Thiết kế hệ thống vận chuyển và phân phối không khí
Bạn đang xem 20 trang mẫu của tài liệu "Thiết kế hệ thống vận chuyển và phân phối không khí", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
thiet_ke_he_thong_van_chuyen_va_phan_phoi_khong_khi.pdf
Nội dung text: Thiết kế hệ thống vận chuyển và phân phối không khí
- CHƯƠNG 6 THIẾT KẾ HỆ THỐNG VẬN CHUYỂN VÀ PHÂN PHỐI KHÔNG KHÍ Hệ thống phân phối và vận chuyển không khí bao gồm các phần như sau: - Hệ thống đường ống gió - Hệ thống các miệng thổi và hút - Quạt gió. 6.1 THIẾT KẾ HỆ THỐNG KÊNH GIÓ Trong hệ thống điều hoà không khí hệ thống kênh gió có chức năng dẫn và phân gió tới các nơi khác nhau tuỳ theo yêu cầu. Nhiệm vụ của người thiết kế hệ thống kênh gió là phải đảm bảo các yêu cầu cơ bản sau : - Ít gây ồn . - Tổn thất nhiệt nhỏ. - Trở lực đường ống bé. - Đường ống gọn, đẹp và không làm ảnh hưởng mỹ quan công trình. - Chi phí đầu tư và vận hành thấp. - Tiện lợi cho người sử dụng. - Phân phối gió cho các hộ tiêu thụ đều. 6.1.1 Hệ thống kênh gió 6.1.1.1 Phân loại Đường ống gió được chia làm nhiều loại dựa trên các cơ sở khác nhau : * Theo chức năng : Theo chức năng người ta chia hệ thống kênh gió ra làm các loại chủ yếu sau : - Kênh cấp gió (Supply Air Duct - SAD) - Kênh hồi gió (Return Air Duct - RAD) - Kênh cấp gió tươi (Fresh Air Duct) - Kênh thông gió (Ventilation Air Duct) - Ống thải gió (Exhaust Air Duct) * Theo tốc độ gió : Theo tốc độ người ta chia ra loại tốc độ cao và thấp, cụ thể như sau : Bảng 6-1 Loại kênh gió Hệ thống điều hòa dân dụng Hệ thống điều hòa công nghiệp Cấp gió Hồi gió Cấp gió Hồi gió - Tốc độ thấp 12,7 m/s - 12,7 - 25,4m/s * Theo áp suất Theo áp suất người ta chia ra làm 3 loại : Áp suất thấp, trung bình và cao như sau : 102
- - Áp suất thấp : 95 mmH2O - Áp suất trung bình : 95 ÷ 172 mmH2O - Áp suất cao : 172 ÷ 310 mmH2O * Theo kết cấu và vị trí lắp đặt : - Kênh gió treo - Kênh gió ngầm 6.1.1.2 Hệ thống kênh gió ngầm - Kênh thường được xây dựng bằng gạch hoặc bê tông và đi ngầm dưới đất. Kênh gió ngầm thường kết hợp dẫn gió và lắp đặt các hệ thống đường nước, điện, điện thoại đi kèm nên gọn gàng và tiết kiệm chi phí nói chung. - Kênh gió ngầm được sử dụng khi không gian lắp đặt không có hoặc việc lắp đặt các hệ thống kênh gió treo không thuận lợi, chi phí cao và tuần hoàn gió trong phòng không tốt. - Kênh gió ngầm thường sử dụng làm kênh gió hồi, rất ít khi sử dụng làm kênh gió cấp do sợ ảnh hưởng chất lượng gió sau khi đã xử lý do ẩm mốc trong kênh, đặc biệt là kênh gió cũ đã hoạt động lâu ngày. Khi xây dựng cần phải xử lý chống thấm kênh gió thật tốt. - Kênh thường có tiết diện chữ nhật và được xây dựng sẵn khi xây dựng công trình. - Hệ thống kênh gió ngầm thường được sử dụng trong các nhà máy dệt, rạp chiếu bóng. Các kênh gió ngầm này có khả năng thu gom các sợi bông tạo điều kiện khử bụi trong xưởng tốt. Vì vậy trong các nhà máy dệt, nhà máy chế biến gỗ để thu gom bụi người ta thường hay sử dụng hệ thống kênh gió kiểu ngầm. 6.1.1.3 Hệ thống ống kiểu treo. Hệ thống kênh treo là hệ thống kênh được treo trên các giá đỡ đặt ở trên cao. Do đó yêu cầu đối với kênh gió treo là : - Kết cấu gọn, nhẹ - Bền và chắc chắn - Dẫn gió hiệu quả, thi công nhanh chóng. Vì vậy kênh gió treo được sử dụng rất phổ biến trên thực tế (hình 6.1). 1- Trần bê tông 5- Thanh sắt đỡ 2- Thanh treo 6- Bông thuỷ tinh cách nhiệt 3- Đoạn ren 7- Ống gió 4- Bu lông + đai ốc 8- Vít nỡ 103
- Hình 6.1 : Hệ thống kênh gió treo * Vật liệu sử dụng : Tole tráng kẽm, inox, nhựa tổng hợp, foam định hình. Trên thực tế sử dụng phổ biến nhất là tôn tráng kẽm có bề dày trong khoảng từ 0,5 ÷ 1,2mm theo tiêu chuẩn qui định phụ thuộc vào kích thước đường ống. Trong một số trường hợp do môi trường có độ ăn mòn cao có thể sử dụng chất dẻo hay inox. Hiện nay người ta có sử dụng foam để làm đường ống : ưu điểm nhẹ , nhưng gia công và chế tạo khó, do đặc điểm kích thước không tiêu chuẩn của đường ống trên thực tế. Khi chế tạo và lắp đặt đường gió treo cần tuân thủ các qui định về chế tạo và lắp đặt. Hiện nay ở Việt nam vẫn chưa có các qui định cụ thể về thiết kế chế tạo đường ống. Tuy nhiên chúng ta có thể tham khảo các qui định đó ở các tài liệu nước ngoài như DW142, SMACNA. Bảng 6.2 trình bày một số qui cách về chế tạo và lắp đặt đường ống gió. Bảng 6.2 : Các qui định về gia công và lắp đặt ống gió Cạnh lớn của ống Thanh sắt Thanh đỡ, Độ dày tôn, mm Khẩu độ giá gió, mm treo, mm mm Áp suất thấp, Áp suất cao đỡ, mm trung bình 400 F6 25x25x3 0,6 0,8 3000 600 F8 25x25x3 0,8 0,8 3000 800 F8 30x30x3 0,8 0,8 3000 1000 F8 30x30x3 0,8 0,8 2500 1250 F10 40x40x5 1,0 1,0 2500 1600 F10 40x40x5 1,0 1,0 2500 2000 F10 40x40x5 1,0 1,2 2500 2500 F12 40x40x5 1,0 1,2 2500 3000 F12 40x40x5 1,2 - 2500 * Hình dạng tiết diện : Hình dáng kênh gió rất đa dạng : Chữ nhật, tròn, vuông, . .vv. Tuy nhiên, kênh gió có tiết diện hình chữ nhật được sử dụng phổ biến hơn cả vì nó phù hợp với kết cấu nhà, dễ treo đỡ, chế tạo, bọc cách nhiệt và đặc biệt các chi tiết cút, xuyệt, chạc 3, chạc 4 . .vv dễ chế tạo hơn các kiểu tiết diện khác. * Cách nhiệt: Để tránh tổn thất nhiệt, đường ống thường bọc một lớp cách nhiệt bằng bông thủy tinh, hay stirofor, bên ngoài bọc lớp giấy bạc chống cháy và phản xạ nhiệt. Để tránh chuột làm hỏng người ta có thể bọc thêm lớp lưới sắt mỏng. - Khi đường ống đi ngoài trời người ta bọc thêm lớp tôn ngoài cùng để bảo vệ mưa nắng - Đường ống đi trong không gian điều hòa có thể không cần bọc cách nhiệt. Tuy nhiên cần lưu ý khi hệ thống mới hoạt động, nhiệt độ trong phòng còn cao thì có khả năng đọng sương trên bề mặt ống. * Ghép nối ống: - Để tiện cho việc lắp ráp, chế tạo, vận chuyển đường ống được gia công từng đoạn ngắn theo kích cỡ của các tấm tôn. Việc lắp ráp thực hiện bằng bích hoặc bằng các nẹp tôn. Bích có thể là nhôm đúc, sắt V hoặc bích tôn. * Treo đỡ: - Việc treo đường ống tùy thuộc vào kết cấu công trình cụ thể : Treo tường, trần nhà, xà nhà . - Khi nối kênh gió với thiết bị chuyển động như quạt, động cơ thì cần phải nối qua ống nối mềm để khử chấn động theo kênh gió. - Khi kích thước ống lớn cần làm gân gia cường trên bề mặt ống gió. - Đường ống sau khi gia công và lắp ráp xong cần làm kín bằng silicon. 104
- 6.1.2 Thiết kế hệ thống kênh gió 6.1.2.1 Các cơ sở lý thuyết 1) Quan hệ giữa lưu lượng và tốc độ gió ra miệng thổi. Nhiệm vụ của người thiết kế hệ thống kênh gió là phải đảm bảo phân bố lưu lượng gió cho các miệng thổi đều nhau. Giả sử tất cả các miệng thổi có kích cỡ giống nhau, để lưu lượng gió ra các miệng thổi bằng nhau ta chỉ cần khống chế tốc độ gió trung bình ở các miệng thổi bằng nhau là được. Lưu lượng gió chuyển động qua các miệng thổi được xác định theo công thức: 3 gx = fx.vx , m /s (6-1) 3 gx - Lưu lượng gió ra một miệng thổi, m /s 2 fx - Tiết diện thoát gió của miệng thổi, m . vx - Tốc độ trung bình của gió ra miệng thổi, m/s 2) Quan hệ giữa cột áp tĩnh trên đường và vận tốc không khí ra các miệng thổi . Tốc độ trung bình vx ở đầu ra miệng thổi được tính theo công thức : vx = gx/fx , m/s (6-2) Thực ra do bị nén ép khi ra khỏi miệng thổi nên tiết diện bị giảm và nhỏ hơn tiết diện thoát gió thực. Theo định luật Becnuli áp suất thừa của dòng không khí (còn gọi là áp suất tĩnh Ht) đã chuyển thành cột áp động của dòng không khí chuyển động ra miệng thổi : 2 px - po = ρ.(β’.vx) /2 = Ht , Pa 2 px, là áp suất tuyệt đối của dòng không khí trong ống dẫn trước miệng thổi, N/m 2 po là áp suất không khí môi trường nơi gió thổi vào, N/m β’ Hệ số thu hẹp dòng phụ thuộc điều kiện thổi ra của dòng không khí 2 Ht - Cột áp tĩnh tại tiết diện nơi đặt miệng thổi , N/m Từ đó rút ra : 2.H v = β '. t , m / s (6-3) x ρ Theo (6-1) và (6-3) có thể nhận thấy để đảm bảo phân bố gió cho các miệng thổi đều nhau người thiết kế phải đảm bảo áp suất tĩnh dọc theo đường ống không đổi là được. Vì vậy thay vì khảo sát tốc độ ra miệng thổi vx (hay gx vì tiết diện của các miệng thổi đều nhau) ta khảo sát phân bố cột áp tĩnh Ht dọc theo đường ống để xem xét với điều kiện nào phân bố cột áp tĩnh sẽ đồng đều trên toàn tuyến ống. 3) Sự phân bố cột áp tĩnh dọc đường ống dẫn gió. Xét một đường ống gió, tốc độ gió trung bình và cột áp tĩnh của dòng không khí tại tiết diện có miệng thổi đầu tiên là ω1 và H1 , của miệng thổi thứ 2 là ω2 và H2 và của miệng thổi thứ n là ωn và Hn (hình 6-2). Trở kháng thủy lực tổng của đường ống là Σ∆p Theo định luật Becnuli ta có : 2 2 H1 + ρω 1 /2 = Hn + ρω n /2 + Σ∆p (6-4) 1 2 n p ϖ p ϖ p ϖ 1 1 2 2 n n 105 H H H 1 v1 2 v2 n vn
- Hình 6.2 : Phân bố cột áp tĩnh dọc theo kênh gió Hay: 2 2 Hn = H1 + ρ(ω 1 - ω n)/2 - Σ∆p Từ đó suy ra : 2 2 ∆H = Hn - H1 = ρ(ω 1 - ω n)/2 - Σ∆p (6-5) 2 2 Thành phần ρ(ω 1 - ω n)/2 gọi là độ giảm cột áp động. Như vậy để duy trì cột áp tĩnh trên tuyến ống không đổi ∆H =0 ta phải thiết kế hệ 2 2 thống kênh gió sao cho ρ(ω 1 - ω n)/2 - Σ∆p = 0 Ta có các trường hợp có thể xãy ra như sau: 2 2 a) Trường hợp ρ(ω 1 - ω n)/2 = Σ∆p : Giảm cột áp động bằng tổng tổn thất trên tuyến ống. Như vậy cột áp động đã biến một phần để bù vào tổn thất trên tuyến ống. Khi đó : H1 = Hn nghĩa là cột áp tĩnh không thay đổi dọc theo đường ống. Đây là trường hợp lý tưởng, tốc độ và lưu lượng ở các miệng thổi sẽ đều nhau. 2 2 b) Trường hợp ρ(ω 1 - ω n)/2 > Σ∆p hay H1 H1 , phần cột áp động dư thừa góp phần làm tăng cột áp tĩnh cuối đường ống, lượng lượng gió các miệng thổi cuối lớn hơn, hay gió dồn vào cuối tuyến ống. Trường hợp này có thể xãy ra khi : - Tốc độ đoạn đầu quá lớn, nên áp suất tĩnh trên trong ống rất nhỏ trong khi tốc độ đoạn cuối nhỏ. Trong một số trường hợp nếu tốc độ đi ngang qua tiết diện nơi lắp các miệng thổi ở đoạn đầu quá lớn thì các miệng thổi đầu có thể trở thành miệng hút lúc đó tạo nên hiện tượng hút kiểu EJectơ. Để khắc phục, cần giảm tốc độ đoạn đầu, tăng tốc độ đoạn cuối. Vì thế khi lưu lượng dọc theo kênh gió giảm thì phải giảm tiết diện tương ứng để duy trì tốc độ gió, tránh không nên để tốc độ giảm đột ngột . - Đường ống ngắn, ít trở lực cục bộ nhưng có nhiều miệng thổi hoặc đoạn rẻ nhánh. Trường hợp này trở lực Σ∆p rất nhỏ, nhưng tốc độ giảm nhanh theo lưu lượng. Để khắc phục cần giảm nhanh tiết diện đoạn cuối nhằm khống chế tốc độ phù hợp. 2 2 c) Trường hợp ρ(ω 1 - ω n)/2 Hn Giảm cột áp động nhỏ hơn tổng tổn thất áp lực trên tuyến ống. Trong trường hợp này gió tập trung vào đầu tuyến ống. Nguyên nhân gây ra có thể là: - Tốc độ đoạn đầu nhỏ, áp suất tĩnh lớn nên lưu lượng gió của các miệng thổi đầu lớn và cuối tuyến ống lưu lượng không đáng kể. - Tổn thất đường ống quá lớn : Đường ống quá dài, có nhiều chổ khúc khuỷu. - Tiết diện đường ống được giảm quá nhanh không tương ứng với mức độ giảm lưu lượng nên tốc độ dọc theo tuyến ống giảm ít, không giảm thậm chí còn tăng. Vì thế cột áp tĩnh đầu tuyến ống lớn hơn cuối tuyến ống. Vì vậy khi thiết kế đường ống cần phải chú ý : - Thiết kế giảm dần tiết diện đường ống dọc theo chiều thổi một cách hợp lý , tuỳ thuộc vào trở lực của đường ống. 4) Sự phân bố cột áp tĩnh trên đường ống hút. Xét một kênh hút, tốc độ trung bình và cột áp tĩnh của dòng không khí tại tiết diện có miệng hút đầu là ω1 và 106
- 12 n p ϖ p ϖ p ϖ 1 1 2 2 n n H H H 1 v1 2 v2 n vn H1 , của miệng hút thứ 2 là ω2 và H2 và của miệng hút thứ n là ωn và Hn . Trở kháng thủy lực tổng của đường ống là Σ∆p Hình 6.3 : Phân bố cột áp tĩnh dọc theo kênh hút Theo định luật Becnuli ta có : 2 2 H1 + ρω 1 /2 = Hn + ρω n /2 + Σ∆p Hay: 2 2 Hn = H1 + ρ(ω 1 - ω n)/2 - Σ∆p Hay : 2 2 ∆H = Hn - H1 = ρ(ω 1 - ω n)/2 - Σ∆p (6-6) 2 2 Để ∆H = 0 ta phải đảm bảo : ρ(ω 1 - ω n)/2 - Σ∆p = 0 Hay nói cách khác tốc độ gió dọc theo chiều chuyển động của dòng không khí phải giảm dần và mức độ giảm phải tương ứng với mức tăng tổn thất Σ∆p. Do lưu lượng dọc theo chiều chuyển động của gió trong kênh hút tăng dần và tốc độ gió cũng phải giảm dần , vì thế tiết diện kênh hút phải lớn dần. 6.1.2.2 Một số vấn đề liên quan tới thiết kế đường ống gió 1) Lựa chọn tốc độ không khí trên đường ống Lựa chọn tốc độ gió có liên quan tới nhiều yếu tố. - Khi chọn tốc độ cao đường ống nhỏ, chi phí đầu tư và vận hành thấp, nhưng trở lực hệ thống lớn và độ ồn do khí động của dòng không khí chuyển động cao. - Ngược lại khi tốc độ bé, đường ống lớn chi phí đầu tư và vận hành lớn, khó khăn lắp đặt, nhưng trở lực bé. Tốc độ hợp lý là một bài toán kinh tế, kỹ thuật phức tạp. Bảng 6.3 dưới đây trình bày tốc độ gió thích hợp dùng để tham khảo lựa chọn khi thiết kế. 107
- Bảng 6.3 : Tốc độ gió trên kênh gió, m/s Khu vực Độ ồn nhỏ Bình thường Ống cấp Ống nhánh Ống đi Ống về Ống đi Ống về - Nhà ở 3 5 4 3 3 - Phòng ngủ 5 7,6 6,6 6 5 - Phòng ngủ k.s và bệnh viện - Phòng làm việc 6 10,2 7,6 8,1 6 - Phòng giám đốc - Thư viện - Nhà hát 4 6,6 5,6 5 4 - Giảng đường - Văn phòng chung 7,6 10,2 7,6 8,1 6 - Nhà hàng, cửa hàng cao cấp - Ngân hàng - Cửa hàng bình thường 9,1 10,2 7,6 8,1 6 - Cafeteria - Nhà máy, xí nghiệp, phân x 12,7 15,2 9,1 11,2 7,6 2) Xác định đường kính tương đương của đường ống Để vận chuyển không khí người ta sử dụng nhiều loại ống gió: Chữ nhật, vuông, ô van, tròn. Tuy nhiên để tính toán thiết kế đường ống gió thông thường người ta xây dựng các giãn đồ cho các ống dẫn tròn. Vì vậy cần qui đổi tiết diện các loại ra tiết diện tròn tương đương, sao cho tổn thất áp suất cho một đơn vị chiều dài đường ống là tương đương nhau, trong điều kiện lưu lượng gió không thay đổi. Đường kính tương đương có thể xác định theo công thức hoặc tra bảng. Để thuận lợi cho việc tra cứu và lựa chọn , người ta đã lập bảng xác định đường kính tương đương của các đường ống dạng chữ nhật nêu ở bảng 6-4. - Đường kính tương đương của tiết diện chữ nhật được xác định theo công thức sau : (a.b) 0,625 d =1,3. , mm (6-7) td (a + b) 0,25 a, b là cạnh chữ nhật, mm Tuy tổn thất giống nhau nhưng tiết diện trên 2 ống không giống nhau 2 S' = a x b > S = π x dtđ / 4 - Đường kính tương đương của ống ô van: A0,625 d =1,55. td (6-8) p0,25 A - Tiết diện ống ô van : A = π x b2 / 4 + b(a-b) a, b là cạnh dài và cạnh ngắn của ô van, mm p Là chu vi mặt cắt : p = π.b + 2(a-b), mm 108
- Bảng 6-4 : Đường kính tương đương của ống chữ nhật a b, mm mm 100 125 150 175 200 225 250 275 300 350 400 450 500 550 600 650 700 750 800 900 100 100 125 122 137 150 133 150 164 175 143 161 177 191 200 152 172 189 204 219 225 151 181 200 216 232 246 250 169 190 210 228 244 259 273 275 176 199 220 238 256 272 287 301 300 183 207 229 248 266 283 299 314 328 350 195 222 245 267 286 305 322 339 354 383 400 207 235 260 283 305 325 343 361 378 409 437 450 217 247 274 299 321 343 363 382 400 433 464 492 500 227 258 287 313 337 360 381 401 420 455 488 518 547 550 236 269 299 326 352 375 398 419 439 477 511 543 573 601 600 245 279 310 339 365 390 414 436 457 496 533 567 598 628 656 650 253 289 321 351 378 404 429 452 474 515 553 589 622 653 683 711 700 261 298 331 362 391 418 443 467 490 533 573 610 644 677 708 737 765 750 268 306 341 373 402 430 457 482 506 550 592 630 666 700 732 763 792 820 800 275 314 350 383 414 442 470 496 520 567 609 649 687 722 755 787 818 847 875 900 289 330 367 402 435 465 494 522 548 597 643 686 726 763 799 833 866 897 927 984 1000 301 344 384 420 454 486 517 546 574 626 674 719 762 802 840 876 911 944 976 1037 1100 313 358 399 437 473 506 538 569 598 652 703 751 795 838 878 916 953 988 1022 1086 1200 324 370 413 453 490 525 558 590 620 677 731 780 827 872 914 954 993 1030 1066 1133 1300 334 382 426 468 506 543 577 610 642 701 757 808 857 904 948 990 1031 1069 1107 1177 1400 344 394 439 482 522 559 595 629 662 724 781 838 886 934 980 1024 1066 1107 1146 1220 1500 353 404 452 495 536 575 612 648 681 745 805 860 913 963 1011 1057 1100 1143 1183 1260 1600 362 415 463 508 551 591 629 665 700 766 827 885 939 991 1041 1088 1133 1177 1219 1298 1700 371 425 475 521 564 605 644 682 718 785 849 908 964 1018 1069 1118 1164 1209 1253 1335 1800 379 434 485 533 577 619 660 698 735 804 869 930 988 1043 1096 1146 1195 1241 1286 1371 1900 387 444 496 544 590 633 674 713 751 823 889 952 1012 1068 1122 1174 1224 1271 1318 1405 2000 395 453 506 555 602 646 688 728 767 840 908 973 1034 1092 1147 1200 1252 1301 1348 1438 2100 402 461 516 566 614 659 702 743 782 857 927 993 1055 1115 1172 1226 1279 1329 1378 1470 2200 410 470 525 577 625 671 715 757 797 874 945 1013 1076 1137 1195 1251 1305 1356 1406 1501 2300 417 478 534 587 636 683 728 771 812 890 963 1031 1097 1159 1218 1275 1330 1383 1434 1532 2400 424 486 543 597 647 695 740 784 826 905 980 1050 1116 1180 1241 1299 1355 1409 1461 1561 2500 430 494 552 606 658 706 753 797 840 920 996 1068 1136 1200 1262 1322 1379 1434 1488 1589 2600 437 501 560 616 668 717 764 810 853 935 1012 1085 1154 1220 1283 1344 1402 1459 1513 1617 2700 443 509 569 625 678 728 776 822 866 950 1028 1102 1173 1240 1304 1366 1425 1483 1538 1644 2800 450 516 577 634 688 738 787 834 879 964 1043 1119 1190 1259 1324 1387 1447 1506 1562 1670 2900 456 523 585 643 697 749 798 845 891 977 1058 1135 1208 1277 1344 1408 1469 1529 1586 1696 109
- 100 125 150 175 200 225 250 275 300 350 400 450 500 550 600 650 700 750 800 900 Tiếp bảng (6-4) a b, mm mm 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 1000 1093 1100 1146 1202 1200 1196 1`25 1312 1300 1244 6 1365 1421 1400 1289 1306 1416 1475 1530 1500 1332 1354 1464 1526 1584 1640 1600 1373 1400 1511 1574 1635 1693 1749 1700 1413 1444 1555 1621 1684 1745 1803 1858 1800 1451 1486 1598 1667 1732 1794 1854 1912 1968 1900 1488 1527 1640 1710 1778 1842 1904 1964 2021 2077 2000 1523 1566 1680 1753 1822 1889 1952 2014 2073 2131 2186 2100 1558 1604 1719 1973 1865 1933 1999 2063 2124 2183 2240 2296 2200 1591 1640 1756 1833 1906 1977 2044 2110 2173 2233 2292 2350 2405 2300 1623 1676 1793 1871 1947 2019 2088 2155 2220 2283 2343 2402 2459 2514 2400 1655 1710 1828 1909 1986 2060 2131 2200 2266 2330 2393 2453 2411 2568 2624 2500 1685 1744 1862 1945 2024 2100 2173 2243 2311 2377 2441 2502 2562 2621 2678 2733 2600 1715 1776 1896 1980 2061 2139 2213 2285 2355 2422 2487 2551 2612 2672 2730 2787 2842 2700 1744 1808 1929 2015 2097 2177 2253 2327 2398 2466 2533 2598 2661 2722 2782 2840 2896 2952 2800 1772 1839 1961 2048 2133 2214 2292 2367 2439 2510 2578 2644 2708 2771 2832 2891 2949 3006 3061 2900 1800 1869 1992 2081 2167 2250 2329 2406 2480 2552 2621 2689 2755 2819 2881 2941 3001 3058 3115 3170 1898 a, mm 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 110
- 3) Tổn thất áp suất trên đường ống gió Có 2 dạng tổn thất áp lực: - Tổn thất ma sát dọc theo đường ống ∆pms - Tổn thất cục bộ ở các chi tiết đặc biệt : Côn, cút, tê, van a. Tổn thất ma sát Tổn thất ma sát được xác định theo công thức : l ρω 2 ∆p = λ. . , mmH O ms d 2 2 (6-9) λ - Hệ số trở lực ma sát l - chiều dài ống, m d - đường kính hoặc đường kính tương đương của ống, m ρ - Khối lượng riêng của không khí, kg/m3 ω - Tốc độ không khí chuyển động trong ống , m/s Hệ số trở lực ma sát có thể tính như sau : * Đối với ống nhôm hoặc tôn mỏng bề mặt bên trong láng và tiết diện tròn 0,3164 5 λ = , khi Re 105 (6-11) trong đó: Re là tiêu chuẩn Reynolds : Re = ωd/ν ν - Độ nhớt động học của không khí , m2/s * Đối với bề mặt nhám 1 λ = (6-12) Re [1,81.log ]2 Re.k1 / d + 7 k1 là hệ số mức độ gồ ghề trung bình, m Bảng 6-5 3 Loại ống k1.10 , mm Kéo liền 0 ÷ 0,2 Mới sạch 3 ÷ 10 Không bị rỉ 6 ÷ 20 Tráng kẽm, mới 10 ÷ 30 * Đối với ống bằng nhựa tổng hợp - Đối với polyetylen 0,323 λ = (6-13) d 0,07 .Re 0,25 0,39 - Đối với vinylpast λ = d 0,01 (6-14) .Re0,25 Việc tính toán theo các công thức tương đối phức tạp, nên người ta đã xây dựng đồ thị để xác tổn thất ma sát, cụ thể như sau: Từ công thức (6-9) ta có thể viết lại như sau : ∆pms = l . ∆p1 (6-15) l - Chiều dài đường ống, m ∆p1 - Tổn thất áp lực trên 1m chiều dài đường ống, Pa/m Người ta đã xây dựng đồ thị nhằm xác định ∆p1 trên hình 6.4. Theo đồ thị này khi biết 2 trong các thông số sau : lưu lượng gió V (lít/s), tốc độ không khí ω (m/s) trong đường ống, 111
- đường kính tương đương dtđ (mm) là xác định được tổn thất trên 1m chiều dài đường ống. Phương pháp xác định theo đồ thị rất thuận lợi và nhanh chóng. Hình 6-4 : Đồ thị xác định tổn thất ma sát b. Tổn thất cục bộ Tổn thất áp lực cục bộ được xác định theo công thức: 2 ∆pcb = ξ.ρω /2 (6-16) Trị số ξ trở lực cục bộ phụ thuộc hình dạng, kích thước và tốc độ gió qua chi tiết. Nếu tốc độ trên toàn bộ ống đều thì có thể xác đinh 2 ∆pcb = ρω /2 x Σξ. (6-17) Có 2 cách xác định tổn thất cục bộ : - Xác định tổn thất cục bộ theo công thức (6-16), trong đó hệ số ξ được xác định cho từng kiểu chi tiết riêng biệt: Cút, côn, Tê, Chạc vv 2 2 ∆pcb = ξ.ρω /2 , N/m - Qui đổi ra độ dài ống thẳng tương đương và xác định theo công thức tổn thất ma sát: 112
- ltđ = ξ.dtđ / λ ∆pc = ltđ . ∆p1 (6-18) Dưới đây chúng tôi lần lượt giới thiệu cách tính tổn thất cục bộ theo 2 cách nói trên. c. Xác định hệ tổn thất cục bộ theo hệ số ξ 2 2 ∆pcb = ξ.ρω /2 , N/m 2 ∆pcb - Tổn thất trở lực cục bộ , N/m ξ - Hệ số trở lực cục bộ. ρ - Khối lượng riêng của không khí. Lấy ρ = 1,2 kg/m3 ω - Tốc độ gió đi qua chi tiết nghiên cứu , m/s c.1 Cút tiết diện tròn R R θ d θ 90° d d (1) (2) (3) Hình 6-5: Cút tiết diện tròn Cút tiết diện tròn có các dạng chủ yếu sau: - Cút 90o tiết diện tròn, cong đều - Cút 90o tiết diện tròn, ghép từ 3÷5 đoạn - Cút 90o nối thẳng góc - Cút tiết diện tròn αo cong đều hoặc ghép. c.1.1- Cút 90o, tiết diện tròn, cong đều . Hệ số trở lực cục bộ ξ được tra theo tỷ số R/d ở bảng 6.6 dưới đây: R - Bán kính cong tâm cút ống, m d - Đường kính trong của ống, m Bảng 6.6 : Hệ số ξ R/d 0,5 0,75 1,0 1,5 2,0 2,5 ξ 0,71 0,33 0,22 0,15 0,13 0,12 Đối với cút khác 90o cần nhân hệ số hiệu chỉnh K cho ở bảng 6.7 dưới đây: Bảng 6.7 : Hệ số xét tới ảnh hưởng của góc cút θ 0o 20o 30o 45o 60o 75o 90o 110o 130o 150o 180o K 0 0,31 0,45 0,60 0,78 0,90 1,00 1,13 1,2 1,28 1,4 c.1.2. Cút 90o, tiết diện tròn, ghép từ 3-5 đoạn Bảng 6.8 : Hệ số ξ Số đoạn Tỷ số R/d 0,5 0,75 1,0 1,5 2,0 5 - 0,46 0,33 0,24 0,19 4 - 0,50 0,37 0,27 0,24 113
- 3 0,98 0,54 0,42 0,34 0,33 R - Bán kính cong tâm cút ống, m d - Đường kính trong của ống, m c.1.3 Cút tiết diện tròn, ghép thẳng góc Bảng 6.9 : Hệ số ξ Góc θ 20o 30o 45o 60o 75o 90o ξ 0,08 0,16 0,34 0,55 0,81 1,2 α- Góc của cút c.2 Cút tiết diện chữ nhật R θ θ (1) (2) θ θ Hình 6-6: Cút tiết diện (3) (4) chữ nhật Trên hình 6-6 là các dạng cút tiết diện chữ nhật có thể có. - Trường hợp 1 : Cút 90o, tiết diện chữ nhật, cong đều. Yêu cầu kỹ thuật là bán kính trong R1 tuỳ chọn, nhưng không nên quá bé. Tối ưu là R1= 0,75W , R2=1,75W và R = 1,25W - Trường hợp 2 : Cút 90o, thẳng góc và không có cánh hướng. Loại này ít dùng trên thực tế. - Trường hợp 3 : Cút 90o, thẳng góc và có các tấm hướng dòng cánh đơn với bước cánh là S, đoạn thẳng của cánh là L - Trường hợp 4 : Cút 90o, thẳng góc và có các cánh hướng dạng khí động, bước cánh S, bán kính cong của cánh là R. c.2.1 Cút 90o, tiết diện hình chữ nhật , cong đều R - Bán kính cong tâm cút ống, mm H - Chiều cao của cút (khi đặt nằm), mm W - Chiều rộng của cút : W = R2 - R1 R1, R2 - Bán kính trong và ngoài của cút, mm Bảng 6.10 : Hệ số ξ R/W H/W 0,25 0,5 0,75 1,0 1,5 2,0 3,0 4,0 5,0 6,0 8,0 0,5 1,5 1,4 1,3 1,2 1,1 1,0 1,0 1,1 1,1 1,2 1,2 0,75 0,57 0,52 0,48 0,44 0,40 0,39 0,39 0,40 0,42 0,43 0,44 1,0 0,27 0,25 0,23 0,21 0,19 0,18 0,18 0,19 0,20 0,27 0,21 1,5 0,22 0,20 0,19 0,17 0,15 0,14 0,14 0,15 0,16 0,17 0,17 2,0 0,20 0,18 0,16 0,15 0,14 0,13 0,13 0,14 0,14 0,15 0,15 114
- Tỷ số tối ưu trong trường hợp này là R/W = 1,25 c.2.2 Cút 90o, tiết diện chữ nhật, thẳng góc, không có cánh hướng Bảng 6.11 : Hệ số ξ H/W θ 0,25 0,5 0,75 1,00 1,5 2,0 3,0 4,0 5,0 6,0 8,0 20o 0,08 0,08 0,08 0,07 0,07 0,07 0,06 0,06 0,05 0,05 0,05 30o 0,18 0,17 0,17 0,16 0,15 0,15 0,13 0,13 0,12 0,12 0,11 45o 0,38 0,37 0,36 0,34 0,33 0,31 0,28 0,27 0,26 0,25 0,24 60o 0,60 0,59 0,57 0,55 0,52 0,49 0,46 0,43 0,41 0,39 0,38 75o 0,89 0,87 0,84 0,81 0,77 0,73 0,67 0,63 0,61 0,58 0,57 90o 1,3 1,3 1,2 1,2 1,1 1,1 0,98 0,92 0,89 0,85 0,83 c.2.3 Cút 90o, tiết diện chữ nhật , thẳng góc, có cánh hướng đơn Bảng 6.12 : Hệ số ξ Kích thước, mm Hệ số ξ No R S L 1* 50 38 19 0,12 2 115 57 0 0,15 3 115 83 41 0,18 trong đó : R - Bán kính cong của cánh hướng, mm S- Bước cánh hướng, mm L- Độ dài phần thẳng của cánh hướng, mm * Số liệu để tham khảo c.2.4 Cút 90o, tiết diện chữ nhật, thẳng góc, có cánh hướng đôi (dạng khí động) Bảng 6.13 : Hệ số ξ TT Kích thước, Tốc độ không khí, m/s mm R S 5 10 15 20 1 50 38 0,27 0,22 0,19 0,17 2 50 38 0,33 0,29 0,26 0,23 3 50 54 0,38 0,31 0,27 0,24 4 115 83 0,26 0,21 0,18 0,16 trong đó: R- Bán kính cong của cánh hướng, mm S - Bước cánh, mm c.3. Côn mở và đột mở Côn mở hay đột mở là chi tiết nơi tiết diện tăng dần từ từ hay đột ngột Trong trường hợp này tốc độ tính theo tiết diện đầu vào 2 A1- Diện tích tiết diện đầu vào, m 2 A2- Diện tích tiết diện đầu ra, m Đối với côn mở và đột mở ta có các trường hợp phổ biến sau : - Côn hoặc đột mở tiết diện tròn 115
- - Côn hoặc đột mở tiết diện chữ nhật A2, ϖ2 A1, ϖ1 A1, ϖ1 A2, ϖ2 θ θ A2, ϖ2 A1, ϖ1 A1, ϖ1 A2, ϖ2 (1) (2) Hình 6-7 : Côn mở và đột thu c.3.1 Côn tiết diện tròn hoặc đột mở tròn (khi θ =180o) Bảng 6.14 : Hệ số ξ Re A2/A1 θ 16o 20o 30o 45o 60o 90o 120o 180o 2 0,14 0,19 0,32 0,33 0,33 0,32 0,31 0,30 0,5.10 4 0,23 0,30 0,46 0,61 0,68 0,64 0,63 0,62 5 6 0,27 0,33 0,48 0,66 0,77 0,74 0,73 0,72 10 0,29 0,38 0,59 0,76 0,80 0,83 0,84 0,83 >16 0,31 0,38 0,60 0,84 0,88 0,88 0,88 0,88 2.105 2 0,07 0,12 0,23 0,28 0,27 0,27 0,27 0,26 4 0,15 0,18 0,36 0,55 0,59 0,59 0,58 0,57 6 0,19 0,28 0,44 0,90 0,70 0,71 0,71 0,69 10 0,20 0,24 0,43 0,76 0,80 0,81 0,81 0,81 >16 0,21 0,28 0,52 0,76 0,87 0,87 0,87 0,87 6.105 2 0,05 0,07 0,12 0,27 0,27 0,27 0,27 0,27 4 0,17 0,24 0,38 0,51 0,56 0,58 0,58 0,57 6 0,16 0,29 0,46 0,60 0,69 0,71 0,70 0,70 10 0,21 0,33 0,52 0,60 0,76 0,83 0,84 0,83 >16 0,21 0,34 0,56 0,72 0,79 0,85 0,87 0,89 trong đó: 2 A1 - Tiết diện đầu vào côn, mm 2 A2- Tiết diện đầu ra, mm Re = 66,34.D.ω D - Đường kính ống nhỏ (đầu vào), mm ω- Tốc độ không khí trong ống nhỏ (đầu vào), m/s θ - Góc côn, đối với đột mở θ = 180o c.3.2 Côn tiết diện chữ nhật hoặc đột mở (khi θ =180o) 116
- Bảng 6.15 : Hệ số ξ A2/A1 θ 16o 20o 30o 45o 60o 90o 120o 180o 2 0,18 0,22 0,25 0,29 0,31 0,32 0,33 0,30 4 0,36 0,43 0,50 0,56 0,61 0,63 0,63 0,63 6 0,42 0,47 0,58 0,68 0,72 0,76 0,76 0,75 >10 0,42 0,49 0,59 0,70 0,80 0,87 0,85 0,86 2 A1 - Tiết diện đầu vào côn, mm 2 A2- Tiết diện đầu ra, mm θ - Góc côn, đối với đột mở θ = 180o c.4. Côn thu và đột thu - Côn thu là nơi tiết diện giảm theo chiều chuyển động của không khí. Côn thu có 2 loại : loại tiết diện thay đổi từ từ và loại tiết diện thay đổi đột ngột (đột thu). Tiết diện côn có thể là loại tròn hay chữ nhật. - Khi tính toán trở lực tính theo tiết diện và tốc độ đầu vào A1, ϖ1 A1, ϖ1 A2, ϖ2 A2, ϖ2 θ θ (1) (3) A1, ϖ1 A2, ϖ2 (2) Hình6-8 : Côn thu và đột thu 2 A1 - Tiết diện đầu vào của côn, mm 2 A2- Tiết diện đầu ra của côn (A2 > A1) , mm θ - Góc côn, o Bảng 6.16 : Hệ số ξ A2/A1 θ 10o 15o-40o 50o-60o 90o 120o 150o 180o 2 0,05 0,05 0,06 0,12 0,18 0,24 0,26 4 0,05 0,04 0,07 0,17 0,27 0,35 0,41 6 0,05 0,04 0,07 0,18 0,28 0,36 0,42 10 0,05 0,05 0,08 0,19 0,29 0,37 0,43 c.5 Đoạn ống hội tụ Đoạn ống hội tụ là đoạn ống góp từ 2 dòng không khí trở lên. Thông thường ta gặp các đoạn ống hội tụ trong các ống hút về, ống thải. Trên hình 6-9 là các trường hợp thường gặp. 117
- Để tính toán trong trường hợp này , tốc độ được chọn là tốc độ đoạn ống ra As, Ls Ac, Lc As, Ls Ac, Lc As, Ls Ac, Lc Ab, Lb Ab, Lb Ab, Lb (1) (2) (3) A 1b , L1b A , L As, Ls Ac, Lc Ac, Lc 1b 1b Ac, Lc θ θ Ab, Lb A 2b , L2b A 2b , L2b (4) (5) (6) Hình 6-9: Đoạn ống hội tụ tiết diện chữ nhật c.5.1 Tê hội tụ: Ống nhánh tròn nối với ống chính chữ nhật Bảng 6.17 : Hệ số ξ, tính cho ống nhánh ω Lb/Lc m/s 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 6 -0,49 -0,21 0,23 0,60 1,27 2,06 2,75 3,70 4,93 5,95 3 Lb - Lưu lượng gió ở nhánh, m /s 3 Lc- Lưu lượng gió tổng (sau khi hội tụ), m /s ω - Tốc độ không khí đầu ra (sau khi hội tụ), m/s * Các giá trị âm chứng tỏ một phần áp suất động biến thành áp suất tĩnh và vượt quá tổn thất c.5.2 Ống nhánh chữ nhật nối với ống chính chữ nhật Bảng 6.18 : Hệ số ξ, tính cho ống nhánh ω Ln/LΣ m/s 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 6 -0,69 -0,21 0,23 0,67 1,17 1,66 2,67 3,36 3,93 5,13 c.5.3 Tê hội tụ : Ống nhánh hướng góc 45o với ống chính chữ nhật Bảng 6.19 : Hệ số ξ , tính cho ống nhánh ω Ln/LΣ m/s 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 6 -0,72 -0,52 -0,23 0,34 0,76 1,14 1,83 2,01 2,90 3,63 118
- c.5.4 Tê hội tụ : Dạng chữ Y , tiết diện chữ nhật. Bảng 6.20.a : Hệ số ξbc , tính cho ống nhánh Ab/As Ab/Ac Lb/Lc 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 0.25 0,25 -0,50 0 0,5 1,2 2,2 3,7 5,8 8,4 11 0,33 0,25 -1,2 -0,40 0,4 1,6 3,0 4,8 6,8 8,9 11 0,5 0,5 -0,50 -0,20 0 0,25 0,45 0,7 1,0 1,5 2,0 0,67 0,5 -1,0 -0,60 -0,2 0,1 0,30 0,6 1,0 1,5 2,0 1,0 0,5 -2,2 -1,50 -0,95 -0,5 0 0,4 0,8 1,3 1,9 1,0 1,0 -0,60 -0,30 -0,1 -0,04 0,13 0,21 0,29 0,36 0,42 1,33 1,0 -1,2 -0,80 -0,4 -0,2 0 0,16 0,24 0,32 0,38 2,0 1,0 -2,1 -1,4 -0,9 -0,5 -0,2 0 0,2 0,25 0,30 2 Ab - Tiết diện nhánh ống, mm 2 As - Tiết diện vào của ông chính, mm 2 Ac- Tiết diện ra của ống chính, mm 3 Lb - Lưu lượng gió ống nhánh, m /s 3 Lc - Lưu lượng tổng đầu ra, m /s ξbc - Hệ số tổn thất cục bộ khi tính theo đường nhánh từ b đến c ξsc - Hệ số tổn thất cục bộ khi tính theo đường nhánh từ s đến c Bảng 6.20.b : Hệ số ξsc , tính cho ống chính Ab/As Ab/Ac Lb/Lc 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 0,75 0,25 0,30 0,30 0,20 -0,10 -0,45 -0,92 -1,5 -2,0 -2,6 1,0 0,5 0,17 0,16 0,10 0 -0,08 -0,18 -0,27 -0,37 -0,46 0,75 0,5 0,27 0,35 0,32 0,25 0,12 -0,03 -0,23 -0,42 -0,58 0,5 0,5 1,20 1,10 0,90 0,65 0,35 0 -0,40 -0,80 -1,3 1,0 1,0 0,18 0,24 0,27 0,26 0,23 0,18 0,10 0 -0,12 0,75 1,0 0,75 0,36 0,38 0,35 0,27 0,18 0,05 -0,08 -0,22 0,5 1,0 0,80 0,87 0,80 0,68 0,55 0,40 0,25 0,08 -0,10 c.5.5 Tê hội tụ chữ Y ống nhánh nghiêng góc θ với ống chính Bảng 6.21 : Hệ số ξ L1b/Lc = L2b/Lc θ 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 15 -2,6 -1,9 -1,3 -0,77 -0,30 0,10 0,41 0,67 0,85 0,97 1,0 30 -2,1 -1,5 -1,0 -0,53 -0,10 0,28 0,69 0,91 1,1 1,4 1,6 45 -1,3 -0,93 -0,55 -0,16 0,20 0,56 0,92 1,3 1,6 2,0 2,3 c.5.6 Tê hội tụ chữ Y đối xứng tiết diện chữ nhật Trong trường hợp đối xứng : R/Wc = 1,5 L1b/Lc = L2b/Lc = 0,5 119
- Bảng 6.22 : Hệ số ξ A1b/Ac 0,5 1,0 ξ 0,23 0,07 c.6 Đoạn rẽ nhánh - Đoạn ống rẽ nhánh là đoạn ống mà dòng phân thành 2 dòng nhỏ trở lên. Trong trường hợp này tính tổn thất theo tốc độ đầu vào của đoạn ống. Trên hình 6-10 trình bày các trường hợp thường gặp của đoạn ống rẽ nhánh, dưới đây là hệ số trở lực cục bộ cho từng trường hợp cụ thể : ϖcc ,L ϖ s ,Ls ϖc ,L c ϖ s ,Ls ϖcc ,L ϖ s ,Ls ϖc ,L c ϖ s ,Ls A c=As A c=A s A c=As A c=A s ϖ b ,L b ϖ b ,L b ϖ b ,L b ϖ b ,L b (1) (2) (3) (4) ,L ,L ,L ,L ϖc c ϖ s ,Ls ϖcc ϖ s ,Ls ϖcc ϖ s ,Ls ϖcc ϖ s ,Ls A c=As A c=A s A c=As W ϖ ,L ϖ ,L ϖ ,L R R=W b b b b b b ϖ b ,L b (5) (6) (7) (8) Hình 6-10 : Đoạn ống rẽ nhánh c.6.1 Tê rẽ nhánh 45o, ống chính và ống nhánh chữ nhật Bảng 6.23 : Hệ số ξ, tính cho ống nhánh ωb/ωc Lb/Lc 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 0,2 0,91 0,4 0,81 0,79 0,6 0,77 0,72 0,70 0,8 0,78 0,73 0,69 0,66 1,0 0,78 0,98 0,85 0,79 0,74 1,2 0,90 1,11 1,16 1,23 1,03 1,86 1,4 1,19 1,22 1,26 1,29 1,54 1,25 0,92 1,6 1,35 1,42 1,55 1,59 1,63 1,50 1,31 1,09 1,8 1,44 1,50 1,75 1,74 1,72 2,24 1,63 1,40 1,17 c.6.2 Tê rẽ nhánh 45o, ống chính và ống nhánh chữ nhật có cánh hướng Bảng 6.24 : Hệ số ξ, tính cho ống nhánh ωb/ωc Lb/Lc 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 0,2 0,61 0,4 0,46 0,61 0,6 0,43 0,50 0,54 0,8 0,39 0,43 0,62 0,53 1,0 0,34 0,57 0,77 0,73 0,68 120
- 1,2 0,37 0,64 0,85 0,98 1,07 0,83 1,4 0,57 0,71 1,04 1,16 1,54 1,36 1,18 1,6 0,89 1,08 1,28 1,30 -1,69 2,09 1,81 1,47 1,8 1,33 1,34 2,04 1,78 1,90 2,40 2,77 2,23 1,92 c.6.3 Tê rẽ nhánh , ống chính và ống nhánh chữ nhật, không có cánh hướng Bảng 6.25 : Hệ số ξ, tính cho ống nhánh ωb/ωc Lb/Lc 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 0,2 1,03 0,4 1,04 1,01 0,6 1,11 1,03 1,05 0,8 1,16 1,21 1,17 1,12 1,0 1,38 1,40 1,30 1,36 1,27 1,2 1,52 1,61 1,68 1,91 1,47 1,66 1,4 1,79 2,01 1,90 2,31 2,28 2,20 1,95 1,6 2,07 2,28 2,13 2,71 2,99 2,81 2,09 2,20 1,8 2,32 2,54 2,64 3,09 3,72 3,48 2,21 2,29 2,57 c.6.4 Tê rẻ nhánh , ống chính và ống nhánh chữ nhật có cánh hướng Bảng 6.26 : Hệ số ξ, tính cho ống nhánh ωb/ωc Lb/Lc 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 0,2 0,58 0,4 0,67 0,64 0,6 0,78 0,76 0,75 0,8 0,88 0,98 0,81 1,01 1,0 1,12 1,05 1,08 1,18 1,29 1,2 1,49 1,48 1,40 1,51 1,70 1,91 1,4 2,10 2,21 2,25 2,29 2,32 2,48 2,53 1,6 2,72 3,30 2,84 3,09 3,30 3,19 3,29 3,16 1,8 3,42 4,58 3,65 3,92 4,20 4,15 4,14 4,10 4,05 c.6.5 Tê rẻ nhánh , ống chính và ống nhánh chữ nhật có nhiều cánh hướng Bảng 6.27.a : Hệ số ξ , tính cho ống nhánh ωb/ωc Lb/Lc 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 0,2 0,60 0,4 0,62 0,69 0,6 0,74 0,80 0,82 0,8 0,99 1,10 0,95 0,90 1,0 1,48 1,12 1,41 1,24 1,21 1,2 1,91 1,33 1,43 1,52 1,55 1,64 1,4 2,47 1,67 1,70 2,04 1,86 1,98 2,47 1,6 3,17 2,40 2,33 2,53 2,31 2,51 3,13 3,25 1,8 3,85 3,37 2,89 3,23 3,09 3,03 3,30 3,74 4,11 Bảng 6.27.b : Hệ số ξ , tính cho ống chính 121
- ωb/ωc 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 ξ 0,03 0,04 0,07 0,12 0,13 0,14 0,27 0,30 0,25 c.6.6 Tê rẻ nhánh , ống chính chữ nhật, ống nhánh tròn Bảng 6.28 : Hệ số ξ , tính cho ống nhánh ωb/ωc Lb/Lc 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 0,2 1,00 0,4 1,01 1,07 0,6 1,14 1,10 1,08 0,8 1,18 1,31 1,12 1,13 1,0 1,30 1,38 1,20 1,23 1,26 1,2 1,46 1,58 1,45 1,31 1,39 1,48 1,4 1,70 1,82 1,65 1,51 1,56 1,64 1,71 1,6 1,93 2,06 2,00 1,85 1,70 1,76 1,80 1,88 1,8 2,06 2,17 2,20 2,13 2,06 1,98 1,99 2,00 2,07 c.6.7 Tê rẻ nhánh , ống chính chữ nhật, ống nhánh tròn có đoạn côn tròn Bảng 6.29 : Hệ số ξ , tính cho ống nhánh ωb/ωc 0,4 0,5 0,75 1,0 1,3 1,5 ξ 0,80 0,83 0,90 1,0 1,1 1,4 c.6.8 Tê chữ Y rẻ nhánh , tiết diện chữ nhật Bảng 6.30.a : Hệ số ξ , tính cho ống nhánh Ab/As Ab/Ac Lb/Lc 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 0,25 0,25 0,55 0,50 0,60 0,85 1,20 1,80 3,10 4,40 6,00 0,33 0,35 0,35 0,50 0,80 1,30 2,00 2,80 3,80 5,00 0,50 0,62 0,48 0,40 0,40 0,48 0,60 0,78 1,10 1,50 0,67 0,52 0,40 0,32 0,30 0,34 0,44 0,62 0,92 1,40 1,00 0,44 0,38 0,38 0,41 0,52 0,68 0,92 1,20 1,60 1,00 0,67 0,55 0,46 0,37 0,32 0,29 0,29 0,30 0,37 1,33 0,70 0,60 0,51 0,42 0,34 0,28 0,26 0,26 0,29 2,00 0,60 0,52 0,43 0,33 0,24 0,17 0,15 0,17 0,21 Bảng 6.30.b : Hệ số ξ , tính cho ống chính Ab/As Ab/Ac Lb/Lc 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 0,25 0,25 -0,10 -0,03 -0,01 0,05 0,13 0,21 0,29 0,38 0,46 0,33 0,25 0,08 0 -0,02 -0,01 0,02 0,08 0,16 0,24 0,34 0,5 0,50 -0,03 -0,06 -0,05 0 0,06 0,12 0,19 0,27 0,35 0,67 0,50 0,04 -0,02 -0,04 -0,03 -0,01 0,04 0,12 0,23 0,37 1,00 0,50 0,72 0,48 0,28 0,13 0,05 0,04 0,09 0,18 0,30 122
- 1,00 1,00 -0,02 -0,04 -0,04 -0,01 0,06 0,13 0,22 0,30 0,38 1,33 1,00 0,10 0 0,01 -0,03 -0,01 0,03 0,10 0,20 0,30 2,00 1,00 0,62 0,38 0,23 0,13 0,08 0,05 0,06 0,10 0,20 c.7 Đoạn ống rẽ nhánh chữ Y đối xứng ϖ ,L 1b 1b ϖ ,L 1b 1b A 1b ϖ cc ,L ϖ cc ,L θ Ac ϖ ,L A 2b 2b 2b ϖ ,L 2b 2b Hình 6-11 : (1) (2) Đoạn ống rẽ nhánh chữ Y đối xứng c.7.1 Đoạn ống chữ Y đối xứng, nhánh rẽ nghiêng với nhánh chính một góc θ Bảng 6.31 : Hệ số ξ ωb/ωc θ 0,1 0,2 0,3 0,4 0,5 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 15o 0,81 0,65 0,51 0,38 0,28 0,20 0,11 0,06 0,14 0,30 0,51 0,76 1,00 30o 0,84 0,69 0,56 0,44 0,34 0,26 0,19 0,15 0,15 0,30 0,51 0,76 1,00 45o 0,87 0,74 0,63 0,54 0,45 0,38 0,29 0,24 0,23 0,30 0,51 0,76 1,00 60o 0,90 0,82 0,79 0,66 0,59 0,53 0,43 0,36 0,33 0,39 0,51 0,76 1,00 90o 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 c.7.1 Đoạn ống chữ Y đối xứng, nhánh rẽ vuông góc nhánh chính Bảng 6.32 : Hệ số ξ A1b/Ac hay A2b/Ac 0,5 1,0 R/Wc 1,5 1,5 L1b/Lc hay L2b/Lc 0,5 0,5 ξ 0,30 0,25 c.8 Tổn thất do các vật chắn - Các vật chắn trên hệ thống đường ống chủ yếu là các van điều chỉnh lưu lượng gió, van chặn lửa Trên hình 6-12 trình bày 3 dạng van điều chỉnh chủ yếu + Van điều chỉnh dạng cánh bướm. + Van điều chỉnh dạng cổng (tròn, chữ nhật) + Van điều chỉnh kiểu lá sách (song song hoặc đối nhau) ϖ oo A A h (1) (2) ϖo 123 (3) (4) (5)
- Hình 6-12: Các dạng vật chắn trên đường ống c.8.1 Van điều chỉnh gió dạng cánh bướm tròn hoặc tiết diện (hình 6-12, 1) * Tiết diện tròn Bảng 6.33 : Hệ số ξ D/Do θ, độ 0o 10o 20o 30o 40o 50o 60o 70o 75o 80o 85o 0,5 0,19 0,27 0,37 0,49 0,61 0,74 0,86 0,96 0,99 1,00 1,00 0,6 0,19 0,32 0,48 0,69 0,94 1,20 1,50 1,70 1,80 1,90 1,90 0,7 0,19 0,37 0,64 1,00 1,50 2,10 2,80 3,50 3,70 3,90 4,1 0,8 0,19 0,45 0,87 1,60 2,60 4,1 6,10 8,40 9,40 10 10 0,9 0,19 0,54 1,20 2,50 5,00 9,60 17,00 30 38 45 50 1,0 0,19 0,67 1,80 4,40 11,00 32,00 113 - - - - D- Đường kính cánh van, mm Do- Đường kính ống, mm θ- Góc nghiêng của cánh điều chỉnh so với tâm ống. * Tiết diện chữ nhật Bảng 6.34 : Hệ số ξ Loại H/W θ, độ 0o 10o 20o 30o 40o 50o 60o 65o 70o Loại 1 1,0 0,13 0,35 1,3 3,6 10 29 80 155 230 Lưu ý : H, W là chiều cao và rộng của tiết diện van. - Loại 1 : Có trục van song song cạnh lớn của ống - Loại 2 : Có trục van song song cạnh bé của ống - θ - Góc nghiêng của trục van với tâm ống c.8.2 Van điều chỉnh dạng cổng tiết diện tròn (hình 6-12, 2) Bảng 6.35 : Hệ số ξ h/D 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 Ah/Ao 0,25 0,38 0,50 0,61 0,71 0,81 0,90 0,96 ξ 35 10 4,6 2,1 0,98 0,44 0,17 0,06 2 Ao - Tiết diện ống dẫn tròn, m 2 Ah - Tiết diện của đoạn ống không bị van điều chỉnh che, m c.8.3 Van điều chỉnh dạng cổng tiết diện chữ nhật (hình 6-12, 3) Bảng 6.36 : Hệ số ξ H/W h/H 0,3 0,4 0,5 0,6 0,7 0,8 0,9 0,5 14 6,9 3,3 1,7 0,83 0,32 0,09 1,0 19 8,8 4,5 2,4 1,2 0,55 0,17 1,5 20 9,1 4,7 2,7 1,2 0,47 0,11 2,0 18 8,8 4,5 2,3 1,1 0,51 0,13 124
- c.8.4 Van điều chỉnh dạng lá sách có các cánh song song (hình 6-12, 4) Van điều chỉnh dạng lá sách cánh song song được biểu thị ở các trường hợp 1,3,4 trên hình 6-12 Bảng 6.37 : Hệ số ξ L/R θ, độ 0o 10o 20o 30o 40o 50o 60o 70o 0,3 0,52 0,79 1,4 2,3 5,0 9 14 32 0,4 0,52 0,85 1,5 2,4 5,0 9 16 38 0,5 0,52 0,92 1,5 2,4 5,0 9 18 45 0,6 0,52 0,92 1,5 2,4 5,4 9 21 45 0,8 0,52 0,92 1,5 2,5 5,4 9 22 55 1,0 0,52 1,00 1,6 2,6 5,4 10 24 65 1,5 0,52 1,00 1,6 2,7 5,4 10 28 102 trong đó : N - Số cánh thẳng song song của van. W - Cạnh song song trục quay của van, mm H- Chiều cao của ống, mm L - Tổng chiều dài của các cánh, mm R- Chu vi đường ống lắp đặt, mm θ- Góc nghiêng của cánh với trục ống. Ta có : L N.W = (6-19) R 2.(H + W ) c.8.5 Van điều chỉnh dạng lá sách có các cánh đối nhau (hình 6-12, 5) Bảng 6.38 : Hệ số ξ L/R θ, độ 0o 10o 20o 30o 40o 50o 60o 70o 0,3 0,52 0,85 2,1 4,1 9 21 73 284 0,4 0,52 0,92 2,2 5,0 11 28 100 332 0,5 0,52 1,00 2,3 5,4 13 33 122 377 0,6 0,52 1,00 2,3 6,0 14 38 148 411 0,8 0,52 1,10 2,4 6,6 18 54 188 495 1,0 0,52 1,20 2,7 7,3 21 65 245 547 1,5 0,52 1,40 3,0 9,0 28 107 361 677 c.9 Tổn thất ở đầu ra của quạt c.9.1 Tổn thất ở đầu ra của quạt khi thổi vào không gian rộng - Chiều dài hiệu dụng Le ω . A L = o o khi ω > 13m/s (6-20) e 4500 A L = o khi ω < 13m/s e 350 (6-21) trong đó : 2 Ab - Diện tích miệng ra của quạt ở vị trí nhỏ nhất, m ωo - Tốc độ không khí trong ống dẫn, m/s 125
- Le - Chiều dài hiệu dụng, m 2 Ao - Diện tích đường ống , m L - Chiều dài của đoạn ống thẳng đầu ra của quạt, m Bảng 6.39 : Hệ số ξ Ab/Ao L/Le 0 0,12 0,25 0,50 > 1 0,4 2,0 1,0 0,40 0,18 0 0,5 2,0 1,0 0,40 0,18 0 0,6 1,0 0,66 0,33 0,14 0 0,7 0,8 0,40 0,14 0 0 0,8 0,47 0,22 0,10 0 0 0,9 0,22 0,14 0 0 0 1,0 0 0 0 0 0 c.9.2 Tổn thất ở đầu ra của quạt khi thổi vào các cút Có 2 dạng đầu hút của quạt - Quạt có 01 cửa hút - Quạt có 02 cửa hút Khi đầu ra của quạt nối với cút liên tục. Ta có 4 trường hợp xãy ra D B A Hình 6-13 : Các vị trí lắp đặt cút đầu ra Bảng 6.40 : Hệ số ξ đầu ra quạt có 1 cửa hút Ab/Ao Vị trí L/Le co 0 0,12 0,25 0,5 > 1,0 A 3,2 2,7 1,8 0,84 0 B 4,0 3,3 2,2 1,0 0 0,4 C 5,8 4,8 3,2 1,5 0 D 5,8 4,8 3,2 1,5 0 A 2,3 1,9 1,3 0,60 0 0,5 B 2,8 2,4 1,6 0,72 0 C 4,0 3,3 2,2 1,0 0 D 4,0 3,3 2,2 1,0 0 A 1,6 1,3 0,88 0,40 0 0,6 B 2,0 1,7 1,1 0,52 0 C 2,9 2,4 1,6 0,76 0 D 2,9 2,4 1,6 0,76 0 A 1,1 0,88 0,60 0,28 0 0,7 B 1,3 1,1 0,72 0,36 0 C 2,0 1,6 1,1 0,52 0 D 2,0 1,6 1,1 0,52 0 126
- A 0,76 0,64 0,44 0,20 0 0,8 B 0,96 0,80 0,52 0,24 0 C 1,4 1,2 0,76 0,36 0 D 1,4 1,2 0,76 0,36 0 Bảng 6.41 : Hệ số ξ đầu ra quạt có 2 cửa hút Ab/Ao Vị trí L/Le co 0 0,12 0,25 0,5 > 1,0 A 3,2 2,7 1,8 0,84 0 B 5,0 4,2 2,8 1,3 0 0,4 C 5,8 4,8 3,2 1,5 0 D 4,9 4,1 2,7 1,3 0 A 2,3 1,9 1,3 0,60 0 0,5 B 3,6 3,0 2,0 0,90 0 C 4,0 3,3 2,2 1,0 0 D 3,4 2,8 1,9 0,88 0 A 1,6 1,3 0,88 0,40 0 0,6 B 2,5 2,1 1,4 0,65 0 C 2,9 2,4 1,6 0,76 0 D 2,5 2,1 1,4 0,65 0 A 1,1 0,88 0,60 0,28 0 0,7 B 1,7 1,4 0,90 0,45 0 C 2,0 1,6 1,1 0,52 0 D 1,7 1,4 0,92 0,44 0 A 0,76 0,64 0,44 0,20 0 0,8 B 1,2 1,0 0,65 0,30 0 C 1,4 1,2 0,76 0,36 0 D 1,2 0,99 0,65 0,31 0 A 0,60 0,48 0,32 0,16 0 0,9 B 0,94 0,80 0,55 0,25 0 C 1,1 0,92 0,78 0,54 0 D 0,95 0,78 0,54 0,24 0 A 0,56 0,48 0,32 0,16 0 1,0 B 0,85 0,70 0,45 0,20 0 C 1,0 0,84 0,56 0,28 0 D 0,85 0,71 0,48 0,24 0 c.10 Tổn thất ở đầu vào của quạt c.10.1 Ống hút tiết diện tròn, nối cút liên tục, cách miệng hút quạt đoạn L Bảng 6.42 : Hệ số ξ R/D L/D 0 2 > 5 0,75 1,4 0,80 0,40 1,0 1,2 0,66 0,33 1,5 1,1 0,60 0,33 2,0 1,0 0,53 0,33 3,0 0,66 0,40 0,22 127
- R - Bán kính cong tâm cút, m D- đường kính ống hút, m L- Khoảng cách từ miệng hút của quạt ly tâm tới cút, m c.10.2 Ống hút tiết diện tròn, nối cút thẳng góc hoặc cút ghép từ nhiều mãnh, cách miệng hút một khoảng L - Cút thẳng góc: Bảng 6.43: Hệ số ξ L/D 0 2 > 5 ξ 3,2 2 1 - Cút thẳng góc ghép từ 3 và 4 đoạn đoạn: Bảng 6.44 : Hệ số ξ R/D L/D R/D L/D 0 2 > 5 0 2 > 5 0,50 2,5 1,6 0,80 0,50 1,8 1,0 0,53 0,75 1,6 1,0 0,47 0,75 1,4 0,80 0,40 1,0 1,2 0,66 0,33 1,0 1,2 0,66 0,33 1,5 1,1 0,66 0,33 1,5 1,1 0,60 0,33 2,0 1,0 0,53 0,33 2,0 1,0 0,53 0,33 3,0 0,8 0,47 0,26 3,0 0,66 0,40 0,22 a) Cút ghép từ 3 mãnh b) Cút ghép từ 4 mãnh c.10.2 Ống hút tiết diện vuông, nối cút cong liên tục qua đoạn ống thẳng dài L và đoạn ống chuyển đổi tiết diện vuông-tròn Bảng 6.45 : Hệ số ξ R/D L/D R/D L/D 0 2,5 > 6 0 2,5 > 6 0,50 2,5 1,6 0,80 0,50 0,80 0,47 0,26 0,75 2,0 1,2 0,66 1,0 0,53 0,33 0,18 1,0 1,2 0,66 0,33 1,5 0,40 0,28 0,16 1,5 1,0 0,57 0,30 2,0 0,26 0,22 0,14 2,0 0,8 0,47 0,26 d. Xác định hệ tổn thất cục bộ theo chiều dài tương đương Theo định nghĩa chiều dài tương đương là chiều dài của đoạn ống thẳng có tiết diện bằng tiết diện tính toán của chi tiết gây nên tổn thất cục bộ, nhưng có tổn thất tương đương nhau . Hay ltđ = ξ.dtđ / λ (6-22) ∆pc = ltđ . ∆p1 d.1 Chiều dài tương đương của cút tròn Bảng 6.46 : Chiều dài tương đương ltđ Dạng cút tròn R/d a = ltđ/d - Cút 90o, cong liên tục 1,5 9 - Cút 90o, ghép từ 3 đoạn 1,5 17 128
- - Cút 90o, ghép từ 5 đoạn 1,5 12 - Cút 45o, ghép từ 3 đoạn 1,5 6 - Cút 45o, cong liên tục 1,5 4,5 - Cút thẳng góc + Có hướng dòng 22 + Không có hướng dòng 65 Trong đó: R - Bán kính cong của tâm cút, mm d- đường kính tiết diện cút, mm d.2 Chiều dài tương đương của cút chữ nhật Bảng 6.47 : Chiều dài tương đương ltđ Dạng cút tròn Hình dạng W/H ltđ/d - Cút cong 90o, không cánh 0,5 5 hướng R=1,25 W 1 7 3 8 6 12 -Cút cong 90o, 1 cánh 0,5 8 hướng dòng, R = 0,75.W 1 10 3 14 6 18 -Cút cong 90o, 2 cánh 0,5 7 hướng dòng, R = 0,75.W 1 8 3 10 6 12 -Cút cong 90o, 3 cánh 0,5 7 hướng dòng, R = 0,75.W 1 7 3 8 6 10 -Cút thẳng góc 90o, có 0,5 8 nhiều cánh hướng 1 10 3 12 6 13 -Cút thẳng góc 90o, nhiều 0,5 6 cánh hướng dạng khí động 1 8 3 9 6 10 6.1.2.3 Tính toán thiết kế đường ống dẫn không khí. 1) Các phương pháp thiết kế kênh gió Cho tới nay có rất nhiều phương pháp thiết kế đường ống gió . Tuy nhiên mỗi phương pháp có những đặc điểm riêng. Lựa chọn phương pháp thiết kế nào là tuỳ thuộc vào đặc điểm công trình, thói quen của người thiết kế và các thiết bị phụ trợ đi kèm đường ống. Người ta thường sử dụng các phương pháp chủ yếu sau đây: - Phương pháp tính toán lý thuyết : Phương pháp này dựa vào các công thức lý thuyết trên đây , nhằm thiết kế mạng đường ống thoả mãn yêu cầu duy trì áp suất tĩnh không đổi. Đây là phương pháp có thể coi là chính xác nhất. Tuy nhiên phương pháp này tính toán khá phức tạp. 129
- - Phương pháp giảm dần tốc độ. Người thiết kế bằng kinh nghiệm của mình chủ động thiết kế giảm dần tốc độ theo chiều chuyển động của không khí trong đường ống. Đây là phương pháp thiết kế tương đối nhanh nhưng phụ thuộc nhiều vào chủ quan người thiết kế. - Phương pháp ma sát đồng đều : Thiết kế hệ thống kênh gió sao cho tổn thất trên 1 m chiều dài đường ống đều nhau trên toàn tuyến, ở bất cứ tiết diện nào và bằng tổn thất trên 1m chiều dài đoạn ống chuẩn. Đây là phương pháp được sử dụng phổ biến nhất, nhanh và tương đối chính xác. - Phương pháp phục hồi áp suất tĩnh Phương pháp phục hồi áp suất tĩnh xác định kích thước của ống dẫn sao cho tổn thất áp suất trên đoạn đó đúng bằng độ gia tăng áp suất tĩnh do sự giảm tốc độ chuyển động của không khí sau mỗi nhánh rẽ . Phương pháp này tương tự phương pháp lý thuyết nhưng ở đây để thiết kế người ta chủ yếu sử dụng các đồ thị. Ngoài các phương pháp trên người ta còn sử dụng một số phương pháp sau đây : - Phương pháp T - Phương pháp tốc độ không đổi - Phương pháp áp suất tổng. 2) Phương pháp thiết kế lý thuyết Nội dung của phương pháp như sau Dựa vào phương trình (6-5) tiến hành thiết kế mạng đường ống đảm bảo áp suất tĩnh không đổi ở tất cả các cửa rẽ nhánh của toàn tuyến ống (∆H=0) . Các bước thiết kế: Bước 1 - Chọn tốc độ đoạn ống đầu tiên ω1 . Dựa vào lưu lượng gió, xác định kích thước của đoạn ống đầu tiên. Bước 2 - Xác định tốc độ các đoạn tiếp theo ω2 dựa vào phương trình : 2 2 ρ(ω 1 - ω 2)/2 - Σ∆p12 = 0 trong đó Σ∆p12 tổng tổn thất áp suất tĩnh từ điểm phân nhánh thứ nhất đến điểm phân nhánh thứ 2, bao gồm tổn thất ma sát và các tổn thất cục bộ. Trong công thức này cần lưu ý là các tổn thất được tính theo tốc độ ω2, vì vậy để xác định ω2 cần phải tính lặp. Dựa vào lưu lượng đoạn kế tiếp, xác định kích thước đoạn đó F2 = L2/ω2 Bước 3 - Tiếp tục xác định tuần tự tốc độ và kích thước các đoạn kế tiếp cho đến đoạn cuối cùng của tuyến ống như đã tính ở bước 2 Phương pháp lý thuyết có các đặc điểm sau: - Các kết quả tính toán chính xác, tin cậy cao. - Tính toán tương đối dài và phức tạp, nên thực tế ít sử dụng. 3) Phương pháp giảm dần tốc độ Nội dung của phương pháp giảm dần tốc độ là người thiết kế bằng kinh nghiệm của mình lựa chọn tốc độ trên cơ sở độ ồn cho phép và chủ động giảm dần tốc độ các đoạn kế tiếp dọc theo chiều chuyển động của không khí. Phương pháp giảm dần tốc độ được thực hiện theo các bước sau : Bước 1 : Chọn tốc độ trên kênh chính trước khi rẽ nhánh ω1. Chủ động giảm dần tốc độ gió dọc theo tuyến ống chính và ống rẽ nhánh ω2, ω3 ωn Bước 2: Trên cơ sở lưu lượng và tốc độ trên mỗi đoạn tiến hành tính toán kích thước của các đoạn đó. Fi = Li/ωi Bước 3 : 130
- Dựa vào đồ thị xác định tổn thất áp suất theo tuyến ống dài nhất (tuyến có trở lực lớn nhất) . Tổng trở lực theo tuyến này là cơ sở để chọn quạt. Phương pháp giảm dần tốc độ có nhược điểm là phụ thuộc nhiều vào chủ quan của người thiết kế, vì thế các kết quả là rất khó đánh giá. Đây là một phương pháp đơn giản, cho phép thực hiện nhanh nhưng đòi hỏi người thiết kế phải có kinh nghiệm. 4) Phương pháp ma sát đồng đều Nội dung của phương pháp ma sát đồng đều là thiết kế hệ thống kênh gió sao cho tổn thất áp suất trên 1m chiều dài đường ống bằng nhau trên toàn tuyến ống. Phương pháp này cũng đảm bảo tốc độ giảm dần và thường hay được sử dụng cho kênh gió tốc độ thấp với chức năng cấp gió, hồi gió và thải gió. Có hai cách tiến hành tính toán - Cách 1 : Chọn tiết diện đoạn đầu nơi gần quạt làm tiết diện điển hình, chọn tốc độ không khí thích hợp cho đoạn đó . Từ đó xác định kích thước, tổn thất ma sát trên 1m chiều dài của đoạn ống điển hình. Giá trị tổn thất đó được coi là chuẩn trên toàn tuyến ống. - Cách 2 : Chọn tổn thất áp suất hợp lý và giữ nguyên giá trị đó trên toàn bộ hệ thống kênh gió. Trên cơ sở lưu lượng từng đoạn đã biết tiến hành xác định kích thước từng đoạn. Cách 2 có nhược điểm là lựa chọn tổn thất thế nào là hợp lý. Nếu chọn tổn thất bé thì kích thước đường ống lớn, nhưng nếu chọn tốc độ lớn sẽ gây ồn, chi phí vận hành tăng. Trên thực tế người ta chọn cách thứ nhất . Sau đây là các bước thiết kế: Bước 1 : Lựa chọn tiết diện đầu làm tiết diện điển hình. Chọn tốc độ cho tiết diện đó và tính kích thước đoạn ống điển hình : diện tích tiết diện f, kích thước các cạnh a,b và đường kính tương đương dtđ. Từ lưu lượng và tốc độ tiến hành xác định tổn thất áp suất cho 1 m ống tiết diện điển hình (dựa vào đồ thị hình 6-4) . Giá trị đó được cố định cho toàn tuyến. Bước 2 : Trên cơ sở tổn thất chuẩn tính kích thước các đoạn còn lại dựa vào lưu lượng đã biết. Người ta nhận thấy với điều kiện tổn thất áp suất không đổi thì với một tỷ lệ % lưu lượng so với tiết diện điển hình sẽ có tỷ lệ phần trăm tương ứng về tiết diện. Để quá trình tính toán được dễ dàng và thuận tiện người ta đã xây dựng mối quan hệ tỷ lệ % tiết diện so với đoạn ống điển hình theo tỷ lệ % lưu lượng cho ở bảng 6-48. Bước 3 : Tổng trở lực đoạn ống có chiều dài tương đương lớn nhất là cơ sở để chọn quạt dàn lạnh. Bảng 6-48 : Xác định tỷ lệ phần trăm tiết diện theo phương pháp ma sát đồng đều Lưu Tiết diện Lưu Tiết diện Lưu Tiết diện Lưu Tiết diện lượng, % % lượng, % % lượng, % % lượng, % % 1 2,0 26 33,5 51 59,0 76 81,0 2 3,5 27 34,5 52 60,0 77 82,0 3 5,5 28 35,5 53 61,0 78 83,0 4 7,0 29 36,5 54 62,0 79 84,0 5 9,0 30 37,5 55 63,0 80 84,5 6 10,5 31 39,0 56 64,0 81 85,5 7 11,5 32 40,0 57 65,0 82 86,0 8 13,0 33 41,0 58 65,5 83 87,0 9 14,5 34 42,0 59 66,5 84 87,5 10 16,5 35 43,0 60 67,5 85 88,5 11 17,5 36 44,0 61 68,0 86 89,5 12 18,5 37 45,0 62 69,0 87 90,0 13 19,5 38 46,0 63 70,0 88 90,5 131
- 14 20,5 39 47,0 64 71,0 89 91,5 15 21,5 40 48,0 65 71,5 90 92,0 16 24,0 41 49,0 66 72,5 91 93,0 17 24,0 42 50,0 67 73,5 92 94,0 18 25,0 43 51,0 68 74,5 93 94,5 19 26,0 44 52,0 69 75,5 94 95,0 20 27,0 45 53,0 70 76,5 95 96,0 21 28,0 46 54,0 71 77,0 96 96,5 22 29,5 47 55,0 72 78,0 97 97,5 23 30,5 48 56,0 73 79,0 98 98,0 24 31,5 49 57,0 74 80,0 99 99,0 25 32,5 50 58,0 75 80,5 100 100 - Phương pháp ma sát đồng đều có ưu điểm là thiết kế rất nhanh, người thiết kế không bắt buộc phải tinh toán tuần tự từ đầu tuyến ống đến cuối mà có thể tính bất cứ đoạn ống nào tuỳ ý, điều này có ý nghĩa trên thực tế thi công ở công trường. - Phương pháp ma sát đồng đều cũng đảm bảo tốc độ giảm dần dọc theo chiều chuyển động, có độ tin cậy cao hơn phương pháp giảm dần tốc độ. - Không đảm bảo phân bố lưu lượng đều trên toàn tuyến nên các miệng thổi cần phải bố trí thêm van điều chỉnh. - Việc lựa chọn tổn thất cho 1m ống khó khăn. Thường chọn ∆p= 0,5 - 1,5 N/m2 cho 1 m ống - Phương pháp ma sát đồng đều được sử dụng rất phổ biến. Ví dụ 1: Giả sử có 08 một kênh gió thổi có 8 miệng thổi với các đặc điểm trên hình 6-14. Lưu lượng yêu cầu cho môi miệng thổi là 0,32 m3/s. Thiết kế hệ thống kênh gió . C 5m D 5m E 5m F 5m G 5m H VÂC VÂC VÂC VÂC VÂC VÂC m m 2 2 1 1 VÂC VÂC B l=0,32 m3/s K m 5 A L=2,56 m3/s Hình 6-14 : Sơ đồ đường ống Bước 1: Chọn và xác định các thông số tiết diện điển hình - Chọn đoạn đầu tiên AB làm tiết diện điển hình. Lưu lượng gió qua tiết diện đầu là 3 L1 = 8 x 0,32 = 2,56 m /s - Chọn tốc độ đoạn đầu ω1 = 8 m/s 2 - Diện tích tiết diện đoạn ống đầu : f1 = L1/ω1 = 2,56 / 8 = 0,32 m - Chọn kích thước đoạn đầu : 800x400mm - Tra bảng (6-3) ta có đường kính tương đương : dtđ = 609mm - Dựa vào lưu lượng L1 = 2560 L/s và dtđ = 609mm tra đồ thị ta được tổn thất ∆p1 = 1,4 Pa/m. Bước 2 : Thiết kế các đoạn ống 132
- Trên cơ sở tỷ lệ phần trăm lưu lượng của các đoạn kế tiếp ta xác định được tỷ lệ phần trăm diện tích của nó, xác định kích thước ai x bi của các đoạn đó, xác định diện tích thực và tốc độ thực. Bảng 6-49 : Kết quả tính toán Đoạn Lưu lượng Tiết diện Tốc độ Kích thước % m3/s % m2 a x b (mm) AB 100 2,56 100 0,32 8 m/s 800 x 400 BC 87,5 2,24 90,2 0,289 7,76 725 x 400 CD 75 1,92 80,5 0,258 7,45 600 x 400 DE 62,5 1,60 70 0,224 7,14 550 x 400 EF 50 1,28 58 0,186 6,90 475 x 400 FG 37,5 0,96 46 0,147 6,52 475 x 300 GH 25 0,64 32,5 0,104 6,15 350 x 300 HK 12,5 0,32 19,5 0,062 5,13 300 x 200 Bước 3 : Tính tổng trở lực Bảng 6.50 Đoạn Chi tiết dtđ , mm Chiều dài, m Chiều dài tương đương, m AB Đường ống 609 5 BC Đường ống 583 12 Cút 4,1 CD Đường ống 533 5 DE Đường ống 511 5 EF Đường ống 476 5 FG Đường ống 410 5 GH Đường ống 354 12 Cút 2,5 HK Đường ống 266 5 Tổng chiều dài tương đương của đoạn AK là 60,6m bao gồm các đoạn ống thẳng và chiều dài tương đương của các cút. Tổng trở lực đường ống : Σ∆p = 60,6 x 1,4 = 84,84 Pa 5) Phương pháp phục hồi áp suất tĩnh Nội dung của phương pháp phục hồi áp suất tĩnh xác định kích thước của ống dẫn sao cho tổn thất áp suất trên đoạn đó đúng bằng độ gia tăng áp suất tĩnh do sự giảm tốc độ chuyển động của không khí sau mỗi nhánh rẽ. Phương pháp phục hồi áp suất tĩnh được sử dụng cho ống cấp gió, không sử dụng cho ống hồi. Về thực chất nội dung của phương pháp phục hồi áp suất tĩnh giống phương pháp lý thuyết , tuy nhiên ở đây người ta căn cứ vào các đồ thị để xác định tốc độ đoạn ống kế tiếp. Các bước tính thiết kế : Bước 1: - Chọn tốc độ hợp lý của đoạn ống chính ra khỏi quạt ω1 và tính kích thước đoạn ống đó. Bước 2: Xác định tốc độ đoạn kế tiếp như sau 0,61 - Xác định tỉ số Ltđ/Q dựa vào tính toán hoặc đồ thị (hình 6-16) cho đoạn ống đầu. trong đó Ltđ - Chiều dài tương đương của đoạn đầu gồm chiều dài thực đường ống cộng với chiều dài tương đương tất cả các cút. 133
- Q - lưu lượng gió trên đoạn đầu 0,61 - Dựa vào tốc độ đoạn đầu ω1 và tỷ số a = Ltđ/Q , theo đồ thị hình (6-13) xác định tốc độ đoạn ống tiếp theo , tức là tốc độ sau đoạn rẽ nhánh thứ nhất ω2. - Xác định kích thước đoạn ống thứ 2 F2 = L2/ω2 Bước 3: Xác định tốc độ và kích thước đoạn kế tiếp như đã xác định với đoạn thứ 2 * Đặc điểm của phương pháp phục hồi áp suất tĩnh - Đảm bảo phân bố lưu lượng đều và do đó hệ thống không cần van điều chỉnh. - Tốc độ cuối tuyến ống thấp hơn nên đảm bảo độ ồn cho phép. - Khối lượng tính toán tương đối nhiều. - Kích thước đường ống lớn hơn các cách tính khác nhất là các đoạn rẽ nhánh, nên chi phí đầu tư cao. Ví dụ 2: Thiết kế hệ thống kênh dẫn gió cho hệ thống kênh gió gồm 4 miệng thổi , mỗi miệng có lưu lượng gió là 0,9 m3/s. Kích thước các đoạn như trên hình 6-15. QUATÛ B C DE 15m 12m 10m 11m A 0,9m3/s 0,9m3/s 0,9m3/s 0,9m3/s Hình 6-15 : Sơ đồ đường ống * Xác định các thông số đoạn đầu - Lựa chọn tốc độ đoạn AB : ω1 = 12 m/s 3 - Lưu lượng gió : Q1 = 4 x 0,9 = 3,6 m /s 2 - Tiết diện đoạn đầu : F1 = 3,6/12 = 0,3m - Kích thước các cạnh 600 x 500mm - Tra bảng ta có đường kính tương đương : dtđ = 598 mm - Tổn thất cho 1m ống : 0,4 Pa/m * Xác định tốc độ và kích thước đoạn tiếp 0,61 0,61 0,61 - Tỷ số a= L/Q : L1/Q = 49 / 7628 = 0,211 0,61 - Xác định ω2 theo đồ thị với ω1 =7628 FPM và L/Q = 0,211 : ω2 = 2000 FPM hay ω2 = 10,16 m/s * Xác định các đoạn kế tiếp một cách tương tự bước 2 và ghi kết quả vào bảng dưới đây Bảng 6-51 : bảng kết quả tính toán 0,61 Tiết diện Lưu lượng Tốc độ Ltđ L/Q m3/s CFM m/s FPM m FT AB 3.6 7628 12 2362 15 49 0.211 BC 2.7 5721 10.16 2000 12 39 0.201 CD 1.8 3814 8.53 1680 10 33 0.214 DE 0.9 1907 7.32 7 11 36 0.360 134
- Hình 6-16 : Đồ thị xác định tốc độ đoạn ống kế tiếp 6.2 THIẾT KẾ HỆ THỐNG MIỆNG THỔI VÀ MIỆNG HÚT 6.2.1 Các cơ sở lý thuyết 6.2.1.1 Cấu trúc luồng không khí trước một miệng thổi * Tình hình chuyển động không khí trong phòng Quá trình trao đổi nhiệt ẩm trong phòng thực hiện chủ yếu nhờ chuyển động của không khí trong phòng, các chuyển động đó bao gồm: - Chuyển động đối lưu tự nhiên : Động lực gây nên chuyển động đối lưu tự nhiên là sự chênh lệch nhiệt độ và độ ẩm giữa các vùng khác nhau trong phòng. Không khí nóng và khô nhẹ hơn nên thoát lên cao và không khí lạnh nặng hơn sẽ chìm xuống. Thực tế chuyển động đối lưu tự nhiên chủ yếu là do chênh lệch nhiệt độ, khi nhiệt độ chênh lệch càng cao thì chuyển động càng mạnh. - Chuyển động đối lưu cưỡng bức : Do quạt tạo nên và đóng vai trò quyết định trong việc trao đổi không khí trong nhà. - Chuyển động khuyếch tán : Ngoài 2 dạng chuyển động đối lưu tự nhiên và cưỡng bức, không khí trong phòng còn tham gia chuyển động khuyếch tán. Chuyển động khuyếch tán là sự chuyển động của không khí đứng yên vào một luồng không khí đang chuyển động. Chuyển động khuếch tán có ý nghĩa lớn trong việc giảm tốc độ của dòng không khí sau khi ra khỏi miệng thổi, làm đồng đều tốc độ không khí trong phòng và gây ra sự xáo trộn cần thiết trên toàn bộ không gian phòng. * Luồng không khí từ một miệng thổi tròn Một dòng không khí thổi vào một thể tích không gian nào đó và choán đầy thể tích ấy gọi là luồng không khí. Khi nghiên cứu luồng không khí được thổi ra từ một miệng thổi tròn đường kính do, tốc độ thổi trung bình ra miệng thổi là vo người ta nhận thấy: 135
- - Do chuyển động khuyếch tán của không khí trong phòng nên tiết diện luồng càng ra xa càng lớn . - Phân bố tốc độ trên luồng ban đầu có dạng hình thang chiều cao là vo, sau chuyển dần dạng tam giác và tốc độ ở tâm giảm dần. y α v o vo v v x o o max d α y xd x Hình 6-17 : Cấu trúc luồng không khí đầu ra miệng thổi Trên hình 6-17 là cấu trúc của luồng không khí ở đầu ra một miệng thổi tròn. Người ta đã xác định được tốc độ của luồng không khí tại một vị trí cách miệng thổi một khoảng x như sau - Đối với miệng thổi tròn + Tốc độ cực đại tại tâm 3,29 v = v max o 2x (6-23) 1 + tgα d o + Tốc độ trung bình 0,645 v = v = 0,2.v TB o 2x max (6-24) 1 + tgα d o - Đối với miệng thổi dẹt Miệng thổi dẹt là miệng thổi mà cạnh lớn lớn gấp ít nhất 5 lần cạnh bé ao > 5.bo + Tốc độ cực đại tại tâm 1,88 vmax = vo 2.x (6-25) 1 + tgα bo + Tốc độ trung bình 0,78 vTB = vo ≈ 0,4.vmax (6-26) 2.x 1 + tgα bo 136
- o α - Là góc khuyếch tán của đoạn đầu : α o = 14 30' với miệng thổi tròn và α o = 12o40' với miệng thổi dẹt. do, bo - Đường kính của miệng thổi tròn và chiều nhỏ của miệng thổi dẹt Muốn luồng không khí đi xa cần chọn m lớn, tốc độ luồng suy giảm chậm và khi cần luồng đi gần thì chọn m nhỏ, luồng suy giảm tốc độ nhanh. Vì vậy trong các xí nghiệp công nghiệp khi không gian điều hòa rộng, tốc độ cho phép lớn có thể chọn miệng thổi dẹt, còn trong các phòng làm việc, phòng ở không gian thường hẹp, trần thấp, tốc độ cho phép nhỏ thì nên chọn miệng thổi kiểu khuyếch tán hoặc có các cánh hướng . 6.2.1.2 Cấu trúc của dòng không khí gần miệng hút. Khác với luồng không khí trước các miệng thổi, luồng không khí trước các miệng hút có 2 đặc điểm khác cơ bản: - Luồng không khí trước miệng thổi có góc khuyếch tán nhỏ, luồng không khí trước miệng thổi chiếm toàn bộ không gian phía trước nó . - Lưu lượng không khí trong luồng trước miệng thổi tăng dần do hiện tượng khuyếch tán , lưu lượng của luồng trước miệng hút coi như không đổi. Do 2 đặc điểm trên nên khi đi ra xa, cách miệng hút một khoảng x nào đó thì tốc độ giảm rất nhanh so với trước miệng thổi. Nên có thể nói luồng không khí trước miệng hút triệt tiêu rất nhanh. Tốc độ trên trục của luồng không khí trước miệng hút xác định theo công thức sau : 2 Vx = kH.vo.(do/x) (6- 27) Vo - Tốc độ không khí tại đầu vào miệng hút, m/s Do - Đường kính của miệng hút X - Khoảng cách từ miệng hút tới điểm xác định KH - Hệ số phụ thuộc dạn miệng hút Bảng 6-52: Xác định hệ số kH Sơ đồ Dạng Tiết diện ngang Tròn, vuông Dẹt - Lắp nhô lên cao Góc khuyếch tán α > 0,06 0,12 180o, mép có cạnh - Lắp sát tường, trần α=180o, Có mặt bích 0,12 0,24 - Lắp ở góc α=90o, bố trí ở góc 0,24 0,48 Từ giá trị kH ta có nhận xét là tốc độ không khí tại tâm luồng trước miệng thổi giảm rất nhanh khi tăng khoảng cách x. Ví dụ dối với miệng thổi tròn, khí bố trí nhô lên khỏi o tường (góc khuyếch tán α > 180 ) khi x=do thì vx = 0,06.vo tốc độ không khí tại tâm luồng chỉ còn 6% tốc độ đầu vào miệng hút. Với các kết quả trên ta có thể rút ra kết luận sau : - Miệng hút chỉ gây xáo động không khí tại một vùng rất nhỏ trước nó và do đó hầu như không ảnh hưởng tới sự luân chuyển không khí ở trong phòng. Vị trí miệng hút không ảnh hưởng tới việc luân chuyển không khí. - Việc bố trí các miệng hút chỉ có ý nghĩa về mặt thẩm mỹ . Để tạo điều kiện hút được đều gió trong phòng và việc thải kiệt các chất độc hại cần tạo ra sự xáo trộn trong phòng nhờ quạt hoặc luồng gió cấp. 6.2.2 Miệng thổi, miệng hút và lựa chọn lắp đặt 6.2.2.1. Yêu cầu của miệng thổi và miệng hút - Có kết cấu đẹp, hài hoà với trang trí nội thất công trình , dẽ dàng lắp đặt và tháo dỡ 137
- - Cấu tạo chắc chắn, không gây tiếng ồn . - Đảm bảo phân phối gió đều trong không gian điều hoà và tốc độ trong vùng làm việc không vượt quá mức cho phép. - Trở lực cục bộ nhỏ nhất. - Có van diều chỉnh cho phép dễ dàng điều chỉnh lưu lượng gió. Trong một số trường hợp miệng thổi có thể điều chỉnh được hướng gió tới các vị trí cần thiết trong phòng. - Kích thước nhỏ gọn và nhẹ nhàng, được làm từ các vật liệu đảm bảo bền đẹp và không rỉ - Kết cấu dễ vệ sinh lau chùi khi cần thiết. 6.2.2.2. Phân loại Miệng thổi và miệng hút có rất nhiều dạng khác nhau. a) Theo hình dạng - Miệng thổi tròn. - Miệng thổi chữ nhật, vuông - Miệng thổi dẹt b) Theo cách phân phối gió - Miệng thổi khuyếch tán - Miệng thổi có cánh điều chỉnh đơn và đôi - Miệng thổi kiểu lá sách - Miệng thổi kiểu chắn mưa - Miệng thổi có cánh cố định. - Miệng thổi đục lổ - Miệng thổi kiểu lưới c) Theo vị trí lắp đặt - Miệng thổi gắn trần. - Miệng thổi gắn tường. - Miệng thổi đặt nền, sàn. d) Theo vật liệu - Miệng thổi bằng thép - Miệng thổi nhôm đúc. - Miệng thổi nhựa. 6.2.2.3 Các loại miệng thổi thông dụng 1) Miệng thổi kiểu khuyếch tán gắn trần (ceiling diffuser) Là loại miệng thổi được sử dụng phổ biến nhất vì đơn giản và bề mặt đẹp. Thường được gắn trên trần, dòng không khí khi đi qua miệng thổi sẽ được khuyếch tán rộng ra theo nhiều hướng nên tốc độ không khí tại vùng làm việc nhanh chóng giảm nhỏ và đồng đều. Nhờ vậy miệng thổi kiểu khuyếch tán thường được sử dụng nhiều trong các công sở, phòng làm việc, phòng ngủ khi mà độ cao laphông thấp. 138
- Hình 6-18 : Cấu tạo miệng thổi khuyếch tán Trên hình 6-18 là cấu tạo của miệng thổi kiểu khuếch tán. Các bộ phận chính gồm phần vỏ và phần cánh. Các cánh nghiêng một góc từ 30, 45 và 60o, nhưng phổ biến nhất là loại nghiêng 45o. Bộ phận cánh có thể tháo rời để vệ sinh cũng như thuận tiện khi lắp miệng thổi. Miệng thổi khuyếch tán có thể có 1, 2, 3 hoặc 4 hướng khuyếch tán (hình 6-19), người thiết kế có thể dễ dàng chọn loại tuỳ ý để bố trí tại các vị trí khác nhau. Ví dụ khi lắp đặt ở giữa phòng chọn loại a, ở tường chọn loại b, ở góc phòng thì chọn loại c, ở cuối hành lanh thì chọn loại d. Miệng thổi khuyếch tán thường có dạng hình vuông, chữ nhật hoặc tròn. Lựa chọn kiểu nào là tuỳ thuộc vào công trình cụ thể và sở thích của khách hàng. Với hình dạng như vậy nên chúng rất dễ lắp đặt lên trần. Có thể phối kết hợp với các bộ đèn hình thù khác nhau tạo nên một mặt bằng trần đẹp. Có thể tham khảo các đặc tính kỹ thuật của miệng thổi khuyếch tán ACD của hãng HT Air Grilles trên bảng 6-50. * Vật liệu - Cánh thường làm từ nhôm định hình dày 1,2 mm hoặc tôn - Khung lầm nhôm định hình dày 1,5mm hoặc tôn - Sơn tĩnh điện theo màu khách hàng a) b) c) d) 6-19 : Các loại miệng thổi kiểu khuyếch tán 2) Miệng thổi có cánh chỉnh đơn và đôi (Single and double Deflection Register) Trên hình 6-20 là miệng thổi cánh chỉnh đơn và cánh chỉnh đôi. Đặc điểm sử dụng : - Thường sử dụng làm miệng hút . Có thể làm miệng thổi khi cần lưu lượng lớn. - Được lắp trên trần, tường hoặc trên ống gió - Khi làm miệng hút cần lắp thêm phin lọc. - Các cánh có thể điều chỉnh góc nghiêng tuỳ theo yêu cầu sử dụng. - Tuỳ theo vị trí lắp đặt mà chọn loại cánh đơn hay cánh đôi cho phù hợp Vật liệu và màu sắc - Cánh làm từ nhôm định hình dày từ 1 đến 1,5mm hoặc tôn. - Khung là từ nhôm định hình dày 1,5mm hoặc 2,0mm hoặc tôn - Sơn tĩnh điện màu trắng hoặc màu khác theo yêu cầu khách hàng. Có thể tham khảo các đặc tính kỹ thuật của miệng thổi có cánh chỉnh đôi ARS của hãng HT Air Grilles trên bảng 6-51. 139
- a) Miệng gió có cánh chỉnh đơn b) Miệng gió có cánh chỉnh đôi Hình 6-20 : Miệng gió có cánh chỉnh 3) Miệng thổi dài khuyếch tán Miệng thổi dài kiểu khuyếch tán làm từ vật liệu nhôm định hình. Có kích thước tương đương các hộp đèn trần nên có khả năng tạo ra mặt bằng trần hài hoà , đẹp. Các cánh hướng cho phép dễ dàng điều chỉnh gió tới các hướng cần thiết trong khoảng 0 đến 180o. Miệng thổi có từ 1 đến 8 khe thổi gió. Kích thước chuẩn của các khe là 20 và 25 mm. Các cánh hướng gió còn đóng vai trò là van chặn, khi cần thiết có thể chặn hoàn toàn một miệng thổi hay một khe bất kỳ. Có thể dễ dàng điều chỉnh cánh hướng ngay cả khi miệng thổi đã được lắp đặt, phù hợp với tất cả các loại trần. Có thể tham khảo các đặc tính kỹ thuật của miệng thổi dài khuyếch tán ALD của hãng HT Air Grilles trên bảng 6-52. a) Miệng thổi có 1 khe gió b) Miệng thổi có 2 khe gió Hình 6-21 : Miệng thổi dài kiểu khuyếch tán 4) Miệng gió dài kiểu lá sách (Linear Bar Grille) Miệng thổi dài kiểu lá sách được thiết kế từ nhôm định hình có khả năng chống ăn mòn cao. Bề mặt được phủ lớp men chống trầy xước. Miệng thổi dài kiểu lá sách được sử dụng rất phổ biến cho hệ thống lạnh, sưởi và thông gió. Nó được thiết kế để cung cấp lưu lượng gió lớn nhưng vẫn đảm bao độ ồn và tổn thất áp suất có thể chấp nhận được. Miệng thổi dài kiểu lá sách được thiết kế chủ yếu lắp đặt trên các tường cao. Có thể sử dụng làm miệng hút hay miệng thổi. Độ nghiêng của cánh từ 0o đến 15o. Khoảng cách chuẩn giữa các tâm cánh là 12mm. Từ phía trước miệng thổi có thể điều chỉnh độ mở của van điều chỉnh phía sau nhờ đinh vít đặt ở góc. 140
- Hình 6-22 : Cấu tạo miệng gió dài kiểu lá sách 5) Miệng gió kiểu lá sách cánh cố định (Fixed louvre Grille ) - AFL Miệng gió kiểu lá sách cánh cố định AFL có thể sử dụng gắn tường hay trần. Nó được thiết kế thường để làm miệng hồi gió và hút xả , có lưu lượng gió lớn, nhưng trở lực và độ ồn bé . Có thể sử dụng làm tấm ngăn cách giữa các phòng mà vẫn đảm bảo thông thoáng. Các cánh miệng gió nghiêng 45o và cách khoảng 18mm từ vật liệu nhôm định hình có độ dày từ 1,0mm đến 1,5mm. Khung làm bằng nhôm định hình hoặc tôn dày 1,5mm. Toàn bộ được sơn tĩnh điện màu trắng hay theo yêu cầu của khách hàng. Hình 6-23 : Cấu tạo miệng gió kiểu lá sách cánh cố định 6) Miệng gió lá sách kiểu chắn mưa cánh đơn * Đặc điểm sử dụng: - Miệng gió lá sách cánh đơn có 2 loại : Loại cánh 1 lớp và cánh 2 lớp (hình 6-22). - Được sử dụng làm miệng thổi gió , miệng hút hoặc tấm ngăn giữa phòng và ngoài trời. Được gắn lên tường bảo vệ cho nơi sử dung không bị ảnh hưởng bởi thời tiết bên ngoài. Miệng gió có thể gắn thêm lưới chắn côn trùng. - Các cánh có độ nghiêng 45o và được cố định. * Vật liệu làm cánh - Cánh được làm từ nhôm định hình hoặc tôn dày 2mm. Khung làm bằng nhôm định hình dày 2÷3mm hoặc tôn. - Toàn bộ được sơn tĩnh điện màu trắng hoặc theo yêu cầu của khách hàng. a) Cánh đơn 1 lớp b) Cánh đơn 2 lớp Hình 6-24 : Miệng gió lá sách kiểu chắn mưa cánh đơn 7) Miệng gió lá sách cánh đôi * Đặc điểm sử dụng: 141
- - Miệng gió lá sách cánh đôi có 2 loại : Loại cánh đôi 1 lớp và cánh đôi 2 lớp (hình 6- 23). - Được sử dụng làm tấm ngăn trên tường, hoặc cửa ra vào tại vị trí ngăn các giữa các nơi sử dụng. Có tác dụng ngăn cách ánh sánh lọt vào nơi sử dụng mà vẫn đảm bảo thông thoáng. * Vật liệu làm cánh - Cánh được làm từ nhôm định hình hoặc tôn dày 1mm. Khung làm bằng nhôm định hình dày 1,5÷2mm hoặc tôn. - Toàn bộ được sơn tĩnh điện màu trắng hoặc theo yêu cầu của khách hàng. a) Cánh đôi 1 lớp b) Cánh đôi 2 lớp Hình 6-25 : Miệng gió lá sách cánh đôi 6.2.2.4 Tính chọn miệng thổi 1) Chọn loại miệng thổi Để chọn loại miệng thổi thích hợp nhất ta căn cứ vào : - Các chỉ tiêu kỹ thuật, đặc tính của từng loại miệng thổi do các nhà sản xuất cung cấp. - Đặc điểm về kết cấu và kiến trúc công trình, trang trí nội thất. - Yêu cầu của khách hàng. 2) Tính chọn miệng thổi a) Căn cứ vào đặc điểm công trình , mặt bằng trần chọn sơ bộ số lượng miệng thổi b) Tính lưu lượng trung bình cho một miệng thổi L L = MT N (6-28) trong đó L - Lưu lượng gió yêu cầu trong không gian điều hoà, m3/s. N - Số lượng miệng thổi. 3 LMT - Lưu lượng gió của một miệng thổi , m /s c) Căn cứu vào lưu lượng và quảng đường đi từ miệng thổi đến vùng làm việc tiến hành tính toán hoặc chọn miệng thổi thích hợp sao cho đảm bảo tốc độ trong vùng làm việc đạt yêu cầu. + Tính tốc độ đầu ra ωo miệng thổi dựa vào công thức (6-23) và (6-25), trong đó vmax = 0,25 m/s và x là khoảng cách từ miệng thổi đến vùng làm việc. Với miệng thổi tròn x 1+ 2 tgα d o (6-29) v = v . o max 3,29 Với miệng thổi dẹt x 1+ 2 tgα b142 v = v . o o max 1,88
- + Kích thước đầu ra của miệng thổi: F = LMT/ωo (6-30) Việc tính toán theo các công thức trên gặp khó khăn là ta không biết được trước góc khuyếch tán α của tất cả các loại miệng thổi. Vì vậy thực tế người ta căn cứ vào quảng đường T từ vị trí miệng thổi đến điểm mà tốc độ gió tại tâm đạt 0,25m/s . Các số liệu này thường được dẫn ra trong các tài liệu của các miệng thổi . Căn cứ vào quảng đường T và lưu lượng gió ta có thể chọn loại miệng thổi thích hợp. Ví dụ : Tính chọn miệng gió cho phòng điều hoà với các thông số : Lưu lượng gió yêu cầu cho L = 0,8 m3/s. Quãng đường đi từ miệng thổi đến vùng làm việc là 3,5m. - Chọn kiểu miệng thổi khuyếch tán lắp trần - Chọn số miệng thổi n = 8 miệng - Lưu lượng gió qua 01 miệng thổi LMT = 0,8 /8 = 0,1 m3/s = 100 Lít/s - Căn cứ vào LMT = 100 Lit/s và T = 3,5m ta chọn loại miệng thổi ACD 150 x 150. Tốc độ gió tại khi vào vùng làm việc ωT = 0,25 m/s - Kích thước cổ miệng thổi 150 x 150 - Kích thước cửa ra miệng thổi : 240 x 240 - Diện tích cửa ra : F = 0,24 x 0,24 = 0,0576 m2 - Tốc độ đầu ra miệng thổi : ωo = 0,1 / 0,0576 = 1,74 m/s 143
- Bảng 6-53: Thông số hoạt động miệng thổi khuyếch tán gắn trần - ACD (Air Ceiling Diffuser)- hãng HT Air Grilles (Singapore) Kích Diện tích Lưu lượng 50 60 70 80 90 100 120 140 160 180 200 250 300 350 400 450 500 600 700 thước đầu (m2) (L/s) vào (mm) SP (Pa) 13 16 18 21 38 43 51 60 98 122 150 x 150 0,0225 NC (dB) 15 18 21 24 31 35 42 46 48 52 T (m) 2,3 2,8 3,1 3,2 3,3 3,5 4,2 4,7 5 6,5 SP (Pa) 10 14 16 22 28 34 41 55 74 200 x 200 0,04 NC (dB) 14 16 19 24 29 35 39 44 51 T (m) 2,5 2,8 2,9 3,2 3,8 4,3 4,8 5,3 5,8 SP (Pa) 3 5 8 13 14 16 25 32 41 57 79 250 x 250 0,0625 NC (dB) 11 14 18 23 27 33 38 39 47 55 65 T (m) 2,2 2,5 2,9 3,3 3,7 4,1 4,5 4,7 5,5 5,9 6,4 SP (Pa) 4 5 6 7 8 12 15 26 35 45 58 64 97 300 x 300 0,09 NC (dB) 15 18 20 21 22 23 27 29 33 37 41 46 51 T (m) 4 4,5 5,2 6 6,5 6,5 8 9,5 10, 12 > > > 5 12 12 12 SP (Pa) 3 5 6 7 9 14 21 25 37 40 43 46 350 x 350 0,1225 NC (dB) 15 16 17 18 20 26 28 33 35 38 42 47 T (m) 4,9 5,2 5,7 6,2 6,9 7,5 8,1 8,6 8,9 9,4 9,9 10, 5 SP (Pa) 3 4 5 6 10 13 17 24 27 39 45 400 x 400 0,16 NC (dB) 10 12 14 17 22 25 28 32 34 40 45 T (m) 5,4 5,6 6,1 6,8 7,3 7,8 8,8 9 9,3 9,9 10, 5 SP (Pa) 4 5 8 11 15 19 22 29 41 54 450 x 450 0,2025 NC (dB) 19 21 23 25 30 35 38 41 48 51 T (m) 7,5 8,5 9,5 10 11 11, > > > > 5 12 12 12 12 SP - Áp suất tĩnh NC - Độ ồn T - Quảng đường đi để đạt tốc độ 0,25 m/s 144
- Bảng 6-54: Thông số hoạt động miệng thổi cánh chỉnh đôi - ASR (Air supply Register) - hãng HT Air Grilles (Singapore) Kích Diện tích Lưu lượng 50 60 70 80 90 100 120 140 160 180 200 250 300 350 400 450 500 600 700 thước (m2) (L/s) (mm) SP (Pa) 13 16 18 21 38 43 51 60 98 122 150 x 150 0,0225 NC (dB) 15 18 21 24 31 35 42 46 48 52 T (m) 2,3 2,8 3,1 3,2 3,3 3,5 4,2 4,7 5 6,5 SP (Pa) 10 14 16 22 28 34 41 55 74 200 x 200 0,04 NC (dB) 14 16 19 24 29 35 39 44 51 T (m) 2,5 2,8 2,9 3,2 3,8 4,3 4,8 5,3 5,8 SP (Pa) 3 5 8 13 14 16 25 32 41 57 79 250 x 250 0,0625 NC (dB) 11 14 18 23 27 33 38 39 47 55 65 T (m) 2,2 2,5 2,9 3,3 3,7 4,1 4,5 4,7 5,5 5,9 6,4 SP (Pa) 4 5 6 7 8 12 15 26 35 45 58 64 97 300 x 300 0,09 NC (dB) 15 18 20 21 22 23 27 29 33 37 41 46 51 T (m) 4 4,5 5,2 6 6,5 6,5 8 9,5 10,5 12 > > > 12 12 12 SP (Pa) 3 5 6 7 9 14 21 25 37 40 43 46 400 x 250 0,1 NC (dB) 15 16 17 18 20 26 28 33 35 38 42 47 T (m) 4,9 5,2 5,7 6,2 6,9 7,5 8,1 8,6 8,9 9,4 9,9 10,5 SP (Pa) 3 4 5 6 10 13 17 24 27 39 45 400 x 400 0,16 NC (dB) 10 12 14 17 22 25 28 32 34 40 45 T (m) 5,4 5,6 6,1 6,8 7,3 7,8 8,8 9 9,3 9,9 10,5 SP (Pa) 600 x 300 0,18 NC (dB) T (m) SP (Pa) 600 x 600 0,36 NC (dB) T (m) SP (Pa) 1200 x 0,54 NC (dB) 450 T (m) SP (Pa) 750 x 750 0,5625 NC (dB) T (m) SP (Pa) 4 5 8 11 15 19 22 29 41 54 1200 x 0,72 NC (dB) 19 21 23 25 30 35 38 41 48 51 600 T (m) 7,5 8,5 9,5 10 11 11,5 > > > > 12 12 12 12 145
- Bảng 6-55: Thông đặc tính kỹ thuật miệng thổi dài kiểu khuyếch tán ALD (Supply Air Linear Diffuser) - HT (Singapore) Số khe Lưu lượng 25 30 40 50 60 70 80 90 100 150 200 250 300 400 500 600 700 800 900 1000 thổi ( L/s) SP (Pa) 2 3 4 6 8,5 11,5 15 18, 22, 49, 81 1 NC (dB) - - - 8 13 15 19 5 5 5 46 T (m) 1,1 1,2 1,3 1,5 2 6 7 23 26 36 > 9 10 12 14 SP (Pa) 2 4 6 8 10 13 16 35 62 96 137 241 2 NC (dB) - 8 11 13 15 17 19 26 30 34 37 43 T (m) 4,1 4,7 5,5 6 6,5 7 7,4 9 10, 12 12 14 7 SP (Pa) 4 5 6 7 9 11 24 42 65 93 164 255 3 NC (dB) - - 8 10 12 14 21 25 29 33 39 43 T (m) 4,3 5 5,7 6,5 7,2 7,8 9,6 11, 12, 14 > > 5 8 14 14 ` SP (Pa) 4 5 5,5 6,5 8 17, 31 51, 72 119 185 265 359 4 NC (dB) - 8 9 11 21 5 38 5 51 60 68 76 84 T (m) 6 6 7 7 9 26 > 46 > > > > > 12 14 > 14 14 14 14 14 14 SP (Pa) 2 3 5 12 20 32 46 80 125 179 242 314 396 487 5 NC (dB) 8 10 13 23 31 37 41 54 60 65 66 68 70 76 T (m) 6 7 8 11 14 > > > > > > > > >14 14 14 14 14 14 14 14 14 SP (Pa) 6 13 20 28 40, 70 102 140 187 242 304 371 6 NC (dB) 18 21 25 34 5 48 57 62 67 70 73 75 T (m) 5 6,5 8 10 41 > > > > > > > 14 > 14 14 14 14 14 14 14 SP (Stactic Pressure, Pa) - Áp suất tĩnh NC (dB) - Độ ồn T (m) - Quảng đường từ miệng thổi đến vị trí tốc độ tâm luồng đạt 0,25 m/s 146
- Bảng 6-56: Thông số hoạt động miệng dài kiểu lá sách - ABL (Air Bar Linear Grille) - hãng HT Air Grilles (Singapore) Kích Diện Lưu lượng thước đầu tích (L/s) 25 30 40 50 60 70 80 90 100 150 200 250 300 400 500 600 700 800 900 100 vào (mm) (m2) 0 SP (Pa) 1 1 3 3 4 5 7 9 10 20 35 55 77 138 208 300 x 150 0,045 NC (dB) - 9 11 12 12 13 14 14 15 17 22 26 36 50 60 T (m) 1 1,2 1,6 1,9 4 4,8 5,4 6,5 6,9 7,8 10, 11, 12, > > 8 6 6 16 16 SP (Pa) 1 1 2 3 4 5 6 12 19 28 41 72 118 160 190 450 x 150 0,0675 NC (dB) 8 9 10 11 12 13 14 15 17 22 32 40 50 56 62 T (m) 1,1 1,5 3,8 4,5 5,1 5,3 6,1 7,3 8,4 9,5 11, > > > > 1 16 16 16 16 SP (Pa) 1 2 3 4 5 7 10 13 19 33 50 71 83 95 600 x 150 0,09 NC (dB) - - - - - 10 14 17 24 33 39 44 51 58 T (m) 2 2,3 2,6 2,9 3,2 4,8 6,4 8 9 13 15 > > > 16 16 16 SP (Pa) 1 1 2 5 7 9 11 17 24 33 53 62 70 89 110 750 x 150 0,1125 NC (dB) 6 8 10 11 13 15 16 23 32 39 41 46 54 58 60 T (m) 2,4 3 3,6 4,4 5,5 6,8 7,4 8,4 12 14 16 > > > >16 16 16 16 SP (Pa) 1 1 1 2 3 6 10 18 28 40 46 53 68 83 900 x 150 0,135 NC (dB) 15 17 17 19 22 24 25 28 34 37 43 45 48 50 T (m) 2 3 4 5 6,3 7,1 8 11 13 15 > > > >16 16 16 16 SP (Pa) 1 1 3 5 7 11 17 24 40 50 60 78 1050x150 0,1575 NC (dB) 15 17 20 23 24 26 31 36 40 43 46 49 T (m) 2,3 2,7 4,1 4,4 4,9 6 6,8 8,5 9 10 11 11,5 SP (Pa) 3 4 5 6 8 13 18 24 27 30 33 1200x150 0,18 NC (dB) 10 13 16 19 25 31 35 39 45 51 56 T (m) 2 2,6 3,3 3,9 5,2 6,5 7,6 8,2 9,4 11 12,2 147
- Bảng 6-57: Thông số hoạt động miệng hút lá sách - AFL (Air fixed Louvres) - hãng HT Air Grilles (Singapore) Kích Diện Lưu thước tích lượng 20 25 30 40 50 60 70 80 90 100 150 200 250 300 400 500 600 700 800 900 100 150 180 đầu vào (m2) (L/s) 0 0 0 (mm) 150x150 0,022 SP (Pa) 4 7 11 20 31 46 62 82 104 128 278 480 5 NC (dB) - - - 11 14 18 21 24 26 29 34 40 200x200 0,04 SP (Pa) 1 1 2 4 8 13 20 27 35 43 94 162 175 336 NC (dB) - - - - - 9 11 14 17 19 26 31 37 39 250x250 0,062 SP (Pa) 1 2 3 4 8 11 14 18 41 70 106 150 252 390 5 NC (dB) - - - - 8 9 10 11 32 39 40 50 57 64 300x300 0,09 SP (Pa) 5 6 7 8 9 10 20 36 54 77 123 153 183 213 243 273 306 NC (dB) - - - - 8 9 22 31 36 42 50 62 74 86 98 110 120 400x250 0,1 SP (Pa) 1 1 2 3 4 7 12 20 33 47 80 123 180 240 313 391 479 NC (dB) - - - - - 8 12 21 25 30 38 41 47 50 53 55 56 400x400 0,16 SP (Pa) 1 1 2 2 4 5 10 12 17 25 45 63 86 112 138 173 380 NC (dB) - - - - - 9 11 13 17 22 27 31 34 38 42 43 53 600x300 0,18 SP (Pa) 1 1 1 1 2 5 10 14 23 35 50 68 86 110 132 289 416 NC (dB) - - - 8 15 22 23 26 32 38 41 47 49 53 57 66 72 1200x25 0,3 SP (Pa) 1 1 1 2 4 8 11 18 24 31 42 48 60 132 188 0 NC (dB) - - 10 13 16 20 21 25 29 32 36 37 41 52 59 600x600 0,36 SP (Pa) 1 2 3 4 7 11 15 20 23 26 29 43 52 NC (dB) 14 19 24 36 43 51 57 62 71 80 88 132 159 750x750 0,562 SP (Pa) 1 1 2 2 4 5 7 9 12 15 35 51 5 NC (dB) 11 14 16 20 21 22 23 24 25 26 36 44 1200x60 0,72 SP (Pa) 1 2 3 5 8 9 11 13 14 21 24 0 NC (dB) 12 14 27 35 41 44 47 53 59 88 106 148
- 6.3 TÍNH CHỌN QUẠT GIÓ 6.3.1 Khái niệm và phân loại quạt Quạt là thiết bị dùng để vận chuyển và phân phối không khí là thiết bị không thể thiếu được trong hệ thống điều hòa không khí và đời sống. Có 2 loại quạt : Loại được lắp đặt trong các máy điều hoà hoặc quạt được sử dụng thông gió. Mỗi quạt đều được đặc trưng bởi 2 thống số cơ bản sau: Lưu lượng gió, V, m3/s, m3/hr Cột áp Hq , Pa hoặc mmH2O * Phân loại - Theo đặc tính khí động + Hướng trục : Không khí vào và ra đi dọc theo trục. Gọn nhẹ có tể cho lưu lượng lớn với áp suất bé. Thường dùng trong hệ thống không có ông gió hoặc ống ngắn + Ly tâm : Đi vào theo hướng trục quay đi ra vuông góc trục quay, cột áp tạo ra do ly tâm. Vì vậy cần có ống dẫn gió mới tạo áp suất lớn. Nó có thể tạo nên luồng gió có áp suất lớn. Trong một số máy ĐHKK dạng Package thường sử dụng quạt ly tâm. - Theo cột áp: + Quạt hạ áp : Hq 3000 Pa - Theo công dụng + Quạt gió + Quạt khói + Quạt bụi + Quạt thông hơi 6.3.2 Các loại quạt gió 6.3.2.1 Quạt ly tâm Quạt ly tâm được chia ra làm các loại sau (hình 6-26): - Quạt ly tâm cánh cong về phía trước (forward Curve - FC) - Quạt ly tâm cánh nghiêng về phía sau (Backward Inclined - BI) - Quạt ly tâm cánh hướng kính (Radial Blade - RB) - Quạt ly tâm dạng ống (Tubular Centrifugal - TC) 149
- (1) (2) (3) (4) Hình 6-26 : Các loại quạt ly tâm Nguyên tắc hoạt động của hầu hết các quạt ly tâm như sau : Không khí được guồng cánh quay hút vào bên trong và ép lên thành vỏ quạt. Vỏ quạt có cấu tạo đặc biệt để biến áp suất động thành áp suất tĩnh lớn ở đầu ra, đồng thời đổi hướng chuyển động của luồng gió. Môtơ dẫn động thường được gắn trực tiếp lên trục quạt hoặc dẫn động bằng đai. Dưới đây là đặc điểm của một số quạt ly tâm thường gặp. 1. Quạt ly tâm cánh cong về phía trước (FC) Quạt ly tâm cánh hướng về phía trước được sử dụng trong các trường hợp cần lưu lượng lớn nhưng áp suất tĩnh thấp. Số lượng cánh của quạt thường nằm từ 24 đến 64 cánh. Khoảng làm việc có hiệu qủa cao (hiệu suất cao) của quạt nằm trong khoảng 30% đến 80% lưu lượng định mức. Hiệu suất có thể đạt tới 70%. Quạt ly tâm có cánh cong về phía trước có các ưu điểm : - Đơn giản nên giá thành rẻ - Tốc độ quay thấp. - Phạm vi hoạt động rộng. Tuy nhiên , quạt FC cũng có nhược điểm là khi cột áp tĩnh thấp có khả năng động cơ bị quá tải, kết cấu cánh không vững chắc. 2. Quạt ly tâm cánh nghiêng về phía sau (BI) Quạt ly tâm cánh hướng sau có 2 dạng cánh đơn và cánh dạng khí động (cánh 2 lớp). Đặc điểm của quạt BI là tốc độ quay lớn, áp suất tạo ra lớn. Do đặc điểm cấu tạo nên hiệu suất quạt BI khá lớn, có thể đạt 80%. Khả năng quá tải của động cơ ít xãy ra do đường đặc tính của công suất đạt cực đại ở gần ngoài vùng làm việc. Khoảng làm việc hiệu quả từ 45% đến 85% lưu lượng định mức. 3. Quạt ly tâm cánh hướng kính (RB) Quạt RB ít được sử dụng trong kỹ thuật do đường kính rôto lớn. Đặc điểm của quạt RB là khả năng tạo áp suất tĩnh lớn , chính vì vậy nó thường được sử dụng để vận chuyển vật liệu dạng hạt. Đường đặc tính công suất N gần như tỷ lệ với lưu lượng, vì thế loại này có thể kiểm soát lưu lượng thông qua kiểm soát năng lượng cung cấp môtơ. Nhược điểm của quạt RB là giá thành cao và hiệu suất không cao. Hiệu suất cực đại có thể đạt 68%. 150
- 4. Quạt ly tâm dạng ống (TC) Quạt ly tâm thổi thẳng (dạng ống) : (Tubular centrifugal fan, in-line centrinfugal fan) Quạt TC gồm một vỏ hình trụ, guồng cánh, cánh, miệng hút và ống côn. Dòng khí đi vào quạt theo trục, qua quạt đổi hướng 90o và bị ép vào vỏ trụ tạo nên áp suất, sau đó lại đổi hướng song song với trục. Quạt TC thoạt trông giống quạt hướng trục nhưng nguyên lý khí đông khác hẳn. Hiệu suất thấp và độ ồn cao, nhưng không thay đổi dòng nên được sử dụng thay cho quạt hướng trục khi cần áp suất cao. 6.3.2.2 Quạt hướng trục : Có 3 loại chủ yếu : - Quạt dọc trục kiểu chong chóng - Dạng ống - Có cánh hướng Hình 6-27 : Các loại quạt hướng trục Đối với quạt hướng trục cácác đặc tính của nó phụ thuộc rất lớn vào tỷ số đường kính chân cánh và đỉnh cánh Rh = Do/D1 1. Quạt hướng trục dạng chong chóng : Sử dụng tương đối rộng rãi, có 3 đến 6 cánh , tỷ số Rh nhỏ hơn 0,15 nên cột áp bé trong khi lưu lượng lớn. Loại quạt ly tâm kiẻu chong chóng thường thêm vành cánh hay vành đĩa phía trước. 2. Quạt hướng trục dạng ống Loại dạng ống thường có 6 đến 9 cánh, đặt trong vỏ trụ, hai đầu uốn cong dạng khí động. Tỉ số Rh không quá 0,3. Quạt có lưu lượng và cột áp lớn so với kiểu chong chóng 3. Quạt có cánh hướng Quạt có cánh hướng cũng có vỏ trụ tương tự quạt dạng ống. Để triệt tiêu dòng xoáy và nắn thẳng dòng phía sau guồng cánh còn có thêm các cánh hướng . Các cánh hướng còn có tác dụng biến một phần áp suất động thành áp suất tĩnh. Quạt có cánh hướng thường có tỉ số Rh > 0,3 , nên có khả năng tạo ra áp suất cao và lưu lượng lớn. Số lượng cánh thường nhiều từ 8 đến 16 cánh. 151
- 6.3.3 Đặc tính quạt và điểm làm việc của quạt trong mạng đường ống. * Đồ thị đặc tính: Đồ thị biểu diễn quan hệ giữa cột áp H và lưu lượng V ứng với số vòng quay n của guồng cánh của quạt gọi là đồ thị đặc tính của quạt. Trên đồ thị đặc tính người ta còn biểu thị các đường tham số khác như đường hiệu suất quạt ηq, đường công suất quạt Nq. * Đặc tính mạng đường ống: Mỗi một quạt ở một tốc độ quay nào đó đều có thể tạo ra các cột áp Hq và lưu lượng V khác nhau ứng với tổng trở lực ∆p dòng khí đi qua Quan hệ ∆p - V gọi là đặc tính mạng đường ống. Trên đồ thị đặc tính điểm A được xác định bởi tốc độ làm việc của quạt và tổng trở lực mạng đường ống gọi là điểm làm việc của quạt. Như vậy ở một tốc độ quay quạt có thể có nhiều chế độ làm việc khác nhau tùy thuộc đặc tính mạng đường ồng. Do đó hiệu suất của quạt sẽ khác nhau và công suất kéo đòi hỏi khác nhau. Nhiệm vụ của người thiết kế hệ thống đường ống là phải làm sao với một lưu lượng V cho trước phải thiết kế đường ống sao cho đạt hiệu suất cao nhất hoặc chí ít càng gần ηmax càng tốt. Hình 6-28 : Đồ thị đặc tính của quạt 6.3.4 Lựa chọn và tính toán quạt gió. Muốn chọn quạt và định điểm làm việc của quạt cần phải tiến hành xác định các đại lượng: - Lưu lượng cần thiết Vq - Cột áp cần thiết Hq Các đại lượng Vq và Hq được xác định thông qua lưu lượng tính toán Vtt và cột áp tính toán Htt. Sau đó cần lưu ý một số yếu tố như : độ ồn cho phép, độ rung nơi đặt máy, nhiệt độ chất khí, khả năng gây ăn mòn kim loại, nồng độ bụi trong khí 1) Lưu lượng tính toán Vtt Lưu lượng tính toán Vtt được xác định tuỳ thuộc vào chức năng của quạt. Đối với hệ thống điều hoà không khí, quạt dàn lạnh, dàn ngưng được lắp đặt kèm theo máy. Ta có thể xác định điểm làm việc dựa vào đường đặc tính của quạt 152
- - Quạt dàn lạnh : Lưu lượng tính toán của quạt dàn lạnh chính là lưu lượng gió cần thiết Lv của thiết bị xử lý không khí đã xác định trong chương 4 Q V = o ;m3/ kg ρ.(I C − I O ) (6-31) Qo - Công suất lạnh của dàn lạnh, W IC, IO - Entanpi của không khí vào ra dàn lạnh, J/kg ρ - Khối lượng riêng của không khí : ρ = 1,2 kg/m3 - Quạt dàn ngưng : Khi qua dàn ngưng chỉ có trao đổi nhiệt không có sự trao đổi ẩm nên lưu lượng không khí được xác định theo công thức Q V = k (6-32) ρ.C p .(t" k − t'k ) trong đó : Qk - Công suất giải nhiệt của dàn ngưng 2) Cột áp tính tóan chính là Htt = Σ∆p 3) Lưu lượng cần thiết của quạt chọn như sau : - Với môi trường sạch : Vq = Vtt - Với quạt hút hay tải liệu : Vq = 1,1 Vtt 4) Cột áp cần tiết của quạt Hq chọn theo áp suất khí quyển và và 273 + t 760 ρ K H q = H tt . . . (6-33) 293 B ρ KK nhiệt độ chất khí o ρk , ρkk khối lượng riêng của chất khí và không khí tính ở 0 C và Bo = 760mmHg - Nếu quạt tải bụi hoặc các vật rắn khác (bông, vải, sợi . . ) thì chọn Hq = 1,1 .(1 + K.N).Htt (6-34) K là hệ số tùy thuộc vào tính chất của bụi N - Nồng độ khối lượng của hổn hợp được vận chuyển Khäúi læåüng váûtcháút taíi (kg/s) N = (6-35) Khäúi læåüng khäng khê saûch(kg/s) 5) Căn cứ vào Vq và Hq tiến hành chọn quạt thích hợp sao cho đường đặc tính H-V có hiệu suất cao nhất (gần ηmax). 6) Định điểm làm việc của quạt và xác định số vòng quay n và hiệu suất của nó. Từ đó tính được công suất động cơ kéo quạt. Khi chọn quạt cần định tốc độ tiếp tuyến cho phép nằm trong khoảng u 1000mm cho phép chọn u < 60m/s 153
- 7) Công suất yêu cầu trên trục -3 Nq = Vq.Hq.10 /ηq , kW (6-36) 3 Trong đó Vq m /s và Hq , Pa Với quạt hút bụi hoặc quạt tải: -3 Nq = 1,2.Vq.Hq.10 /ηq , kW (6-37) 8) Công suất đặt của động cơ: Nđc = Nq .Kdt/ ηtđ ηtđ - Hiệu suất truyền động + Trực tiếp ηtđ = 1 + Khớp mềm : ηtđ = 0,98 + Đai : ηtđ = 0,95 Kdt - Hệ số dự trữ phụ thuộc công suất yêu cầu trên trục quạt. Bảng 6-58 Nq , kW Quạt ly tâm Quạt dọc trục 5 1,10 1,05 Khi chọn quạt phải lưu ý độ ồn. Độ ồn của quạt thường được các nhà chế tạo đưa ra trong các catalogue. Nếu không có catalogue ta có thể kiểm tốc độ dài trên đỉnh quạt. Tốc độ đó không được quá lớn ω = π.D1.n < 40 ÷ 45 m/s * * * 154