Bài giảng Vật lý đại cương - Chương II: Động lực học chất điểm (Phần 1)
Bạn đang xem tài liệu "Bài giảng Vật lý đại cương - Chương II: Động lực học chất điểm (Phần 1)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
bai_giang_vat_ly_dai_cuong_chuong_ii_dong_luc_hoc_chat_diem.pdf
Nội dung text: Bài giảng Vật lý đại cương - Chương II: Động lực học chất điểm (Phần 1)
- Ch−ơng II động lực học chất điểm Isaac Newton
- 1. Các định luật Niutơn 1.1 Định luật Niutơn thứ nhất: vr Chất điểm cô lậpvr = const Không chịu một tác dụng nμo từ bên ngoμi, chuyển động của nó đ−ợc bảo toμn -> định luật quán tính 1.2. Định luật Niutơn thứ hai:Chuyển động của chất điểm chịu tổng hợp lực F ≠ 0 lμ chuyển động có gia tốc Gia tốc của chất điểm ~ F vμ ~ nghịch với m r r F F≠ 0 →r a ≠ 0 r ar = k r F m a = Trong hệ SI k=1 m
- ơh ac •P− ủ nc ả ơb hc n ì r gt nr ơ r học chất điểm: m a= F • Hệ qui chiếu quán tính: r r Nghiệm đúng Ph−ơng trình m a= F 1.3.Lực tác dụng lên hấtc điểm trong r chuyển động cong a t r r r M r a= at+ n a ar Ft r r r n ar m a= mt a+ n m a r r r r Fn r FFF=t + n F Lực tiếp Lực pháp v 2 dv F= m tuyến Ft = m tuyến n dt R
- r 1.4. Định luật Niutơn thứ ba F r r r 'F A B F 'F r r F+ F ' = 0 Tổng nội lực trong hệ =0 2. Chuyển động t−ơng đối vμ nguyên lý Galilê O’chuyển động dọc theo y y’ r ox với vận tốc V , oy//o’y’, M oz//o’z’ O x1 x2 O’ x’ x Thời gian lμ tuyệt đối: z l=l’ t=t’ z’
- Không gian lμ t−ơng đối: x=x’+oo’=x’+Vt’ y=y’; z=z’=> chuyển động lμ t−ơng đối. Khoảng không gian lμ tuyệt đối: l=l’ x1 =x’1 +Vt’ ; x2 =x’2 +Vt’=> l=x2-x1=x’2-x’1=l’ Phép biến đổi Galilê: x=x’+Vt’; y=y’; z=z’; t=t’ vμ ng−ợc lại x’=x-Vt; y’=y; z’=z; t’=t
- 2.2. Tổng hợp vận tốc vμ gia tốc r r y y’ r= r ' + oo ' r M rrd r'rd d ood ' d r r'r = + = O dt dt dt dt dt ' O’ x’ x r r r ⇒v =v ' + V r z z’ r 'v Vtơ vtốc trong hqc O’ v Vtơ vtốc trong hqc Or V Vtơ vtốc O’ đối với O Véc tơ vận tốc của chất điểm đối với hệ qchiếu O bằng tổng hợp véc tơ vtốc của chất điểm đó đối với hệ qc O’chđộng tịnh tiến đvới hệ qc O vμ vtơ vtốc tịnh tiến của hệ qc O’ đối với hệ qc O
- dr vd v r d ' V r = + ⇒ar a =r ' + A dt dt dt a Vtơ gia tốc M trong hqc O a’ Vtơ gia tốc M trong hqc O’ A Vtơ gia tốc O’ đối với hqc O Véc tơ gia tốc của chất điểm đối với một hệ qchiếu O bằng tổng hợp véc tơ gia tốc của chất điểm đó đối với hệ qc O’chuyển động tịnh tiến đối với hệ qc O vμ vtơ gia tốc tịnh tiến của hệ qc O’ đối với hệ qc O
- 2.3.2.3. NguyênlýtNguyênlýt−−ơngơng đối đối Galilê Galilê r Hệ qui chiếu quán tínhm: r a= F Nếu O’ chuyển động thẳng đều đối với O thìm A=0 ar = mr a ' r r r m a '= m = a F Galilê O’cũng lμ hqc quán tính MọiMọi hệ hệ qui qui chiếuchiếu chuyển chuyển động động thẳng thẳng đềuđều với với hqchqc quán quán tính tính cũng cũng l lμμ hqchqc quán quán tính. tính. Các định luật Niu tơn nghiệm đúng trong mọihệqui chiếuchuyểnđộngthẳng đều đối với hqc quán tính
- Các ph−ơng trình động lực học trong các hệ qui chiếu quán tính có dạng nh− nhau. Các ph−ơng trình cơ học bất biến đối với phép biến đổi Galilê
- 3. động l−ợng vμ Các định lý về động l−ợng r d K r r Định lý I = F r r md vr dt F= m ⇒ a F = r r dt K= ml vμ véc tơ động l−ợngd ( mr vr ) t = F r r r2 r dt Định lýKΔ II K= − K = Fr dt r 2 1 ∫ d K= F dt t1 )2( t Độ biến thiên động l−ợng = r2 r d K= F dt Xung l−ợng của lực ∫ ∫ )1( t Hệ quả: 1 r ΔK r Độ biến thiên động l−ợng/đvị thời = F Δt gian=Lực tác dụng



