Để cài đặt hiệu quả hơn ta phải có một suy nghĩ khác dựa trên tính chất đặc biệt của phép thêm và loại bỏ một phần tử trong hàng. a. Cài đặt hàng bằng mảng Ta dùng một mảng để chứa các phần tử của hàng, khởi đầu phần tử đầu tiên của hàng được đưa vào vị trí thứ 1 của mảng, phần tử thứ 2 vào vị trí thứ 2 của mảng Giả sử hàng có n phần tử, ta có front=0 và rear=n-1. Khi xoá một phần tử front tăng lên 1, khi thêm một phần tử rear tăng lên 1. Như vậy hàng có khuynh hướng đi xuống, đến một lúc nào đó ta không thể thêm vào hàng được nữa (rear=maxlength-1) dù mảng còn nhiều chỗ trống (các vị trí trước front) trường hợp này ta gọi là hàng bị tràn (xem hình II.11).Trong trường hợp toàn bộ mảng đã chứa các phần tử của hàng ta gọi là hàng bị đầy. Cách khắc phục hàng bị tràn ¾ Dời toàn bộ hàng lên front -1 vị trí, cách này gọi là di chuyển tịnh tiến. Trong trường hợp này ta luôn có front<=rear. ¾ Xem mảng như là một vòng tròn nghĩa là khi hàng bị tràn nhưng chưa đầy ta thêm phần tử mới vào vị trí 0 của mảng, thêm một phần tử mới nữa thì thêm vào vị trí 1 (nếu có thể) Rõ ràng cách làm này front có thể lớn hơn rear. Cách khắc phục này gọi là dùng mảng xoay vòng (xem hình II.12). 0 Front→0 1 1 2 2 Front → 3 3 4 Rear →4 5 5 6 6 Rear → 7 7 Hàng tràn Hàng sau khi dịch chuyển tịnh tiến Hình II.11 : Minh họa việc di chuyển tịnh tiến các phần tử khi hàng bị tràn Cài đặt hàng bằng mảng theo phương pháp tịnh tiến Để quản lí một hàng ta chỉ cần quản lí đầu hàng và cuối hàng. Có thể dùng 2 biến số nguyên chỉ vị trí đầu hàng và cuối hàng Các khai báo cần thiết #define MaxLength //chiều dài tối đa của mảng typedef ElementType; Trang 54
  55. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản //Kiểu dữ liệu của các phần tử trong hàng typedef struct { ElementType Elements[MaxLength]; //Lưu trữ nội dung các phần tử int Front, Rear; //chỉ số đầu và đuôi hàng } Queue; Tạo hàng rỗng Lúc này front và rear không trỏ đến vị trí hợp lệ nào trong mảng vậy ta có thể cho front và rear đều bằng -1. void MakeNull_Queue(Queue *Q){ Q->Front=-1; Q->Rear=-1; } Kiểm tra hàng rỗng Trong quá trình làm việc ta có thể thêm và xóa các phần tử trong hàng. Rõ ràng, nếu ta có đưa vào hàng một phần tử nào đó thì front>-1. Khi xoá một phần tử ta tăng front lên 1. Hàng rỗng nếu front>rear. Hơn nữa khi mới khởi tạo hàng, tức là front = -1, thì hàng cũng rỗng. Tuy nhiên để phép kiểm tra hàng rỗng đơn giản, ta sẽ làm một phép kiểm tra khi xoá một phần tử của hàng, nếu phần tử bị xoá là phần tử duy nhất trong hàng thì ta đặt lại front=-1. Vậy hàng rỗng khi và chỉ khi front =-1. int Empty_Queue(Queue Q){ return Q.Front==-1; } Kiểm tra đầy Hàng đầy nếu số phần tử hiện có trong hàng bằng số phần tử trong mảng. int Full_Queue(Queue Q){ return (Q.Rear-Q.Front+1)==MaxLength; } Xóa phần tử ra khỏi hàng Trang 55
  56. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản Khi xóa một phần tử đầu hàng ta chỉ cần cho front tăng lên 1. Nếu front > rear thì hàng thực chất là hàng đã rỗng, nên ta sẽ khởi tạo lại hàng rỗng (tức là đặt lại giá trị front = rear =-1). void DeQueue(Queue *Q){ if (!Empty_Queue(*Q)){ Q->Front=Q->Front+1; if (Q->Front>Q->Rear) MakeNull_Queue(Q); //Dat lai hang rong } else printf("Loi: Hang rong!"); } Thêm phần tử vào hàng Một phần tử khi được thêm vào hàng sẽ nằm kế vị trí Rear cũ của hàng. Khi thêm một phần tử vào hàng ta phải xét các trường hợp sau: Nếu hàng đầy thì báo lỗi không thêm được nữa. Nếu hàng chưa đầy ta phải xét xem hàng có bị tràn không. Nếu hàng bị tràn ta di chuyển tịnh tiến rồi mới nối thêm phần tử mới vào đuôi hàng ( rear tăng lên 1). Đặc biệt nếu thêm vào hàng rỗng thì ta cho front=0 để front trỏ đúng phần tử đầu tiên của hàng. void EnQueue(ElementType X,Queue *Q){ if (!Full_Queue(*Q)){ if (Empty_Queue(*Q)) Q->Front=0; if (Q->Rear==MaxLength-1){ //Di chuyen tinh tien ra truoc Front -1 vi tri for(int i=Q->Front;i Rear;i++) Q->Elements[i-Q->Front]=Q->Elements[i]; //Xac dinh vi tri Rear moi Q->Rear=MaxLength - Q->Front-1; Q->Front=0; Trang 56
  57. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản } //Tang Rear de luu noi dung moi Q->Rear=Q->Rear+1; Q->Element[Q->Rear]=X; } else printf("Loi: Hang day!"); } b. Cài đặt hàng với mảng xoay vòng Hình II.12 Cài đặt hàng bằng mảng xoay vòng Với phương pháp này, khi hàng bị tràn, tức là rear=maxlength-1, nhưng chưa đầy, tức là front>0, thì ta thêm phần tử mới vào vị trí 0 của mảng và cứ tiếp tục như vậy vì từ 0 đến front-1 là các vị trí trống. Vì ta sử dụng mảng một cách xoay vòng như vậy nên phương pháp này gọi là phương pháp dùng mảng xoay vòng. Các phần khai báo cấu trúc dữ liệu, tạo hàng rỗng, kiểm tra hàng rỗng giống như phương pháp di chuyển tịnh tiến. Khai báo cần thiết #define MaxLength //chiều dài tối đa của mảng typedef ElementType; //Kiểu dữ liệu của các phần tử trong hàng typedef struct { ElementType Elements[MaxLength]; //Lưu trữ nội dung các phần tử int Front, Rear; //chỉ số đầu và đuôi hàng Trang 57
  58. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản } Queue; Tạo hàng rỗng Lúc này front và rear không trỏ đến vị trí hợp lệ nào trong mảng vậy ta có thể cho front và rear đều bằng -1. void MakeNull_Queue(Queue *Q){ Q->Front=-1; Q->Rear=-1; } Kiểm tra hàng rỗng int Empty_Queue(Queue Q){ return Q.Front==-1; } Kiểm tra hàng đầy Hàng đầy nếu toàn bộ các ô trong mảng đang chứa các phần tử của hàng. Với phương pháp này thì front có thể lớn hơn rear. Ta có hai trường hợp hàng đầy như sau: - Trường hợp Q.Rear=Maxlength-1 và Q.Front =0 - Trường hợp Q.Front =Q.Rear+1. Để đơn giản ta có thể gom cả hai trường hợp trên lại theo một công thức như sau: (Q.rear-Q.front +1) mod Maxlength =0 int Full_Queue(Queue Q){ return (Q.Rear-Q.Front+1) % MaxLength==0; } Xóa một phần tử ra khỏi ngăn xếp Khi xóa một phần tử ra khỏi hàng, ta xóa tại vị trí đầu hàng và có thể xảy ra các trường hợp sau: Nếu hàng rỗng thì báo lỗi không xóa; Ngược lại, nếu hàng chỉ còn 1 phần tử thì khởi tạo lại hàng rỗng; Trang 58
  59. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản Ngược lại, thay đổi giá trị của Q.Front. (Nếu Q.front != Maxlength-1 thì đặt lại Q.front = q.Front +1; Ngược lại Q.front=0) void DeQueue(Queue *Q){ if (!Empty_Queue(*Q)){ //Nếu hàng chỉ chứa một phần tử thì khởi tạo hàng lại if (Q->Front==Q->Rear) MakeNull_Queue(Q); else Q->Front=(Q->Front+1) % MaxLength; //tăng Front lên 1 đơn vị } else printf("Loi: Hang rong!"); } Thêm một phần tử vào hàng Khi thêm một phần tử vào hàng thì có thể xảy ra các trường hợp sau: - Trường hợp hàng đầy thì báo lỗi và không thêm; - Ngược lại, thay đổi giá trị của Q.rear (Nếu Q.rear =maxlength-1 thì đặt lại Q.rear=0; Ngược lại Q.rear =Q.rear+1) và đặt nội dung vào vị trí Q.rear mới. void EnQueue(ElementType X,Queue *Q){ if (!Full_Queue(*Q)){ if (Empty_Queue(*Q)) Q->Front=0; Q->Rear=(Q->Rear+1) % MaxLength; Q->Elements[Q->Rear]=X; } else printf("Loi: Hang day!"); } V Cài đặt hàng bằng mảng vòng có ưu điểm gì so với bằng mảng theo phương pháp tịnh tiến? Trong ngôn ngữ lập trình có kiểu dữ liệu mảng vòng không? Trang 59
  60. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản c. Cài đặt hàng bằng danh sách liên kết (cài đặt bằng con trỏ) Cách tự nhiên nhất là dùng hai con trỏ front và rear để trỏ tới phần tử đầu và cuối hàng. Hàng được cài đặt như một danh sách liên kết có Header là một ô thực sự, xem hình II.13. Khai báo cần thiết typedef ElementType; //kiểu phần tử của hàng typedef struct Node{ ElementType Element; Node* Next; //Con trỏ chỉ ô kế tiếp }; typedef Node* Position; typedef struct{ Position Front, Rear; //là hai trường chỉ đến đầu và cuối của hàng } Queue; Khởi tạo hàng rỗng Khi hàng rỗng Front va Rear cùng trỏ về 1 vị trí đó chính là ô header Hình II.13: Khởi tạo hàng rỗng void MakeNullQueue(Queue *Q){ Position Header; Header=(Node*)malloc(sizeof(Node)); //Cấp phát Header Header->Next=NULL; Q->Front=Header; Q->Rear=Header; } Kiểm tra hàng rỗng Trang 60
  61. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản Hàng rỗng nếu Front và Rear chỉ cùng một vị trí là ô Header. int EmptyQueue(Queue Q){ return (Q.Front==Q.Rear); } Hình II.14 Hàng sau khi thêm và xóa phần tử Thêm một phần tử vào hàng Thêm một phần tử vào hàng ta thêm vào sau Rear (Rear->next ), rồi cho Rear trỏ đến phần tử mới này, xem hình II.14. Trường next của ô mới này trỏ tới NULL. void EnQueue(ElementType X, Queue *Q){ Q->Rear->Next=(Node*)malloc(sizeof(Node)); Q->Rear=Q->Rear->Next; //Dat gia tri vao cho Rear Q->Rear->Element=X; Q->Rear->Next=NULL; } Xóa một phần tử ra khỏi hàng Trang 61
  62. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản Thực chất là xoá phần tử nằm ở vị trí đầu hàng do đó ta chỉ cần cho front trỏ tới vị trí kế tiếp của nó trong hàng. void DeQueue(Queue *Q){ if (!Empty_Queue(Q)){ Position T; T=Q->Front; Q->Front=Q->Front->Next; free(T); } else printf(”Loi : Hang rong”); } 4. Một số ứng dụng của cấu trúc hàng Hàng đợi là một cấu trúc dữ liệu được dùng khá phổ biến trong thiết kế giải thuật. Bất kỳ nơi nào ta cần quản lí dữ liệu, quá trình theo kiểu vào trước-ra trước đều có thể ứng dụng hàng đợi. Ví dụ rất dễ thấy là quản lí in trên mạng, nhiều máy tính yêu cầu in đồng thời và ngay cả một máy tính cũng yêu cầu in nhiều lần. Nói chung có nhiều yêu cầu in dữ liệu, nhưng máy in không thể đáp ứng tức thời tất cả các yêu cầu đó nên chương trình quản lí in sẽ thiết lập một hàng đợi để quản lí các yêu cầu. Yêu cầu nào mà chương trình quản lí in nhận trước nó sẽ giải quyết trước. Một ví dụ khác là duyệt cây theo mức được trình bày chi tiết trong chương sau. Các giải thuật duyệt theo chiều rộng một đồ thị có hướng hoặc vô hướng cũng dùng hàng đợi để quản lí các nút đồ thị. Các giải thuật đổi biểu thức trung tố thành hậu tố, tiền tố. IV. DANH SÁCH LIÊN KẾT KÉP (DOUBLE - LISTS) Một số ứng dụng đòi hỏi chúng ta phải duyệt danh sách theo cả hai chiều một cách hiệu quả. Chẳng hạn cho phần tử X cần biết ngay phần tử trước X và sau X một cách mau chóng. Trong trường hợp này ta phải dùng hai con trỏ, một con trỏ chỉ đến phần tử đứng sau (next), một con trỏ chỉ đến phần tử đứng trước (previous). Với cách tổ chức này ta có một danh sách liên kết kép. Dạng của một danh sách liên kép như sau: Trang 62
  63. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản Hình II.15 Hình ảnh một danh sách liên kết kép Các khai báo cần thiết typedef ElementType; //kiểu nội dung của các phần tử trong danh sách typedef struct Node{ ElementType Element; //lưu trữ nội dung phần tử //Hai con trỏ trỏ tới phần tử trước và sau Node* Prev; Node* Next; }; typedef Node* Position; typedef Position DoubleList; Để quản lí một danh sách liên kết kép ta có thể dùng một con trỏ trỏ đến một ô bất kỳ trong cấu trúc. Hoàn toàn tương tự như trong danh sách liên kết đơn đã trình bày trong phần trước, con trỏ để quản lí danh sách liên kết kép có thể là một con trỏ có kiểu giống như kiểu phần tử trong danh sách và nó có thể được cấp phát ô nhớ (tương tự như Header trong danh sách liên kết đơn) hoặc không được cấp phát ô nhớ. Ta cũng có thể xem danh sách liên kết kép như là danh sách liên kết đơn, với một bổ sung duy nhất là có con trỏ previous để nối kết các ô theo chiều ngược lại. Theo quan điểm này thì chúng ta có thể cài đặt các phép toán thêm (insert), xoá (delete) một phần tử hoàn toàn tương tự như trong danh sách liên kết đơn và con trỏ Header cũng cần thiết như trong danh sách liên kết đơn, vì nó chính là vị trí của phần tử đầu tiên trong danh sách. Tuy nhiên, nếu tận dụng khả năng duyệt theo cả hai chiều thì ta không cần phải cấp phát bộ nhớ cho Header và vị trí (position) của một phần tử trong danh sách có thể định nghĩa như sau: Vị trí của phần tử ai là con trỏ trỏ tới ô chứa ai, tức là địa chỉ ô nhớ chứa ai. Nói nôm na, vị trí của ai là ô chứa ai. Theo định nghĩa vị trí như vậy các phép toán trên danh sách liên kết kép sẽ được cài đặt hơi khác với danh sách liên đơn. Trong cách cài đặt này, chúng ta không sử dụng ô đầu mục như danh sách liên kết đơn mà sẽ quản lý danh sách một các trực tiếp (header chỉ ngay đến ô đầu tiên trong danh sách). Tạo danh sách liên kết kép rỗng Trang 63
  64. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản Giả sử DL là con trỏ quản lí danh sách liên kết kép thì khi khởi tạo danh sách rỗng ta cho con trỏ này trỏ NULL (không cấp phát ô nhớ cho DL), tức là gán DL=NULL. void MakeNull_List (DoubleList *DL){ (*DL)= NULL; } Kiểm tra danh sách liên kết kép rỗng Rõ ràng, danh sách liên kết kép rỗng khi và chỉ khi chỉ điểm đầu danh sách không trỏ tới một ô xác định nào cả. Do đó ta sẽ kiểm tra DL = NULL. int Empty (DoubleList DL){ return (DL==NULL); } Xóa một phần tử ra khỏi danh sách liên kết kép Để xoá một phần tử tại vị trí p trong danh sách liên kết kép được trỏ bởi DL, ta phải chú ý đến các trường hợp sau: - Danh sách rỗng, tức là DL=NULL: chương trình con dừng. - Trường hợp danh sách khác rỗng, tức là DL!=NULL, ta phải phân biệt hai trường hợp Ô bị xoá không phải là ô được trỏ bởi DL, ta chỉ cần cập nhật lại các con trỏ để nối kết ô trước p với ô sau p, các thao tác cần thiết là (xem hình II.16): Nếu (p->previous!=NULL) thì p->previous->next=p->next; Nếu (p->next!=NULL) thì p->next->previous=p->previous; Xoá ô đang được trỏ bởi DL, tức là p=DL: ngoài việc cập nhật lại các con trỏ để nối kết các ô trước và sau p ta còn phải cập nhật lại DL, ta có thể cho DL trỏ đến phần tử trước nó (DL = p->Previous) hoặc đến phần tử sau nó (DL = p->Next) tuỳ theo phần tử nào có mặt trong danh sách. Đặc biệt, nếu danh sách chỉ có một phần tử tức là p->Next=NULL và p->Previous=NULL thì DL=NULL. p->Previous p p->Next Hình II.16 Xóa phần tử tại vị trí p Trang 64
  65. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản void Delete_List (Position p, DoubleList *DL){ if (*DL == NULL) printf(”Danh sach rong”); else{ if (p==*DL) (*DL)=(*DL)->Next; //Xóa phần tử đầu tiên của danh sách nên phải thay đổi DL else p->Previous->Next=p->Next; if (p->Next!=NULL) p->Next->Previous=p->Previous; free(p); } } Thêm phần tử vào danh sách liên kết kép Để thêm một phần tử x vào vị trí p trong danh sách liên kết kép được trỏ bởi DL, ta cũng cần phân biệt mấy trường hợp sau: Danh sách rỗng, tức là DL = NULL: trong trường hợp này ta không quan tâm đến giá trị của p. Để thêm một phần tử, ta chỉ cần cấp phát ô nhớ cho nó, gán giá trị x vào trường Element của ô nhớ này và cho hai con trỏ previous, next trỏ tới NULL còn DL trỏ vào ô nhớ này, các thao tác trên có thể viết như sau: DL=(Node*)malloc(sizeof(Node)); DL->Element = x; DL->Previous=NULL; DL->Next =NULL; Nếu DL!=NULL, sau khi thêm phần tử x vào vị trí p ta có kết quả như hình II.18 p->Previous p p->Next Hình II.17: Danh sách trước khi thêm phần tử x Trang 65
  66. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản p->Previous p p->Next Hình II.18: Danh sách sau khi thêm phần tử x vào tại vị trí p (phần tử tại vị trí p cũ trở thành phần tử "sau" của x) Lưu ý: các kí hiệu p, p->Next, p->Previous trong hình II.18 để chỉ các ô trước khi thêm phần tử x, tức là nó chỉ các ô trong hình II.17. Trong trường hợp p=DL, ta có thể cập nhật lại DL để DL trỏ tới ô mới thêm vào hoặc để nó trỏ đến ô tại vị trí p cũ như nó đang trỏ cũng chỉ là sự lựa chọn trong chi tiết cài đặt. void Insert_List (ElementType X,Position p, DoubleList *DL){ if (*DL == NULL){ (*DL)=(Node*)malloc(sizeof(Node)); (*DL)->Element = X; (*DL)->Previous =NULL; (*DL)->Next =NULL; } else{ Position temp; temp=(Node*)malloc(sizeof(Node)); temp->Element=X; temp->Next=p; temp->Previous=p->Previous; if (p->Previous!=NULL) p->Previous->Next=temp; p->Previous=temp; } } Trang 66
  67. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản TỔNG KẾT CHƯƠNG Chương mô tả các cấu trúc dữ liệu trừu tượng và các giải thuật cài đặt các phép toán này. Tuy nhiên, tùy theo bài toán cụ thể và mức độ thay đổi của dữ liệu cũng mà ta lựa chọn các cấu trúc dữ liệu cho phù hợp. Trong chương này, phần cơ bản nhất là danh sách đặc và liên kết, còn các cấu trúc khác chỉ là sự biến tấu của cấu trúc này. Trong chương này cũng đề cập đến các ứng dụng cụ thể của từng cấu trúc dữ liệu trừu tượng bên ngoài thực tế. Cách cài đặt các cấu trúc dữ liệu trừu tượng khác nhau và có vận dụng cấu trúc đã có để mô tả cho một cấu trúc dữ liệu trừu tượng mới. Trang 67
  68. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản BÀI TẬP 1. Viết khai báo và các chương trình con cài đặt danh sách bằng mảng. Dùng các chương trình con này để viết: a. Chương trình con nhận một dãy các số nguyên nhập từ bàn phím, lưu trữ nó trong danh sách theo thứ tự nhập vào. b. Chương trình con nhận một dãy các số nguyên nhập từ bàn phím, lưu trữ nó trong danh sách theo thứ tự ngược với thứ tự nhập vào. c. Viết chương trình con in ra màn hình các phần tử trong danh sách theo thứ tự của nó trong danh sách. 2. Tương tự như bài tập 1. nhưng cài đặt bằng con trỏ. 3. Viết chương trình con sắp xếp một danh sách chứa các số nguyên, trong các trường hợp: a. Danh sách được cài đặt bằng mảng (danh sách đặc). b. Danh sách được cài đặt bằng con trỏ (danh sách liên kết). 4. Viết chương trình con thêm một phần tử trong danh sách đã có thứ tự sao cho ta vẫn có một danh sách có thứ tự bằng cách vận dụng các phép toán cơ bản trên danh sách 5. Viết chương trình con tìm kiếm và xóa một phần tử trong danh sách có thứ tự. 6. Viết chương trình con nhận vào từ bàn phím một dãy số nguyên, lưu trữ nó trong một danh sách có thứ tự không giảm, theo cách sau: với mỗi phần tử được nhập vào chương trình con phải tìm vị trí thích hợp để xen nó vào danh sách cho đúng thứ tự. Viết chương trình con trên cho trường hợp danh sách được cài đặt bằng mảng và cài đặt bằng con trỏ và trong trường hợp tổng quát (dùng các phép toán cơ bản trên danh sách) 7. Viết chương trình con loại bỏ các phần tử trùng nhau (giữ lại duy nhất 1 phần tử) trong một danh sách có thứ tự không giãm, trong hai trường hợp: cài đặt bằng mảng và cài đặt bằng con trỏ. 8. Viết chương trình con nhận vào từ bàn phím một dãy số nguyên, lưu trữ nó trong một danh sách có thứ tự tăng không có hai phần tử trùng nhau, theo cách sau: với mỗi phần tử được nhập vào chương trình con phải tìm kiếm xem nó có trong danh sách chưa, nếu chưa có thì xen nó vào danh sách cho đúng thứ tự. Viết chương trình con trên cho trường hợp danh sách được cài đặt bằng mảng và cài đặt bằng con trỏ. 9. Viết chương trình con trộn hai danh sách liên kết chứa các số nguyên theo thứ tự tăng để được một danh sách cũng có thứ tự tăng. Trang 68
  69. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản 10. Viết chương trình con xoá khỏi danh sách lưu trữ các số nguyên các phần tử là số nguyên lẻ, cũng trong hai trường hợp: cài đặt bằng mảng và bằng con trỏ. 11. Viết chương trình con tách một danh sách chứa các số nguyên thành hai danh sách: một danh sách gồm các số chẵn còn cái kia chứa các số lẻ. 12. Hình dưới đây biểu diễn cho mảng SPACE có 10 phần tử dùng để biểu diễn danh sách bằng con nháy (cursor) và hai danh sách L1 ; L2 đang có trong mảng 0 w 9 1 h 4 2 8 3 -1 4 x 6 L1 → 5 g 1 6 i -1 L2 → 7 y 0 8 3 9 u -1 Element Next SPACE a. Hãy liệt kê các phần tử trong mỗi danh sách L1, L2. b. Vẽ lại hình đã cho lần lượt sau các lời gọi INSERT_LIST('o',1,L1), INSERT_LIST('m',6,L1), INSERT_LIST('k',9,L1). c. Vẽ lại hình ở câu b. sau khi xoá : x,y. 13. Đa thức P(x)= anxn+ an-1xn-1+ + a1x + a0 được lưu trữ trong máy tính dưới dạng một danh sách liên kết mà mỗi phần tử của danh sách là một struct có ba trường lưu giữ hệ số, số mũ, và trưòng NEXT trỏ đến phần tử kế tiếp. Chú ý cách lưu trữ đảm bảo thứ tự giảm dần theo số mũ của từng hạng tử của đa thức. Ví dụ: đa thức 5x4 - x + 3 được lưu trữ trong danh sách có 3 phần tử như sau: Trang 69
  70. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản a. Hãy viết chương trình thực hiện được sự lưu trữ này. b. Dựa vào sự cài đặt ở trên, viết chương trình con thực hiện việc cộng hai đa thức. c. Viết chương trình con lấy đạo hàm của đa thức. 14. Để lưu trữ một số nguyên lớn, ta có thể dùng danh sách liên kết chứa các chữ số của nó. Hãy tìm cách lưu trữ các chữ số của một số nguyên lớn theo ý tưởng trên sao cho việc cộng hai số nguyên lớn là dễ dàng thực hiện. Viết chương trình con cộng hai số nguyên lớn. 15. Để tiện cho việc truy nhập vào danh sách, người ta tổ chức danh sách liên kết có dạng sau, gọi là danh sách nối vòng: Hãy viết khai báo và các chương trình con cơ bản để cài đặt một danh sách nối vòng. 16. Hãy cài đặt một ngăn xếp bằng cách dùng con trỏ. a. Dùng ngăn xếp để viết chương trình con đổi một số thập phân sang số nhị phân. b. Viết chương trình con/hàm kiểm tra một chuỗi dấu ngoặc đúng (chuỗi dấu ngoặc đúng là chuỗi dấu mở đóng khớp nhau như trong biểu thức toán học). 17. Ta có thể cài đặt 2 ngăn xếp vào trong một mảng, gọi là ngăn xếp hai đầu hoạt động của hai ngăn xếp này như sơ đồ sau: Trang 70
  71. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản Đáy ngăn xếp 1 → Đỉnh (Top_idx 1) ngăn xếp 1 → Các phần tử còn trống Đỉnh (Top_Idx 2)ngăn xếp 2 → Đáy ngăn xếp 2 → Hình vẽ mảng chứa 2 ngăn xếp Hãy viết các chương trình con cần thiết để cài đặt ngăn xếp hai đầu. 18. Mô phỏng việc tạo buffer in một file ra máy in. Buffer xem như là một hàng, khi ra lệnh in file máy tính sẽ thực hiện một cách lặp quá trình sau cho đến hết file: a. Đưa nội dung của tập tin vào buffer cho đến khi buffer đầy hoặc hết file. b. In nội dung trong buffer ra máy in cho tới khi hàng rỗng. c. Hãy mô phỏng quá trình trên để in một file văn bản lên từng trang màn hình. 19. Khử đệ qui các hàm sau: a. Hàm tính tổ hợp chập k của n phần tử int TH(int k, int n){ // với giả thiết 0<=k<=n Trang 71
  72. Cấu trúc dữ liệu Chương II: Các kiểu dữ liệu trừu tượng cơ bản if ((k==0) || (k==n)) return 1; else return (TH(k-1,n-1)+TH(k,n-1)); } b. Hàm tính dãy Fibonaci theo n int Fibo(int n){ //với giả thiết n>=0 if ((n==0) || (n=1)) return 1; else return (Fibo(n-2)+Fibo(n-1)); } 20. Cài đặt danh sách liên kết kép với các phép toán khởi tạo danh sách rỗng, thêm xoá một phần tử. 21. Danh sách liên kết kép nối vòng có dạng sau: Hãy cài đặt danh sách liên kết kép dạng nối vòng như trên. Trang 72
  73. Cấu trúc dữ liệu Chương III:Cấu trúc cây CHƯƠNG III CẤU TRÚC CÂY (TREES) TỔNG QUAN 1. Mục tiêu Sau khi học xong chương này, sinh viên phải: ¾ Nắm vững khái niệm về cây ¾ Cài đặt được cây (trees) và thực hiện các phép toán trên cây. 2. Kiến thức cơ bản cần thiết Để học tốt chương này, sinh viên phải nắm vững kỹ năng lập trình căn bản như: ¾ Kiểu mẩu tin (record) , kiểu mảng (array) và kiểu con trỏ (pointer) ¾ Các cấu trúc điều khiển, lệnh vòng lặp. ¾ Lập trình theo từng modul (chương trình con) và cách gọi chương trình con đó. ¾ Lập trình đệ qui và gọi đệ qui. ¾ Kiểu dữ liệu trừu tượng danh sách 3. Tài liệu tham khảo [1] Aho, A. V. , J. E. Hopcroft, J. D. Ullman. "Data Structure and Algorihtms", Addison– Wesley; 1983 [2] Đỗ Xuân Lôi . "Cấu trúc dữ liệu và giải thuật". Nhà xuất bản khoa học và kỹ thuật. Hà nội, 1995. (chương 6- Trang 122; chương 10 trang 274) [3] N. Wirth "Cấu trúc dữ liệu + giải thuật= Chương trình", 1983. [4] Nguyễn Trung Trực, "Cấu trúc dữ liệu". BK tp HCM, 1990. (chương 3 trang 112; chương 5 trang 299) [5] Lê Minh Trung ; “Lập trình nâng cao bằng Pascal với các cấu trúc dữ liệu “; 1997 (chương 9, 12) 4. Nội dung cốt lõi Trong chương này chúng ta sẽ nghiên cứu các vấn đề sau: ¾ Các thuật ngữ cơ bản. Trang 73
  74. Cấu trúc dữ liệu Chương III: Cấu trúc cây ¾ Kiểu dữ liệu trừu tượng Cây ¾ Cài đặt cây ¾ Cây nhị phân ¾ Cây tìm kiếm nhị phân I. CÁC THUẬT NGỮ CƠ BẢN TRÊN CÂY Cây là một tập hợp các phần tử gọi là nút (nodes) trong đó có một nút được phân biệt gọi là nút gốc (root). Trên tập hợp các nút này có một quan hệ, gọi là mối quan hệ cha - con (parenthood), để xác định hệ thống cấu trúc trên các nút. Mỗi nút, trừ nút gốc, có duy nhất một nút cha. Một nút có thể có nhiều nút con hoặc không có nút con nào. Mỗi nút biểu diễn một phần tử trong tập hợp đang xét và nó có thể có một kiểu nào đó bất kỳ, thường ta biểu diễn nút bằng một kí tự, một chuỗi hoặc một số ghi trong vòng tròn. Mối quan hệ cha con được biểu diễn theo qui ước nút cha ở dòng trên nút con ở dòng dưới và được nối bởi một đoạn thẳng. Một cách hình thức ta có thể định nghĩa cây một cách đệ qui như sau: 1. Định nghĩa ¾ Một nút đơn độc là một cây. Nút này cũng chính là nút gốc của cây. ¾ Giả sử ta có n là một nút đơn độc và k cây T1, , Tk với các nút gốc tương ứng là n1, , nk thì có thể xây dựng một cây mới bằng cách cho nút n là cha của các nút n1, , nk. Cây mới này có nút gốc là nút n và các cây T1, , Tk được gọi là các cây con. Tập rỗng cũng được coi là một cây và gọi là cây rỗng kí hiệu . Ví dụ: xét mục lục của một quyển sách. Mục lục này có thể xem là một cây Hình III.1 - Cây mục lục một quyển sách Nút gốc là sách, nó có ba cây con có gốc là C1, C2, C3. Cây con thứ 3 có gốc C3 là một nút đơn độc trong khi đó hai cây con kia (gốc C1 và C2) có các nút con. Nếu n1, , nk là một chuỗi các nút trên cây sao cho ni là nút cha của nút ni+1, với i=1 k-1, thì chuỗi này gọi là một đường đi trên cây (hay ngắn gọn là đường đi ) từ n1 đến nk. Độ dài Trang 74