Ngôn ngữ tiếng Anh chuyên ngành công nghệ hóa học, công nghệ thực phẩm và công nghệ sinh học
Bạn đang xem 20 trang mẫu của tài liệu "Ngôn ngữ tiếng Anh chuyên ngành công nghệ hóa học, công nghệ thực phẩm và công nghệ sinh học", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- ngon_ngu_tieng_anh_chuyen_nganh_cong_nghe_hoa_hoc_cong_nghe.pdf
Nội dung text: Ngôn ngữ tiếng Anh chuyên ngành công nghệ hóa học, công nghệ thực phẩm và công nghệ sinh học
- GS. TS Nguyễn Thị Hiền (chủ biên). GS.TS. Nguyễn Trọng Đàn; ThS. Lê Thị Lan Chi THE LANGUAGE OF CHEMISTRY,FOOD AND BIOLOGICAL TECHNOLOGY IN ENGLISH (NGÔN NGỮ TIẾNG ANH CHUYÊN NGÀNH CÔNG NGHỆ HÓA HỌC, CÔNG NGHỆ THỰC PHẨM VÀ CÔNG NGHỆ SINH HỌC) ĐẠI HỌC BÁCH KHOA HÀ NỘI 2009
- LỜI NÓI ĐẦU Cuốn sách Tiếng Anh “The language of Chemistry, Food and Biological Technology in English” (TACN) được biên soạn để cung cấp những kiến thức cơ bản thuộc các chuyên ngành Hóa, Thực phẩm và Công nghệ sinh học. Cuốn sách này có thể dùng làm tài liệu cho sinh viên và các bạn đọc quan tâm đến các chuyên ngành trên. Cuốn sách được chia làm bốn phần chính theo kinh nghiệm các giáo trình tiếng Anh chuyên ngành Hóa, Thực phẩm của các trường Đại học kỹ thuật Hóa Thực phẩm Praha Tiệp Khắc, Ba Lan, Nga, Úc, Anh. Phần 1: Các bài khóa cơ bản - gồm 60 bài khóa giới thiệu bức tranh toàn cảnh của chuyên ngành Hóa, Thực phẩm và Công nghệ sinh học. Từ các ngành Hóa đến các nguyên tố; từ kỹ thuật ngành Hóa nói chung đến việc chưng cất hoặc khái niệm tạo ra một sản phẩm cụ thể nói riêng trong các lĩnh vực khoa học về công nghệ thực phẩm và công nghệ sinh học, với các ngôn từ và kết cấu quan trọng, cách diễn đạt bằng tiếng Anh. Phần 2: Tóm tắt ngữ pháp tiếng Anh áp dụng trong khoa học - đó là thứ ngữ pháp mang đặc thù của ngành với cách viết tắt, cách đọc các công thức hóa học, các nguyên tố hóa học, cách phát âm các từ chuyên ngành có gốc La tinh, Hy lạp. Phần 3: Bài tập - gồm một số bài tập để luyện cách phát âm, cách đọc các từ viết tắt, công thức hóa học, các nguyên tố hóa học, số và phân số, các bài dịch Anh-Việt, Việt-Anh và một số bài kiểm tra để người đọc tự đánh giá khả năng ngôn ngữ của mình, tăng khả năng dịch và đọc tiếng Anh chuyên ngành. Phần 4: Từ vựng - bao gồm các từ và các cụm từ đã dùng trong các bài khóa được liệt kê theo thứ tự A, B, C. Nghĩa của từ và cụm từ là nghĩa văn cảnh của ngành khoa học có liên quan đến các bài khóa. Hệ thống phiên âm quốc tế cũng được dùng để giúp cho việc tự học và tra cứu của người đọc và độc giả có thể hiểu và đọc chính xác các từ tiếng Anh chuyên môn này. Mỗi bài ở phần 1 có kết cấu như sau: (i) Bài khóa giới thiệu chủ đề (ii) Bài tập: A- Đọc và dịch từ tiếng Anh sang tiếng Việt B- Trả lời câu hỏi theo nội dung bài khóa C- Dịch từ tiếng Việt sang tiếng Anh Khi biên soạn cuốn TACN, các tác giả chú ý cung cấp ngữ liệu của ngành Hóa, Thực phẩm và Công nghệ sinh học trong những ngôn cảnh của chuyên ngành này giúp người đọc hình thành các kỹ năng đọc hiểu với các cấu trúc cơ bản nhất hay gặp trong các tài liệu khoa học. Các câu hỏi theo nội dung bài học nhằm giúp người học phát triển kỹ năng nghe nói. Các câu dịch bước đầu chuẩn bị cho người học hình thành kỹ năng viết theo văn phong khoa học của ngành. Mặc dầu cuốn sách này đã bắt đầu được biên soạn từ những năm 1980, đưa vào dạy sinh viên ngành Công nghệ lên men từ nhưng năm 1990 và cho đến nay được hoàn chỉnh dần phục vụ chính thức cho sinh viên chính quy từ năm 1997. Cuốn sách được biên soạn gồm 40 bài khóa và 20 bài đọc thêm với các chuyên ngành hẹp với mong muốn dạy cho sinh viên từ học kỳ 5 đến học kỳ 8, mỗi học kỳ 45 tiết. Cùng với mỗi bài khóa có bài luyện và ôn ngữ pháp cơ bản, như vậy sinh viên học đến năm thứ 5 chuyên ngành sẽ có thể đọc sách kỹ thuật tốt hơn nhiều. Việc biên soạn cuốn sách này cũng không tránh khỏi khiếm khuyết,với lần in thứ nhất vào dịp 45 năm ĐHBK Hà nội và lần thứ 2 tại Nhà xuất bản KHKT và dùng giảng dạy cho các trường Đại Học và Cao đẳng có hiệu quả từ Bắc đến Nam và đến nay tác giả đã nhận được sự góp ý xây dựng của độc giả và người học . Chúng tôi đã rút king nghiệm dậy trên 10 năm qua và có bỏ sung, sửa chữa dể cuốn sách này bổ ích nhất cho Sinh viên ngành chuyên môn tương ứng học và bạn học, đọc khác quan tâm. GS.TS. NGUYỄN THỊ HIỀN Nguyên chủ nhiệm Bộ Môn CNSH-Thực phẩm. Đại Học Bách Khoa Hà Nội Hà Nội 2009 2
- LỜI CẢM ƠN Cuốn sách “The language of Chemistry, Food and Biological Technology in English” được biên soạn dành cho sinh viên ngành Hóa học - Thực phẩm – CN Sinh học, các độc giả ở Việt Nam có quan tâm đến ngành học này cùng các ngành khác có liên quan. Tập thể tác giả: GS.TS. Nguyễn Thị Hiền, GS. Nguyễn Trọng Đàn, Ths. Lê Thị Lan Chi (thư ký) xin chân thành cảm ơn sự giúp đỡ của: - Ban giám hiệu trường Đại học bách khoa Hà Nội - Ban chủ nhiệm khoa Công nghệ Hóa học - Thực phẩm - Sinh học trường Đại học bách khoa Hà Nội - Bộ môn Công nghệ Sinh học thực phẩm trường Đại học bách khoa Hà Nội - Đặc biệt cám ơn GS. Nguyễn Trọng Đàn - Trưởng khoa tiếng Anh trường đại học ngoại thương Hà Nội, GS.TS. Lưu Duẩn - ĐHBK Hồ Chí Minh và GS.TS. Nguyễn Trọng Cẩn - ĐH Thủy sản Nha Trang đã tạo điều kiện cho chủ biên biên soạn phần chính cuốn sách. - Nhà xuất bản khoa học kỹ thuật. Tập thể tác giả cảm ơn các thầy cô, các bạn đồng nghiệp trong và ngoài trường, các bạn sinh viên đã đóng góp nhiều ý kiến và khích lệ chúng tôi trong việc hoàn thiện cuốn sách. Tập thể tác giả mong nhận được sự góp ý xây dựng cho cuốn sách được hoàn chỉnh hơn trong những lần tái bản sau này. Mong rằng cuốn sách sẽ trở thành công cụ hữu ích cho sinh viên và các độc giả khác. Các tác giả 3
- CONTENT Page number Introduction 2 PART 1: THE BASIC UNITS 7 Unit 1: Chemistry and Its Branches 8 Unit 2: Hydrogen 10 Unit 3: Water 12 Unit 4: Classification of Matter 14 Unit 5: Solutions 16 Unit 6: Isolation and Purification of Substances 18 Unit 7: The Rate of Chemical Reactions 20 Unit 8: Hydrocarbons 22 Unit 9: Equipments of Chemical Laboratory 25 Unit 10: Chemical Nomenclature 27 Unit 11: Water treatment 29 Unit 12: Types of Reactors 32 Unit 13: Relationship of Chemical Industry to Other Industries 34 Unit 14: Inventories 36 Unit 15: The Laboratory Notebook 37 Unit 16: Study Outline of Chemistry 40 Unit 17: Sewage Treatment 44 Unit 18: Safety in the Laboratory 47 Unit 19: Chemical Engineering 48 Unit 20: Gas Manufacture 50 Unit 21: Sulfuric Acid 52 Unit 22: Glass 54 Unit 23: Rapid method of Determination of Potassium in Minerals 56 Unit 24: The use of Radioactive Elements as Tracers 58 Unit 25: Acetone 60 Unit 26: Acetic acid 62 Unit 27: M- Bromonitrobenzene 64 Unit 28: Synthetic Rubber 66 Unit 29: Classification of Fuels 68 Unit 30: Petroleum 70 Unit 31: Main Biological Molecules 72 Unit 32: Study Outline of Microorganisms 75 Unit 33: Food Manufacture and Nutrition 80 Unit 34: Jellies, Jams, Preserves, Marmalades and Fruit butters 83 Unit 35: The Importance of Biotechnology 85 Unit 36: The Development Strategy of a Microbial Process 88 Unit 37: Bioreactor 92 Unit 38: Ethyl Alcohol 95 Unit 39: Distillation 97 Unit 40: Beer and Ale 99 Unit 41: Post-harvest System 101 4
- Unit 42: Secondary Processing - Cereal Based Foods 105 Unit 43: Processing Techniques and Equipment 108 Unit 44: Introduction to Biscuit - Making 111 Unit 45: Vegetable Processing 114 Unit 46: Introduction to Food Safety 118 Unit 47: Some Main Operations of Cane Sugar Production 121 Unit 48: Methods of Oil Extraction and Processing 124 Unit 49: Tea, Coffee and Cocoa 128 Unit 50: Meat and Fish Products 132 Unit 51: Traditional Fermented Milk Products 135 Unit52: General Principles for Industrial Production of Microbial Extracellular Enzymes 139 Unit 53: Citric Acid (C6H8O7) 143 Unit 54: Plant and Animal Cell Cultures 146 Unit 55: Antibiotics 151 Unit 56: Single-Cell Protein: Production, Modification and 156 Utilization Unit 57. Immobilization of Enzyme and Cells 158 Unit 58 : Genetic Manipulation- Isolation and Transfer of 161 Cloned Genes Unit 59 : Biologica Regulation and Process Control 163 Unit 60: Product Recovery in Biotechnology 167 PART 2: GRAMMAR 155 I. Abbreviation 156 II. Reading chemical and mathematical signs and Formulas 156 III. Một số qui luật phát âm 157 IV. Sự tạo thành danh từ số nhiều của một số danh từ đặc biệt 160 V. Mức độ so sánh 160 VI. Đại từ quan hệ 160 VII. Đại từ không xác định “some, any, no” 161 VIII. Cách đọc số từ 165 IX. Động từ nguyên mẫu và trợ động từ 166 X. Động từ thể hiện thay đổi trạng thái 170 XI. Các thì, thể cách của động từ 171 XII. Điều kiện cách 175 XIII. Giả định thức 175 XIV. Động từ nguyên thể 175 XV. Phân từ 177 XVI. Danh động từ 179 XVII. Thể bị động 180 XVIII. Các loại câu - thứ tự - cách chia 181 XIX. Câu phức hợp có các mệnh đề chỉ 181 XX. There is; there are 183 XXI. Sự biến đổi của một số loại từ 183 XXII. Các tiếp đầu ngữ cơ bản 184 XXIII. Các tiếp vị ngữ 184 PART 3: THE EXERCISES 187 Exercise 1 - 33 188 5
- Table of Elements 199 PART 4: VOCABULARY 201 Reference 169 6
- PART 1 THE BASIC UNITS CÁC BÀI KHÓA CƠ BẢN 7
- UNIT 1 : CHEMISTRY AND ITS BRANCHES Chemistry is the science of substances - of their structure, their properties, and the reactions that change them into other substances. The study of chemistry may be divided into the following branches: - General chemistry, which is an introduction to the entire science. - Qualitative analysis, giving the methods of testing for the presence of chemical substances. - Quantitative analysis, giving the methods of accurate determination of the amounts of different substances present in a sample of material. - Inorganic chemistry, which is the chemistry of elements other than carbon, and their compounds. - Organic chemistry, which is the chemistry of the compounds of carbon. - Physical chemistry, which studies the quantitative relations among the properties of substances and their reactions. - Biochemistry, which is the chemistry of the substances comprising living organisms. - Structural chemistry, which deals with the molecular structure and its relation to the properties of substances. - Radiochemistry, which is the chemistry of radioactive elements and of reactions involving the nuclei of atoms. - Industrial chemistry, which is concerned with industrial processes. Although chemistry is a very large and complex subject, which still continues to grow as new elements are discovered or made, new compounds are synthesized, and new principles are formulated. The chemists or chemical engineers need to have some knowledge of all its branches, even if he may be specialized in a particular line. Chemistry science cannot do without physics and mathematics, and is also closely linked to some other sciences, e.g. inorganic chemistry is linked closely to geology, mineralogy, and metallurgy, while organic chemistry is linked to biology in general. EXERCISES A. Read and translate into Vietnamese substances, reaction, chemistry, analysis, method, determination, material, inorganic, element, compound, organic, biochemistry, organism, molecular, radioactive, nuclei, industrial, atom, processes, synthesized, engineer, specialized, particular, accurate, mathematics, closely, geology, mineralogy, metallurgy, comprise, biology, concerned, knowledge, continue, sample B. Answer the following questions 1. Give the definition of chemistry. 2. Which are the main branches of chemistry? 3. What is the difference between qualitative and quantitative analysis? 4. What is the difference between inorganic and organic chemistry? 5. What does physical chemistry study? 6. What does structural chemistry deal with? 7. What is radiochemistry? 8. Which branches of chemistry are you interested in? 9. Is it necessary for you to have some knowledge of all branches of chemistry? 10. Can chemistry as a science do without physics and mathematics? C. Translate into English 1. Hóa học là khoa học về vật chất riêng biệt. 2. Hóa học được chia thành những ngành nào? 3. Toán học là khoa học về số, còn vật lí nghiên cứu ánh sáng và nhiệt. 4. Hóa học công nghiệp quan tâm đến gì? 8
- UNIT 2 : HYDROGEN Hydrogen, the first element in the periodic table, is a very widely distributed element. Its most important compound is water, H2O. Hydrogen is found in most of substances, which constitute living matter: sugar, starch, fats, and proteins. It occurs in petroleum, petrol, and other hydrocarbon mixtures. It is also contained in all acids and alkalis. There are more compounds of hydrogen known than of any other element. Pure hydrogen is a colorless, odorless, tasteless gas. It is the lightest of all gases, density being about 1/14 that of air, viz. 0.08987 gm.per liter. It does not support respiration, but is not poisonous. Hydrogen is a good conductor of heat as compared with other gases. Its specific heat is also higher than most other gases. Hydrogen is a combustible gas, burning in air or oxygen with a nearly colorless flame to form water vapor. Hydrogen also readily combines with fluorine and chlorine, less readily with bromine, iodine, sulfur, phosphorus, nitrogen, and carbon. The element is made commercially by the electrolysis of water, and is used in large quantities in the manufacture of ammonia, in the hydrogenation of liquid fats to form solid fats, and in the production of high temperatures. In the laboratory hydrogen may be easily prepared by the reaction of an acid as sulfuric acid, with a metal such as zinc: H2SO4 + Zn = H2 + ZnSO4 Hydrogen may be set free also by the action of certain metals on water. Thus sodium and potassium react with cold water, producing sodium hydroxide and hydrogen. Boiling water may be readily decomposed by ordinary magnesium powder, while steam is decomposed by heated magnesium, zinc, iron, cobalt, lead, tin, and nickel, but not by silver or copper. Hydrogen is evolved by the action of zinc, magnesium and iron on dilute hydrochloric and sulfuric acid on aluminum and tin. A solution of caustic soda or potash readily dissolves zinc or aluminum on warming, with evolution of hydrogen and formation of a soluble zincate or aluminate. EXERCISES A. Read and translate into Vietnamese hydrogen, periodic, distributed, water, constitute, proteins, petroleum, petrol, hydrocarbon, alkalis, gases, density, combustible, oxygen, vapor, readily, combine, fluorine, chlorine, bromine, iodine, nitrogen, sulfur, electrolysis, ammonia, hydrogenation, liquid, production, laboratory, sulfuric acid, zinc, sodium, potassium, hydroxide, decompose, magnesium, iron, cobalt, lead, tin, nickel, copper, dilute, concentrated, hydrochloric acid, aluminum, solution, caustic, potash, dissolve, evolution, soluble, zincate, aluminate. B. Answer the following questions 1. Where does hydrogen occur? 2. What are the properties of hydrogen? 3. What elements does hydrogen/ less/ readily combine with? 4. How can hydrogen be prepared? 5. What are its uses? Say a few sentences about hydrogen. C. Translate into English 1. Hydro là chất khí không màu, là thành phần chủ yếu cấu tạo nên nước. 2. Trong tự nhiên hydro không tồn tại ở trạng thái tự do, nhưng tồn tại rất nhiều hợp chất hydro. 3. Hydro là một chất rất quan trọng cho công nghiệp hóa học, nó được sử dụng rất nhiều trong quá trình sản xuất như: sản xuất muối amôn, quá trình hydrogen hóa dầu thành mỡ. 9
- UNIT 3 : WATER Water is one of the most important of all chemical substances. It is the chief constituent of living matter. Its physical properties are strikingly different from those of other substances. Ordinary water is impure, it usually contains dissolved salts and dissolved gases, and sometimes organic matter. For chemical work water is purified by distillation. Pure tin vessels and pipes are often used for storing and transporting distilled water. Glass vessels are not satisfactory, because the alkaline constituents of glass slowly dissolve in water. Distilling apparatus and vessels made of fused silica are used in making very pure water. The impurity, which is hardest to keep out of water, is carbon dioxide, which dissolves readily from the air. The physical properties of water. Water is a clear, transparent liquid, colorless in thin layers. Thick layers of water have a bluish-green color. Pure water freezes at 0oC, and boils at 100oC. These temperatures are means of identifying water, for no other substance has these freezing and boiling points. The physical properties of water are used to define many physical constants and units. The unit of mass in the metric system is chosen so that 1 cm3 of water at 4oC/ the temperature of its maximum density/ weighs 1.00000 gram. A similar relation holds in the English system: 1 cu. Ft. of water weighs approximately 1,000 ounces. Steam and ice Steam is water in the gaseous state. A cubic inch of water gives about a cubic foot of steam. When gaseous water is mixed with other gases, as in the air, we speak of it as water vapor; when unmixed, we call it steam. Water may exist as steam at temperature lower than 100oC, provided the pressure is less than the usual atmospheric pressure of 15 pounds per square inch. If water is cooled sufficiently, it solidifies at 00C to ice. There is considerable expansion during the solidification, and consequently ice is lighter than an equal volume of water. If we apply heat to ice, it melts. The water that runs off the melting ice is at a temperature of 00C, the same temperature as the ice. EXERCISES A. Read and translate into Vietnamese constituent, properties, strikingly, ordinary, impure, contain, purified, distillation, pure, vessel, pipe, distilled, alkaline, apparatus, fused, silica, impurity, carbon dioxide, air, transparent, bluish-green, identify, temperature, define, unit, weigh, approximately, ounce, gaseous, cubic, inch, pressure, atmospheric, square, sufficiently, equal, volume, ice, steam. B. Answer the following questions 1. Why is water important to a human beings? 2. What are the characteristic properties of water? 3. Are glass vessels satisfactory for storing and transporting distilled water? 4. Where does carbon dioxide readily dissolve from? 5. What is the color of water? 6. How is the unit of mass in the metric system chosen? 7. What is steam? 8. What is the difference between steam and vapor? 9. What is ice? C. Translate into English 1. Nước bình thường là một chất không tinh khiết, bao gồm các hợp chất khác nhau, vì vậy nó được tinh chế bằng chưng cất. 2. Điểm sôi và điểm đóng băng là những tính chất đặc trưng của nước, và được sử dụng để xác định nó. 3. Nước đóng băng được gọi là nước đá. 4. Nếu chúng ta đem đun sôi nứơc lên trên 1000C, nó biến thành hơi. 10
- UNIT 4 : CLASSIFICATION OF MATTER Different materials may be distinguished by their properties, the most obvious of which is the physical state, or state of aggregation, on the basis of which all materials are classified as solids, liquids, and gases. The characteristic feature of gas is that its molecules are not held together, but move about freely. Because of this freedom of molecular motion a gas does not possess either definite shape or definite size, it shapes itself to its container. A liquid, on the other hand, has a definite volume, but does not have a definite shape. Only a solid is characterized both by a definite shape and definite size. By the word substance a chemist means an essentially pure substance/ Actually, all substances are more or less impure/ When referring to very impure substances, solutions, and mixtures, the word material should be used instead. All substances can be divided into two classes: elementary substances and compounds. An elementary substance is a substance, which consists of atoms of only one kind, a compound is a substance which consists of atoms of two or more different kinds. These atoms of two or more different kinds must be present in a definite numerical ratio since substances are defined as having a definite invariant composition. Thus an elementary substance is composed of two or more elements./To avoid confusion, it is necessary for us to state exactly what a particular kind or atom in the above definition of an element means. By this expression we mean an atom whose nucleus has a given electrical charge. All nuclei have positive electrical charges which are equal to or integral multiples of the charges of the electron/ with an opposite sign./The integer which expresses this relation is called the atomic number. The word mixture is used to refer to a homogeneous material/ exhibiting a uniform structure/, which is not a pure substance, or to a heterogeneous aggregate of two or more substances. The ingredients of a mixture are called its component. Sometimes a mixture consisting mainly of one component, with much smaller amounts of others, is called an impure substance. The components present in the smaller amounts are called impurities. EXERCISES A. Read and translate into Vietnamese distinguished, aggregation, basis, characteristic, molecule, motion, possess, definite, container, characterized, essentially, actually, mixture, elementary, consist, numerical, ratio, invariant, composition, compose, confusion, expression, nucleus, electrical charge, equal, integral, integer, electron, changed, sign, relation, atomic, refer, homogeneous, exhibit, uniform, heterogeneous, aggregate, ingredient, component, amount. B. Answer the following questions 1. Which are the three physical states? 2. Give the characteristic features of a gas, a liquid, and a solid. 3. What is a substance in chemistry? 4. What is the difference between an element and a compound? 5. What is the mixture? Say a few sentences about the classification of matter. C. Translate into English 1. Các chất rắn, chất lỏng và chất khí được phân biệt dựa trên cơ sở trạng thái vật lí của nó. 2. Các chất khí không có hình dạng và kích thước nhất định, trong khi đó chất rắn được đặc trưng bằng hình dáng và kích thước nhất định. 3. Chúng ta hiểu cấu tạo vật chất từ nguyên tử như thế nào? 4. Các thành phần riêng biệt của hỗn hợp có thể được tách ra bằng các phương pháp khác nhau. 11
- UNIT 5 : SOLUTIONS If sugar and water, two pure substances, are mixed together, a solution result, uniform throughout in its properties, in which the sugar can neither be seen with a microscope nor filtered out. It is not distinguishable from a pure substance in appearance. The experimental distinction between a pure substance and solution is quite simple when the solute /the dissolved substance/ is not volatile so that it is left behind when the solvent is evaporated. However, when both are volatile the matter is not quite so simple and it is necessary to find out whether any change in composition and hence in properties occurs during a change in state. Suppose we wish to determine whether air is a pure substance or a solution. One method would be to liquefy a certain amount and then observe what happens to it as it slowly evaporates. As the evaporation proceeds one may observe that a- The light blue color gradually becomes deeper b- The temperature of the liquid slowly rises c- The densities of both liquid and gas change. Any one of these as well as other possible observations show that air must contain two or more components whose relative amounts change during the evaporation, causing the observed changes in properties due to differences between the components in color, volatility, density, chemical behavior. Still other properties might have been used. The term solution is not restricted to liquid solutions. All gases are completely miscible with each other, forming but one phase, so that every mixture of gases is a solution. Alloys of silver and gold, no matter what the relative amounts of the two metals, contain but one kind of crystal,/the properties of which change continuously with the composition/, thus being a solid solution. If liquid air is distilled in a scientifically constructed still, it is possible to separate it into two nearly pure constituents. One of these constituents, nitrogen, is found to be slightly lighter than air; it can be condensed to a colorless liquid boiling at -1940C; it is very inert chemically, reacting with but few other substances. The other constituent, oxygen, is slightly heavier than air; it gives, when condensed at low temperatures, a blue liquid boiling at -182.50C, and it reacts readily with many substances. As another illustration, suppose we have a solid metal, which appears to be perfectly homogeneous under the microscope. We could determine whether it is a solution or a pure substance by melting it, dipping into the melt a suitable thermometer and letting it cool slowly, taking temperature readings at regular intervals, and plotting temperature against time. EXERCISES A. Read and translate into Vietnamese result, throughout, microscope, appearance, experimental, distinction, solute, volatile, solvent, evaporated, matter, occur, determine, liquefy, observe, evaporation, proceed, gradually, observation, relative, cause, changes, volatility, behavior, restricted, miscible, completely, phase, alloy, metal, continuously, solid, scientifically, constructed, separated, condensed inert, react, illustration, suppose, appear, perfectly, suitable, thermometer, interval. B. Answer the following questions 1. What is a solution? 2. Is it distinguishable from a pure substance in appearance? 3. When is the experimental distinction between a pure substance and a solution simple? 4. What is the difference between a solute and a solvent? 5. How can you determine whether air is a pure substance or a solution? 6. Is the term solution restricted only to liquid solutions? 7. What does it mean when a substance is volatile? 8. Give the constituents of air and compare them with each other. 9. Give some liquids that are miscible. 10. Give some examples of solids soluble in liquids. 12
- C. Translate into English 1. Nếu chúng ta đun nóng một dung dịch, chúng ta có thể quan sát thấy những thay đổi khác nhau của chúng. 2. Tất cả những sự thay đổi xảy ra là do những tính chất khác biệt của dung môi và chất hoà tan. Ví dụ: dung dịch Na2CO3 trong chất lỏng có được là do CO2 hoà tan trong nước dưới áp suất và nhiệt độ. 3. Chất dễ bay hơi là chất dễ dàng biến thành hơi ở nhiệt độ thường. UNIT 6 : ISOLATION AND PURIFICATION OF SUBSTANCE Practical chemistry includes many special techniques for the isolation and purification of substances. Some substances occur very nearly pure in nature, but most materials are mixtures, which must be separated or purified if pure substances are desired, and most manufactured materials also require purification. The separation of two different phases is often rather easy. Particles of a solid phase mixed with a liquid phase may be separated from the liquid by filtration. Often the solid is present because it has been produced from solution in the liquid by a chemical reaction or by change in conditions/such as by cooling/ the solid is then called the precipitate. The precipitate is removed by pouring the mixture on a folded filter paper in a funnel. The liquid/ called the filtrate/ runs through, and the grains of precipitate/ the residue/ are retained, unless they are too small. Ordinary filter paper contains pores about 0.001cm in diameter, and smaller particles pass through. A precipitate may also be removed by letting the suspension stand quietly until the precipitate has settled to the bottom of the container under the influence of gravity. The supernatant liquid can then be poured off. This process of pouring off is called decantation. The process of settling can be accelerated by the use of centrifugal force, in a centrifuge. Ordinary centrifuges produce forces of the order of 100 or 1,000 times that of gravity. Supercentrifuges have been built which give forces over 100,000 times as great as that of gravity. Two liquid phases may be conveniently separated by use of a special device, the separatory funnel. A dropper may also be used for this purpose. An impure substance may often be purified by fractional freezing. The impure liquid substance is cooled until part of it has crystallized, and the remaining liquid, which usually contains most of the impurities, is then poured off, leaving the purified crystals. A liquid can be purified by distillation in a still. The liquid is boiled in a flask or some other container, and the vapor is condenser, forming a liquid distillate, which is collected in a receiver. The first portions/fractions/ of the distillate tend to contain the more volatile impurities, and the residue in the flask tends to retain the less volatile ones. Stills so special design have been invented, which are very effective in separating liquid mixtures into their components. EXERCISES A. Read and translate into Vietnamese isolation, purification, include, technique, desire, manufacture, require, separation, particle, filtration, precipitate, removed, pour, funnel, filtrate, residue, retained, pore, diameter, suspension, influence, gravity, supernatant, decantation, accelerated, use, used, centrifugal, centrifuge, produce, conveniently, device, separatory, purpose, fractional, crystallized, crystal, distillation, condenser, distillate, collected, receiver, design, effective B. Answer the following questions 1. Which methods can be used for purifying substances? 2. What is decantation? 3. How can the process of settling be accelerated? 4. What is a separatory funnel used for? 5. What does a still consist of? 6. Say a few sentences about the isolation and purification of substances. 13
- C. Translate into English 1. Trong tự nhiên thường chỉ tồn tại rất ít các chất tinh khiết, phần lớn các chất tự nhiên phải được tinh chế bằng phương pháp nào đó. 2. Có rất nhiều phương pháp khác nhau để tinh chế vật chất và tách nó ra khỏi hỗn hợp. 3. Để tách chất rắn khỏi chất lỏng, người ta sử dụng phương pháp lọc hay lắng gạn. 4. Chúng ta hiểu quá trình lắng gạn là quá trình chất lỏng tự lắng chất kết lắng xuống đáy bình chứa. UNIT 7 : THE RATE OF CHEMICAL REACTIONS Every chemical reaction requires some time for its completion, but some reactions are very fast and others very slow. Reactions between ions in solution without change in oxidation state are usually extremely fast. An example is the neutralization of an acid by a base, which proceeds as fast as the solutions can be mixed. Presumable nearly every time a hydronium ion collides with a hydroxide ion reaction occurs, and the number of collisions is very great, so that there is little delay in the reaction. The formation of a precipitate, such as that of silver chloride when a solution containing silver ion is mixed with a solution containing chloride ion, may require a few seconds, to permit the ions to diffuse together to form the crystalline grains of the precipitate. On the other hand, ionic oxidation-reduction reactions are sometimes very slow. An example is the oxidation of stannous ion by ferric ion. This reaction does not occur every time a stannous ion collides with one or two ferric ions. In order for the reaction to take place, the collision must be of such a nature that electrons can be transferred from one ion to another, and collisions, which permit this electron transfer to occur, may be rare. The factors, which determine the rate of a reaction, are manifold. The rate depends not only upon the composition of the reacting substances, but also upon their physical form, the intimacy of their mixture, the temperature and pressure, the concentrations of the reactants, special physical circumstances such as irradiation with visible light, ultraviolet light, X-rays, neutrons, or other waves or particles, and the presence of other substances which affect the reaction but are not changed by it/catalysts/. Most actual chemical processes are very complicated, and the analysis of their rate is very difficult. As reaction proceeds the reacting substances are used up and new ones are formed; the temperature of the system is changed by the heat evolved or absorbed by the reaction; and other effects may occur which influence the reaction in a complex way. For example, when a drop of a solution of potassium permanganate is added to a solution containing hydrogen peroxide and sulfuric acid no detectable reaction may occur for several minutes. The reaction speeds up, and finally the rate may become so great as to decolorize a steady steam of permanganate solution as rapidly as it is poured into the reducing solution. This effect of the speeding up of the reaction is due to the vigorous catalytic action of the products of permanganate ion reduction: the reaction is rapidly accelerated as soon as they are formed. EXERCISES A. Read and translate into Vietnamese require, completion, oxidation, extremely, neutralization, base, presumably, nearly, hydronium ions, collide, collision, delay, formation, chloride, permit, diffuse, crystalline, reduction, oxidation, stannous, transfer, manifold, depend, intimacy, concentration, reactant, circumstances, irradiation, ultraviolet, neutron, affect, effect, catalyst, evolved, absorbed, permanganate, detectable, decolorize, reduce, vigorous, product. B. Answer the following questions 1. What is meant by the rate of a chemical reaction? 2. Name some factors affecting the rate of a chemical reaction. 3. What is the effect of temperature and pressure on reaction rate? 4. What is the function of catalysts? 5. What is the rate of complicated chemical processes? 6. Say a few sentences about the rate of chemical reactions. 14
- C. Translate into English 1. Tốc độ của phản ứng hóa học là thời gian cần thiết để kết thúc phản ứng đó. 2. Tốc độ của phản ứng hóa học phụ thuộc vào thành phần của chất tham gia phản ứng và rất nhiều yếu tố khác. 3. Nhiệt độ cũng như áp suất có thể ảnh hưởng đáng kể đến quá trình xảy ra phản ứng. 4. Chất xúc tác là chất làm tăng nhanh phản ứng hóa học nhưng nó không tham gia trực tiếp vào phản ứng. Để dễ dàng thực hiện phản ứng hóa học, hỗn hợp phản ứng phải được đun nóng lên đến một nhiệt độ nhất định. UNIT 8 : HYDROCARBONS Hydrocarbons are compounds containing only carbon and hydrogen atoms. The simplest hydrocarbon is methane, CH4. Its molecules are tetrahedral, the four hydrogen atoms lying at the corners of a regular tetrahedron around the carbon atom, and connected with the carbon atom with single bonds. Methane is a gas, which occurs in natural gas, and is used as a fuel. It is also used in large quantities for the manufacture of carbon black, by combustion with a limited supply of air. The hydrogen burn to water, and the carbon is deposited as very finely divided carbon, which finds extensive use as filler for rubber for automobile tires. Methane is the first member of a series of hydrocarbons having the general formula CnH2n+2, called the methane series or paraffin series. The compounds of this series are not very reactive chemically. They occur in complex mixtures called petroleum. The molecules heavier than ethane are characterized by containing carbon atoms attached to one another by single bonds. The lighter members of the paraffin series are gases, the intermediate members are liquids, and the heavier members are solid or semi-solid substances. Gasoline is the heptane-nonane mixture, and kerosene the decane-hexadecane mixture. Heavy fuel oil is a mixture of paraffins containing twenty or more atoms per molecule. The lubricating oils and solid paraffin are mixtures of still larger paraffin molecules. The substance ethylene, C2H4, consists of molecules in which there is a double bond between the two carbon atoms. This double bond confers upon the molecule the property of much greater chemical reactivity than is possessed by the paraffins. Because of this property of readily combining with other substances, ethylene and related hydrocarbons are said to be unsaturated. Acetylene is the first member of a series of hydrocarbons containing triple bonds. Aside from acetylene, these substances have not found wide use, except for the manufacture of other chemicals. The hydrocarbons, the molecules of which contain a ring of carbon atoms, are called cyclic hydrocarbons. Cyclohexane, C6H12, is representative of this class of substances. It is a volatile liquid, closely similar to normal hexane in its properties. Another important hydrocarbon is benzene, having the formula C6H6. It is a volatile liquid/ b.p. 800C/, which has an aromatic odor. For many years there was discussion about the structure of the benzene molecule. August Kekule suggested that the six carbon atoms are in the form of a ring, and this has been verified: diffraction studies have shown that the six atoms form a regular planar hexagon in space, the six hydrogen atoms being bonded to the carbon atoms, and forming a larger hexagon. Kekule suggested that, in order for a carbon atom to show its normal quadrivalence, the ring contains three single bonds and three double bonds in alternate positions. Other hydrocarbons, derivatives of benzene, can be obtained by replacing the hydrogen atoms by methyl groups or similar groups. Benzene and its derivatives are used in the manufacture of drugs, explosives, photographic developers, plastics, synthetic dyes, and many other substances. 15
- EXERCISES A. Read and translate into Vietnamese methane, tetrahedral, tetrahedron, bond, nature, natural, fuel, combustion, supply, deposited, extensive, series, formula, petroleum, ethane, intermediate, gasoline, kerosene, lubricating, ethylene, double, confer, reactivity, paraffin, unsaturated, acetylene, triple, cyclic, representative, hexane, benzene, aromatic, odor, discussion, structure, suggest, ring, verify, diffraction, planar, hexagon, quadrivalence, alternate, position, derivative, replace, methyl, explosives, developer, plastics, synthetic, dye. B. Answer the following questions 1. What kinds of substances are hydrocarbons? 2. What is methane and what are its uses? 3. What is the difference between petroleum and petrol? 4. What is ethylene? 5. What is acetylene? 6. Which hydrocarbons are called cyclic hydrocarbons? 7. What is the representative of cyclic hydrocarbon class of substances? 8. What is benzene? 9. What did August Kekule suggest? 10. What are the uses of benzene? C. Translate into English 1. Hydrat carbon là một hợp chất phổ biến rộng rãi nhất của hydro và carbon, được tồn tại trong tự nhiên. 2. Methan là loại khí có trong khí đốt tự nhiên được sử dụng chủ yếu làm nhiên liệu. 3. Phân tử benzen và các hợp chất carbon mạch vòng khác được đặc trưng bằng cấu tạo vòng các nguyên tử carbon. 4. Nếu phân tử carbon hóa trị 4, phân tử benzen được sắp xếp trong vòng có ba liên kết đôi và ba liên kết đơn. 5. Để thu được các dẫn xuất của benzen, nguyên tử carbon có thể được thay thế bằng các nhóm chất khác. UNIT 9 : CHEMICAL LABORATORY EQUIPMENTS Laboratories have now become indispensable in schools, factories and research institutes to test, confirm, or demonstrate on a small scale, phenomena and processes which occur in nature or which may find application in industry or be of importance to science. The equipment of a chemical laboratory varies according to the nature of the work, which is to be carried out. It may be intended for the student to put to the test his theoretical knowledge/ school laboratory, for the technician/ technologist to verify and check processes to be employed in the factory/ works laboratory or to help the scientist and research worker to discover or confirm scientific facts/ research laboratory. Every chemical laboratory should be provided with running water, gas and electricity. The water supply is conducted from the mains by means of pipes, the piping terminating in taps under, which there are sinks to take away waste water and other non-objectionable liquids. When one needs water one turns the tap on and stops it flowing by turning the tap off. Similarly a system of pipes is attached to the gas main from where gas reaches the various kinds of burners. They serve for producing flames of different intensity, the Bunsen burner being the most common type used. Apart from a gas supply there is electricity which serves for lighting and as a driving power. For operating electricity, switches or switch buttons are employed. That is why we talk about switching on the light or switching it off. 16
- The laboratory is also equipped with a large variety of apparatus and devices. One of them, a desiccator, is used for drying materials. Ovens, furnaces or kilns serve for generating high temperatures. Where harmful vapors and undesirable odorous develop during the operation, a hood with suitable ventilation has to be provided for their escape. Of primary importance are glass and porcelain vessels. Glass vessels for chemical processes are made of special materials. They have to resist sudden changes in temperature, to withstand very high temperature: refractory glass, and be affected by a few substances as possible. The necessary assortment of laboratory glassware includes test tubes, beakers, various flasks, watch glasses, funnels, bottles, and cylinders. Porcelain articles consist of various kinds of dishes, basins and crucibles of various diameters. A grinding mortar with a pestle, desiccating dishes and stirrers are also generally made of porcelain. At present, also plastic materials are finding increasing use in laboratories, many of them being chemically resistant, unattacked by alkalis or acids/ acid-or alkali-proof/, and unbreakable. Containers made of them are especially suitable for storing stock solutions. The analytical balance, which is used for accurate weighing of samples, is usually kept in a separate room. EXERCISES A. Read and translate into Vietnamese indispensable, research, institute, confirm, demonstrate, phenomena, industry, application, science, equipment, vary, theoretical, technician, technologist, verify, employ, scientist, scientific, electricity, terminate, attached, burner, intensity, power, powder, equipped, variety, desiccator, oven, furnaces, generate, porcelain, refractory, assortment, cylinder, basin, crucible, pestle, stirrer, increase, resistant, unbreakable, analytical, balance, polyethylene. B. Answer the following questions 1. What is the task of laboratory work? 2. Why is it important and necessary for you as students of chemistry to make experiments in your school laboratories? 3. Describe the general equipment of chemical laboratories. 4. Which properties should the glass be used for making chemical vessels possess? 5. What does the necessary assortment of laboratory glassware include? 6. What do porcelain articles usually consist of? 7. What are the advantages of polyethylene bottles? 8. What are containers made of plastic materials especially suitable for? 9. What do burners serve for? 10. What is the analytical balance used for? C. Translate into English 1. Mỗi một viện nghiên cứu, nhà máy và trường học phải có một phòng thí nghiệm hóa học tốt. 2. Trang bị phòng thí nghiệm hóa học phụ thuộc vào loại công việc được tiến hành trong đó. 3. Các thiết bị sử dụng điện được đóng mở nhờ công tắc điện. 4. Để các loại thiết bị khác nhau phù hợp với các loại mục đích hóa học thì chúng phải được sản xuất từ các vật liệu đặc biệt. 5. Thủy tinh được sử dụng để sản xuất các loại dụng cụ hóa học phải bền khi nhiệt độ, acid hay kiềm thay đổi đột ngột. 17
- UNIT 10 : CHEMICAL NOMENCLATURE A systematic nomenclature was devised towards the end of the 18th century. Elements already known retained their old names, e.g. silver, tin, gold, mercury, etc., but newly discovered elements generally have their names ending in -um if they are metals, and-on if they are non-metals/e.g. sodium, potassium, argon /. The names of compounds are formed from those of their components so as to indicate their composition. In the names of binary compounds /i.e., compounds of two elements/ the name of the metal comes first, followed by that of the other element ended in -ide, e.g. sodium chloride /NaCl/, zinc oxide /ZnO/, aluminum oxide /Al2O3/. When a metal forms two compounds with oxygen, the two oxides are distinguished by adding -ous and -ic to the Latin name of the metal, signifying the lower and higher oxidation states respectively, e.g., cuprous oxide /Cu2O/, cupric oxide /CuO/, and ferrous oxide /FeO/, ferric oxide /Fe2O3/. The salts corresponding to cuprous oxide are called cuprous salts, e.g. cuprous chloride and cupric chloride. Another way of distinguishing between different compounds of the same element is by the use of the Greek prefixes to the names of the elements. These prefixes are as follows: mono-, di-, tri-, tetra-, penta-, hexa-, hepta-, octo-. To these we may add the Latin hemi-, meaning one half, and sesqui-, meaning one and a half, and per-. By the use of these prefixes we can designate the compounds more precisely than by means of the prefixes -ous and -ic, especially when more than two compounds exist. As examples of the use of these prefixes we may mention carbon monoxide /CO/ and carbon dioxide /CO2/, phosphorus trichloride /PCl3/ and phosphorus pentachloride /PCl5/, chromium sesquioxide /Cr2O3/ and chromium trioxide /CrO3/, lead hemioxide /Pb2O/, hydrogen peroxide /H2O2/. Oxides, which form salts with acids, are known as basic oxides; by combination with water, basic oxides form bases. These contain the metal united with the group of atoms -OH/ the hydroxyl group/; they are, therefore, called hydroxides. Thus NaOH is sodium hydroxide, Cu(OH)2 is copper hydroxide, and the compounds Fe(OH)2 and Fe2O3.H2O are ferrous hydroxide and ferric hydroxide, respectively. The endings -ous, -ic are also applied to acids, the -ous acid containing less oxygen than the -ic acid, e.g. sulphurous acid /H2SO3/ and sulfuric acid /H2SO4/, chlorous acid /HClO2/. In addition to HClO2 and HClO3, the acids having the formulas HClO and HClO4 are also known, the former having the name hypochlorous acid, the latter being designated by the name perchloric acid. Salts are named in relation to the acids from which they are derived according to the following rules: 1. If the name of the acid ends in -ous, the name of the salt ends in -ite/ sodium chlorite, NaClO2/. 2. If the name of the acid ends in -ic, the corresponding salt ends in -ate/ sodium chlorate, NaClO3/ 3. If the name of the acid involves also a prefix such as per- or hypo-, the prefix is retained on the name of the salt/ sodium hypochlorite, NaClO, and sodium perchlorate, NaClO4/. Accordingly, salts of sulfurous acid are called sulfites, those of sulfuric acid, sulfates. Salts of phosphorous acid are phosphites, of phosphoric acid, phosphates, etc. EXERCISES A. Read and translate into Vietnamese nomenclature, devised, binary, sodium chloride, respectively, designate, basic, bases, hydroxyl, formulas, salt, corresponding, sodium chlorite, cuprous oxide, cupric oxide, sodium chlorate, involve. B. Answer the following questions 1. When was the systematic chemical Nomenclature devised and what is the difference between the names of elements already known at that time and the names of newly discovered elements? 2. How are the names of compounds formed? 3. What are the endings -ous, -ic used for and what is the difference between them? 4. When are the Greek prefixes mono-, di-, tri-, etc. used and what is their advantage? 5. What are the rules for forming the names of salts? C. Translate into English 1. Các nguyên tố được cấu tạo nên bằng số lượng các liên kết với oxy. 2. Cấu tạo các nguyên tố thể hiện ở hóa trị của các nguyên tố liên kết nó. 3. Nếu như chỉ tồn tại một loại acid, thì tên gọi của nó có tiếp đuôi -ic, mà axit có tiếp đuôi -ic nhiều oxy hơn axit có tiếp đuôi -ous. 4. Các muối của acid nitric được gọi là nitrat. 18
- UNIT 11 : WATER TREATMENT Most municipalities must use a source of water in which the probability of pollution is rather high. Certainly, all our natural rivers and lakes and even the water stored in most reservoirs may be subjected to pollution, and generally cannot be considered safe for drinking purposes without some forms of treatment. The type and extent of treatment will vary from city to city, depending upon the conditions of the raw water. Treatment may comprise various processes used separately or in combinations, such as storage, aeration, sedimentation, coagulation, rapid or slow sand filtration, and chlorination, or other accepted forms of disinfection. When surface waters serve as a municipal water supply, it is generally necessary to remove suspended solid, which can be accomplished either by plain sedimentation or sedimentation following the addition of coagulating chemicals. In the water from most streams that are suitable as a source of supply, the sediment is principally inorganic, consisting of particles of sand and clay and small amount of organic matter. In this water there will also be varying numbers of bacteria, depending upon the amount of bacteria nutrients, coming from sewage or other sources of organic matter, and upon the prevailing temperature. Many of the bacteria may have come from the soil and, as a result, during a season of high turbidity when there is a large amount of eroded soil in the water, the bacterial count from this source may be relatively high. If the organisms are derived from sewage pollution, the number will be highest during periods of low flow when there is less dilution, and at this time the turbidity will, in general, be low. The amount of sediment may vary a great deal from one river to another, depending upon the geological character of the various parts of the drainage system. The size of the suspended particles can also vary greatly. In some waters the clay particles may be extremely fine, in fact, they may be smaller than bacteria. The time required for satisfactory sedimentation differs for different waters, and generally must be established by actual experiments. Some waters can be clarified satisfactorily in a few days, while others may require weeks or months. As far as total weight of sediment is concerned, the bulk of it is probably removed in a few days, but this may not bring about a corresponding change in the appearance of the water, since the smaller particles may have greater influence than the large ones upon the apparent color and turbidity. When plain sedimentation is used primarily as a preliminary treatment, a high degree of clarification is not needed and, as a result, shorter periods of settling are adequate. After flocculation treatment, water is passed through beds of sand with diatomaceous earth to accomplish sand filtration. As we mentioned previously, some protozoan cysts, such as those of G.lamblia, appear to be removed from water only by such filtration treatment. The microorganisms are trapped mostly by surface adsorption in the sand beds. They do not penetrate the tortuous routing of the sand beds, even through the openings might be larger than the organisms that are filtered out. These sand filters are periodically backflushed to clear them of accumulations. Water systems of cities that have an exceptional concern for toxic chemicals supplement sand filtration with filters of activated charcoal (carbon). Charcoal has the advantage of removing not only particulate matter but also some dissolved organic chemical pollutants. Before entering the municipal distribution system, the filtered water is chlorinated. Because organic matter neutralized chlorine, the plant operators must pay constant attention to maintaining effective levels of chlorine. There has been some concern that chlorine itself might be a health hazard, that it might react with organic contaminants of the water to form carcinogenic compounds. At present, this possibility is considered minor when compared with the proven usefulness of chlorination of water. One substitute for chlorination is ozone treatment. Ozone (O3) is a highly reactive form of oxygen that is formed by electrical spark discharges and ultraviolet light. (The fresh odor of air following an electrical storm or around an ultraviolet light bulb is from ozone). Ozone for water treatment is generated electrically at the site of treatment. Use of ultraviolet light is also a possible alternative to chemical disinfection. Arrays of ultraviolet tube lamps are arranged in quartz tubes so that water flows close to the lamps. This is necessary because of the low penetrating power of ultraviolet radiation. EXERCISES A. Read and translate into Vietnamese treatment, combination, storage, aeration, sedimentation, coagulation, chlorination, disinfection, bacterium, nutrients, sewage, pollution, beds of sand, drainage, influence, turbidity, diatomaceous earth, accumulation, activated carbon. 19
- B. Answer the following questions 1. What are the various processes for water treatment? 2. What is the method for removing the suspended solids from surface waters? 3. What are the principal sediments from water of streams? 4. What are the methods for trapping the microorganisms from various kinds of water? 5. What is the purpose of chlorination of water? 6. What is the substitute for chlorination of water? 7. What is the kind of physical agent for water treatment of microorganisms in Vietnam? 8. Say a few words about the water treatment in Vietnam. C. Translate into English 1. Hầu hết các thành phố đều sử dụng nguồn nước bị ô nhiễm khá cao. 2. Quá trình xử lý nước bao gồm các quá trình khác nhau như: lọc, đông tụ, lắng, khử trùng. 3. Các cặn lắng trong nước bao gồm các hạt đất sét hoặc các chất hữu cơ, vô cơ hòa tan và cả các vi sinh vật nữa. 4. Để khử trùng nước có thể dùng nhiều ương pháp: clo hóa, ozon hóa, hoặc dùng đèn tử ngoại. UNIT 12 : TYPES OF REACTORS Batch Reactors - The batch reactor is, in essence, a kettle or tank. It should have a number of accessories in order to operate satisfactorily. First of all it generally must be closed, except for a vent, in order to prevent loss of material and danger to the operating personnel. For reactions carried out under pressure the vent is replaced by a safety valve. High-pressure conditions frequently introduce complications in the design and greatly increase the initial cost. For example, the top closure must be able to withstand the same maximum pressure as the rest of the autoclave. At medium pressures a satisfactory closure can be assembled. It is usually necessary to agitate the reaction mixture in batch systems. This can be done mechanically with stirrers operated by a shaft extending through the reactor wall. Provision for heating or cooling the reaction contents is often required. This may be accomplished by circulating a fluid through a jacket surrounding the reactor. Where heat effects are large enough to require the most rapid heat transfer, the jacket may be augmented by heating or cooling coils immersed in the reaction mixture. Flow reactors. Flow reactors may be constructed in a number of ways. The conventional thermal- cracking units in the petroleum industry are examples of a noncatalytic type. The gas oil or other petroleum fraction is passed through a number of alloy-steel tubes placed in a series on the walls and roof of the furnace. Heat is transferred by convection and radiation to the tube surface in order to raise the temperature of the gas oil to the reaction level/ 600 to 10000F/ and to supply the endothermic heat of reaction. On the other hand, flow reactors may consist of a tank or kettle, much like a batch reactor, with provision for continuously adding reactants and withdraw product. From a design viewpoint the essential difference between tubular and tank reactors lies in the degree of mixing obtained. In the tubular type, where the length is generally large with respect to the tube diameter, the forced velocity in the direction of flow is sufficient to retard mixing in the axial direction. On the other hand, in tank reactors, it is possible to obtain essentially complete mixing by mechanical agitation. Under these conditions the composition, temperature and pressure are uniform through the vessel. EXERCISES A. Read and translate into Vietnamese kettle, tank, accessories, autoclave, agitate, mixture, stirrers, circulating, jacket, coils, petroleum, roof, furnace, endothermic, batch reactor, tubular, velocity 20
- B. Answer the following questions 1. What are the various kind of batch reactors? 2. Why must the batch reactors be closed? 3. Why does the top closure of batch reactors have to be installed with the vent or the safety valve? 4. What is the purpose of a jacket surrounding the reactor? 5. Tell something about the flow reactor? C. Translate into English 1. Các thiết bị phản ứng gián đoạn được lắp các phụ kiện khác nhau phù hợp với quá trình vận hành nó. 2. Các thiết bị phản ứng dưới áp suất cao phải có van an toàn và chịu được áp suất cực đại. 3. Ống ruột gà lắp trong thiết bị phản ứng hoặc áo ngoài là phương tiện đun nóng hay làm lạnh thiết bị phản ứng hóa học khi cần nâng hay giảm nhiệt độ. UNIT 13 : RELATIONSHIP OF CHEMICAL INDUSTRY TO OTHER INDUSTRIES There is not any sharply defined frontier between chemical industry and many other industries, which makes it impossible to compose any precise definition of what constitutes the chemical industry. It is common practice, however, to regard it as consisting of two parts: 1. the chemical-product industry, and 2. the chemical-process industry The chemical-product industry is perhaps the less difficult of the two to define. It may be said to consist of companies, which manufacture “chemical”. Strictly speaking, of course, all compositions of matter are “chemicals”, but the word may be limited for the purpose of definition to products, which can be described only by technical names. Chemicals of this type are chiefly used in the manufacture of other products and do not ordinarily take the form of familiar household products or articles of commerce. Thus, soda ash and sulfuric acid are universally recognized as “chemical”, but soap and paint are not commonly so regarded. The chemical-process industry is even more dependent upon classifications of an arbitrary nature, and hence its scope is correspondingly more open to differences of opinion. According to the most widely accepted definition, the chemical-process industry consist of the companies which manufacture such products as drug, soap, paint, fertilizers, vegetable and animal oils, and a number of various related products. Contrary to more technically based definitions, however, this classification excludes companies engaged in the production of iron and steel, in petroleum refining, and in the manufacture of pulp and paper, rubber products, leather products and glass. The exclusion of the companies engaged in these industries does not mean, of course, that their operations are any less “chemical” in nature than those used in the manufacture of soap, paint and many other products officially classified within the chemical industry. Their exclusion has probably been due primarily to the combination of their origin, large size, simple product structure, and well-defined markets. Hence, it has long been the custom of economists and statisticians to regard them as independent industries. As matter of fact, both the oil industry and the steel industry were, until comparatively recently, much larger in size than the chemical industry as officially defined. Regardless of the arbitrary limitations of its official definition, however, the chemical industry has been steadily expanding. It has ignored industrial boundaries in the application of new manufacturing processes and in the development of new products. The already existing chemical companies have entered new industries, such as textiles, building materials, and drugs. And industries not recognized as chemical in nature have begun the manufacture of chemical products by new methods from new materials. A recent and conspicuous example of this latter type of chemical expansion has been the development of the so-called "petrochemical industry", in which chemical products are manufactured from petroleum raw materials. EXERCISES A. Read and translate into Vietnamese 21
- relationship, sharply, manufacture, chemicals, classification, soap, arbitrary, correspondingly, drugs, fertilizers, vegetables, economists, statisticians, boundary, conspicuous, expansion, petrochemical industry. B. Answer the following questions 1. Is there any sharply defined frontier between the chemical industry and many other industries? 2. Can you give some concepts about the chemical-product industry? 3. Can you tell something about the chemical-process industry? 4. Has the chemical industry been steadily expanding and how? 5. Can you give some concepts of "petro-chemical industry"? C. Translate into English 1. Công nghiệp hóa học có mối quan hệ với các ngành công nghiệp khác. 2. Không có một ranh giới chính xác giữa công nghiệp hóa học và các ngành công nghiệp khác. 3. Ta có thể xem Công nghiệp hóa học gồm 2 bộ phận chính. Trong thực tế 2 bộ phận đó là: a. công nghiệp hóa chất và b. công nghiệp các quá trình tạo các sản phẩm hóa học 4. Công nghiệp hóa học đã và đang phát triển không ngừng và đặc biệt là ngành công nghiệp hóa dầu. 5. Công nghiệp hóa dầu là một ngành công nghiệp mà các sản phẩm của nó được chế biến từ dầu thô. UNIT 14 : INVENTORIES Inventories normally represent the largest single element of capital. They are generally classified as raw materials, semifinished and finished products, although some prefer to combine semifinished and finished products into a single classification, “processed materials” Raw materials cover all kinds of materials that are purchased by the manufacturer and on which further work must be done before the product can be sold units final form. Sometimes the raw material is completely altered or “consumed” in processing, as in the case of iron in the manufacture of steel, while in other instances the raw material may remain in its original form in the final product as in the case of an assembly plant using purchased prefabricated parts. This illustrates the fact that a raw materials referred to here are those which become a part of the finished product itself or are used directly in manufacturing operations. As has been indicated, this classification includes 1. semifinished product, which is material upon which manufacturing operations have been performed but which require further processing, and 2. finished product, which is all material fully manufactured and in salable form. In the chemical industry the segregation between semifinished and finished product is particularly difficult, since many chemical products are not only sold as such but are also consumed in the manufacture of other end products. However, a material cannot be classified in two categories within a company, and one or the other must be selected. Usually, decision is influenced by the fact that more of the material is sold than consumed, or vice versa. If more is consumed, and then the material becomes a semifinished product; if more is sold, the material is classified as finished product. EXERCISES A. Read and translate into Vietnamese inventory, materials, semifinished, products, raw materials, salable, prefabrication, illustrate, manufacture, perform, segregation, selected, category, influenced, consumed. B. Answer the following questions 1. What are the inventories? 2. Can you tell something about inventories? 3. What are raw materials? Give an example. 4. What are processed materials? 5. Can you tell the difference between semifinished and finished products? 22
- C. Translate into English 1. Nguyên liệu thô là các loại nguyên vật liệu dùng phục vụ cho sản xuất hoặc chế biến ra sản phẩm. 2. Nguyên liệu chế biến là nguyên liệu phải được chế biến tiếp để tạo ra sản phẩm 3. Trong công nghiệp hóa học, sự phân biệt giữa bán sản phẩm và sản phẩm cuối cùng khá khó khăn. UNIT 15 : THE LABORATORY NOTEBOOK The laboratory experience is not finished when you complete the experimental procedure and leave the laboratory. All scientists have the obligation to prepare written reports of the results of experimental work. Since this record may be studied by many individuals, it must be completed in a clear, concise and accurate manner. This means that procedural detail, observations and results must be recorded in a laboratory notebook while the experiment is being performed. The notebook should be hardbound with quadrille-ruled (gridded) pages and used only for the biochemistry laboratory. This provides a durable, permanent record and the potential for construction of graphs, charts, etc. It is recommended that the first one or two pages of the notebook be used for a constantly updated table of contents. Although your instructor may have his or her own rules for preparation of the notebook, the most readable notebooks are those in which only the right - hand pages are used for record keeping. The left - hand pages may be used for your own notes, reminders and calculations. DETAILS OF EXPERIMENTAL WRITE - UP Introduction This section begins with a three- or four- sentence statement of the objective or purpose of the experiment. For preparing this statement, ask yourself, “What are the goals of this experiment? ” This statement is followed by a brief discussion of the theory behind the experiment. If a new technique or instrumental method is introduced, give a brief description of the method. Include chemical or biochemical reactions when appropriate. Experimental Begin this section with a list of all reagents and materials used in the experiment. The sources of all chemical and the concentrations of solutions should be listed. Instrumentation is listed with reference to company name and model number. A flowchart to describe the stepwise procedure for the experiment should be included after the list of equipment. Experimental (a) Table of materials and reagents (b) List of equipment (c) Flowchart (d) Record of procedure Data and Calculations (a) Record of all raw data (b) Method of calculation with statistical analysis (c) Enter data in tables, graphs or figures when appropriate For the early experiments, a flowchart is provided. Flowcharts for later experiments should be designed by the student. The write-up to this point is to be completed as a Prelab assignment. The experimental procedure followed is then recorded in your notebook as you proceed through the experiment. The detail should be sufficient so that a fellow student can use your notebook as a guide. You should include observations, such as color changes or gas evolution, made during the experiment. Data and Calculations All raw data from the experiment are to be recorded directly in your notebook, not on separate sheets of paper. Calculations involving the data must be included for at least one series of measurements. Proper statistical analysis must be included in this section. 23
- For many experiments, the clearest presentation of data is in a tabular or graphical form. The Analysis of Results section following each experimental procedure in this book describes the preparation of graphs and tables. These must all be included in your notebook. Results and Discussion This is the most important section of your write-up, because it answers the questions:. “Did you achieve your proposed goals and objectives? ” and ” What is the significance of the data?”. Any conclusion that you make must be supported by experimental results. It is often possible to compare your data with known values and results from the literature. If this is feasible, calculate percentage error and explain any differences. Note if any problems were encountered in the experiments. All library references (books and journal articles) that were used to write up the experiment should be listed at the end. The standard format to follow for a book or journal listing is shown at the end of this chapter in the reference section. Everyone has his or her own writing style, some better than others. It is imperative that you continually try to improve your writing skills. When your instructor reviews your write-up, he or she should include helpful writing tips in the grading. EXERCISES A. Read and translate into Vietnamese experience, obligation, observation, notebook, statement, goals, discussion, description, biochemistry, material, instrumentation, flowchart, stepwise, measurement, presentation, significance B. Answer the following questions 1. What is the laboratory notebook? 2. How many steps are there in experimental write-up? 3. What is the first section of experimental write-up? Tell something about it? 4. Say a few words about calculations of experimental works? 5. Why should we need discussion of experimental results? C. Translate into English 1. Thí nghiệm chưa kết thúc khi các bạn chỉ mới làm xong phần thực nghiệm. 2. Tất cả các cán bộ khoa học bắt buộc phải viết bản báo cáo về công việc thực nghiệm của mình. 3. Các phần chính của một bài báo cáo thí nghiệm bao gồm: phần mở đầu, phần mô tả thực nghiệm trình bày các số liệu và tính toán kết quả, cuối cùng là phần thảo luận kết quả thu được. 4. Các số liệu thí nghiệm phải được ghi trực tiếp vào sổ ghi chép, không ghi vào tờ rời. 5. Tài liệu tham khảo (sách, tạp chí) được ghi lại ở phần cuối bản báo cáo. UNIT 16 : STUDY OUTLINE OF CHEMISTRY Introduction 1. The interaction of atoms and molecules is called chemistry. 2. The metabolic activities of microorganisms involve complex chemical reactions. 3. Nutrients are broken down by microbes to obtain energy and to make new cells. Structure of Atoms 1. Atoms are the smallest units of chemical elements that enter into chemical reactions. 2. Atoms consist of a nucleus, which contains protons and neutrons and electrons that move around the nucleus. 3. The atomic number is the number of protons in the nucleus: the total number of protons and neutrons is the atomic weight. Chemical Elements 1. Atoms with the same atomic number and same chemical behavior are classified as the same chemical element. 2. Chemical elements are designated by letter abbreviations called chemical symbols. 3. There are about 26 elements commonly found in living cells. 24
- 4. Atoms that have the same atomic number (are of the same element) but different atomic weights are called isotopes. ELECTRONIC CONFIGURATIONS 1. In an atom, electrons are arranged around the nucleus in electron shells. 2. Each shell can hold a characteristic maximum number of electrons. 3. The chemical properties of an atom are largely due to the number of electrons in its outermost shell. HOW ATOMS FORM MOLECULES Chemical Bonds 1. Molecules are made up of two or more atoms; molecules consisting of at least two different kinds of atoms are called compounds. 2. Atoms form molecules in order to fill their outermost electron shells. 3. Attractive forces that bind the atomic nuclei of two atoms together are called chemical bonds. 4. The combining capacity of an atom - the number of chemical bonds the atom can form with other atoms - is its valence. Ionic Bonds 1. A positively or negatively charged atom or group of atoms is called an ion. 2. A chemical attraction between ions of opposite charge is called an ionic bond. 3. To form an ionic bond, one ion is an electron donor; the other ion is an electron acceptor. Covalent Bonds 1. In a covalent bond, atoms share pairs of electrons. 2. Covalent bonds are stronger than ionic bonds and are far more common in organisms. Hydrogen Bonds 1. A hydrogen bond exists when a hydrogen atom covalently bonded to one oxygen or nitrogen atom is attracted to another oxygen or nitrogen atom. 2. Hydrogen bonds form weak links between different molecules or between parts of the same large molecule. Molecular Weight and Moles 1. The molecular weight is the sum of the atomic weights of all the atoms in a molecule. 2. A mole of an atom, ion, or molecule is equal to its atomic or molecular weight expressed in grams. 3. The number of moles of a substance equals its mass in grams divided by its molecular weight. Chemical Reactions Chemical reactions are the making or breaking of chemical bonds between atoms. Energy of Chemical Reactions 1. A change of energy occurs during chemical reactions. 2. Endergonic reactions require energy, exergonic reactions release energy. 3. In a synthesis reaction, atoms, ions, or molecules are combined to form a large molecule. 4. In a decomposition reaction, a large molecule is broken down into its component molecules, atoms, and ions. 5. In an exchange reaction, two molecules are decomposed, and their subunits are used to synthesize two new molecules. 6. The products of reversible reactions can readily revert back to form the original reactants. How Chemical Reactions Occur 1. For a chemical reaction to take place, the reactants must collide with each other. 2. The minimum energy of collision that can produce a chemical reaction is called its activation energy. 25
- 3. Specialized proteins called enzymes accelerate chemical reactions in living systems by lowering the activation energy. EXERCISES A. Read and translate into Vietnamese interaction, metabolic, microorganisms, complex, nutrients, microbes, cells, behavior, symbol, properties, valence, covalent, attractive, attraction, express, subunits, collide, collision, activation energy, protein, enzymes B. Answer the following questions 1. What is the atom? 2. Say some words about chemical elements. 3. Say something about chemical bonds. 4. How do the chemical reactions occur? 5. How many kinds of chemical reactions do you know? What are they? C. Translate into English 1. Hóa học nghiên cứu sự tương tác giữa các nguyên tử và các phân tử. 2. Trong một nguyên tử các điện tử được sắp xếp xung quanh hạt nhân nguyên tử trên mạng điện tử. 3. Các liên kết hydro hình thành những liên kết yếu giữa các phân tử khác nhau hoặc giữa các phần của cùng một phân tử của một đại phân tử. 4. Các phản ứng hóa học là các phản ứng hình thành phá vỡ các liên kết hóa học giữa các nguyên tử. 5. Trong các phản ứng phân hủy, sự liên kết trong một đại phân tử bị phá vỡ để tạo thành các cấu tử nguyên tử tương ứng. UNIT 17 : SEWAGE TREATMENT After water has been used, it becomes sewage. Sewage includes all the water from a household that is used for washing as well as toilet wastes. Rainwater flowing into street drains and some industrial wastes enter the sewage systems in some cities. Sewage is mostly water and contains little particulate matter perhaps only about 0.03%. Even so, in large cities, this solid portion of sewage can total more than 1000 tons of solid material per day. Until environmental awareness intensified, a surprising number of large cities in which had only rudimentary sewage treatment systems or no system at all. Raw sewage, untreated or nearly so, was simply discharged into rivers or oceans. A flowing, well-aerated stream is capable of considerable self- purification. Therefore, until increases in populations and their wastes exceeded this capability, casual treatment of municipal wastes caused little complaint. In the United States, most methods of simple discharge have been improved. Primary Treatment The usual first step in sewage treatment is called primary treatment. In this process, incoming sewage receives preliminary treatment - large floating materials are screened out, the sewage is allowed to flow through settling chambers so that sand and similarly gritty material can be removed, skimmers remove floating oil and grease, and floating debris are shredded and ground. After this step, the sewage passes through sedimentation tanks, where solid matter settles out. (The design of these primaries settling - tanks varies). Sewage solids collecting on the bottom are called sludge; sludge at this stage is called primary sludge. From 40% to 60% of suspended solids are removed from sewage by this settling treatment, and flocculating chemicals that increase the removal of solids are sometimes added at this stage. Biological activity is not particularly important in primary treatment, although some digestion of sludge and dissolved organic matter can occur during long holding times. The sludge is removed on either a continuous or an intermittent basis, and the effluent (the liquid flowing out) then undergoes secondary treatment. 26
- Biochemical Oxygen Demand Primary treatment removes approximately 25% to 35% of the biochemical oxygen demand (BOD) of the sewage. An important concept in sewage treatment and in the general ecology of waste treatment, BOD is a measure of the biologically degradable organic matter in water. BOD is determined by the amount of oxygen required by bacteria to metabolize the organic matter. The classic method of measurement is to use special bottles with airtight stoppers. Each bottle is first filled with the test water or dilutions of the test water. The water is initially aerated to provide a relatively high level of dissolved oxygen and is seeded with bacteria if necessary. The filled bottles are then incubated in the dark for five days at 20oC, and the decrease in dissolved oxygen is determined by a chemical or electronic testing method. The more oxygen that is used up as the bacteria degrade the organic matter in the sample, the greater the BOD - which is usually expressed in milligrams of oxygen per liter of water. The amount of oxygen that normally can be dissolved in water is only about 10 mg/liter. Typical BOD values of waste water may be twenty times this amount. If this waste water enters a lake, for example, bacteria in the lake begin to consume the organic matter responsible for the high BOD, rapidly depleting the oxygen in the lake water. Secondary Treatment After primary treatment, the great part of the BOD remaining in the sewage is in the form of dissolved organic matter. Secondary treatment, which is primarily biological, is designed to remove most of this organic matter and reduce the BOD. In this process, the sewage undergoes strong aeration to encourage the growth of aerobic bacteria and other microorganisms that oxidize the dissolved organic matter to carbon dioxide and water. Two commonly used methods of secondary treatment are activated sludge systems and trickling filters. In the aeration tanks of the activated sludge system, air or pure oxygen is added to the effluent from primary treatment. The sludge in the effluent contains large numbers of metabolizing bacteria, together with yeasts, molds, and protozoans. An especially important ingredient of the sludge are species of Zoogloans and bacteria, which form flocculent masses (flocs) in the aeration tanks. The activity of these aerobic microorganisms oxidizes much of the effluent's organic matter into carbon dioxide and water. When the aeration phase is completed, the floc (secondary sludge) is allowed to settle to the bottom, just as the primary sludge settles in primary treatment. Soluble organic matter in the sewage is adsorbed onto the floc and is incorporated into microorganisms in the floc. As the floc settles out, this organic matter is removed with the floc and is subsequently treated in an anaerobic sludge digester. More organic matter is probably removed by this process than by the relatively short-term aerobic oxidation. Most of the settled sludge is removed from the digester; some of the sludge is recycled to the activated sludge tanks as a starter culture for the next sewage batch. The effluent water is sent on for final treatment. Occasionally, when aeration is stopped, the sludge will float rather than settle out; this phenomenon is called bulking. When this happens, the organic matter in the floc flows out with the discharged effluent and often causes serious problems of local pollution. A considerable amount of research has been devoted to the causes of bulking and its possible prevention. It is apparently caused by the growth of filamentous bacteria of various types; the sheathed bacteria Sphaerotilus natans is often mentioned as the primary offender. Activated sludge systems are quite efficient: they remove from 75% to 95% of the BOD from sewage. EXERCISES A. Read and translate into Vietnamese sewage, treatment, environment, awareness, rudimentary, discharge, self-purification, settling chambers, gritty, skimmer, grease, debris, shred, sludge, flocculation, biochemical oxygen demand (BOD), ecology, bacteria, metabolize, incubation B. Answer the following questions 1. Give the definition of sewage. 2. Why does the sewage have to be treated? 3. Tell something of primary treatment of sewage? 4. What is BOD? 5. Why does the sewage have to carry out secondary treatment after primary treatment? 27
- C. Translate into English 1. Nước thải bao gồm các loại nước thải sinh hoạt, nước mưa và nước thải công nghiệp. 2. Nhiều thành phố trong nước ta chỉ có những hệ thống xử lý nước thải đơn giản hoặc thậm chí chưa có. 3. Bước xử lý đầu tiên là cho lắng các hạt lơ lửng lớn trong các bể lắng. 4. BOD là số đo khả năng oxy hóa sinh học của các chất hữu cơ có trong nước thải. 5. Bùn hoạt tính chứa các vi sinh vật phân hủy có hiệu quả từ 75 - 95% chất hữu cơ có trong nước thải. UNIT 18 : CHEMICAL ENGINEERING Chemical engineering, like other branches of engineering, is concerned essentially with applied physics. In actual practice the chemical engineer is principally concerned either with physical operations entirely or with the purely physical effects of chemical reactions, such as the transport of solids, fluid flow, mixing and agitation, heat transfer, etc. To obtain the product of a chemical reaction in a marketable form further operations may be involved, such as filtration, crystallization, distillation, evaporation, drying, and grinding. These, in fact, are also physical operations, and the indicating appliances used to control them are usually based on physical rather than on chemical principles. One of the most important contributions of the chemical engineer is to guide industry in the choice of materials for the construction of plant. The chemical engineer can select materials suitable for each particular part of the plant, with consequent improvement in the life of the apparatus and general economy in working. Examples may be found in the development of metals capable of resisting corrosion, chemical reagents, heat and creep at high temperatures. New processes call for new technique in plant design. Today there is much talk of the production of motor spirit and other oils by high-pressure reactions. Such developments would still be at the laboratory stage had it not been for the work of the chemical engineer in taking advantage of the development of high-tensile steel and then applying his special knowledge to the design of new kinds of plant in which hydrogen and other gases and vapors are handled at high pressure and temperatures. Thus, commercial success in translating a laboratory method of a preparation into a full-scale manufacturing process depends as much upon the careful plant design as upon consideration of the precise chemical reactions to be employed; in short, industrial efficiency and the profits expected to accompany this can only be realized by sound chemical engineering. EXERCISES A. Read and translate into Vietnamese engineering, branches, physical operations, agitation, heat transfer, marketable form, grinding, drying, evaporation, crystallization, construction, reagents, creep, motospirit, full-scale, sound chemical engineering B. Answer the following questions 1. What is the chemical engineering concerned? 2. What is the most important contribution of the chemical engineer? 3. Can you tell some main operations involved in the industrial process? 4. What is the commercial success of scientific research of chemical reaction? 5. How can you get the industrial efficiency? C. Translate into English 1. Trong thực tế hiện nay, các quá trình hóa học liên quan chủ yếu đến các quá trình vật lý hay tác động vật lý lên các phản ứng hóa học. 2. Công nghệ hóa học cần chọn các nguyên vật liệu thích hợp cho xây dựng nhà máy tương ứng. 3. Chúng ta cần phải tìm các loại kim loại có khả năng chống được ăn mòn, có khả năng giãn nỡ ở nhiệt độ cao.v.v. 28
- UNIT 19: GAS MANUFACTURE Gas is made by the destructive distillation of that variety of coal, rich in hydrogen, known as bituminous coal. A typical bituminous coal has the following composition: carbon, 77%; hydrogen, 5%; nitrogen, 1.7%; oxygen, 7%; sulfur, 1.7%; ash, 3.5%; moisture, 3.4%. The series of operations involved in gas manufacture includes the processes of distillation, condensation of the products of distillation which are liquid or solid at atmospheric temperature, exhaustion of the uncondensed gas from the retorts, wet purification, by washing with water, dry purification, estimation of the volume of the purified gas, and distribution to the mains from which the customer draws his supply. The distillation of coal is carried out by the following systems: 1. Horizontal retorts 2. Continuously operated vertical retorts 3. Intermittent vertical retorts of chambers 4. Coke ovens: although large amounts of gas are produced as a by-product in coke ovens, their main concern is with the manufacture of hard, dense coke for use in the steel industry. Most of the town gas supplied by the gas industry is made in horizontal or vertical retorts. Vertical Retorts - Carbonization in vertical retorts may be continuous or intermittent. In the case of the former coal is fed continuously into the top of a retort by means of gravity, and is carbonized in its passage through the retort, coke being extracted by a slowly moving extractor at the base. As the coal is carbonized it swells considerably, and in consequence the retorts are wider in both dimensions at the bottoms than at the top. The retorts in cross-section are either rectangular or oval and are of various sizes to carbonize from 3 to 12 tons per day. The actual amount of coal passing through the retort depends upon the class of coal being carbonized and the calorific value of the gas produced. Steam is introduced at the base of the retort for the primary purpose of cooling the coke before it is discharge, but in so doing it produces water gas, thus increasing the gaseous yield. With continuous vertical retorts there is great possibility of flexibility in output and calorific value through variations in the rate at which coal is carbonized and in the amount of steaming. Steam is generated in waste-heat boilers in which the heat of the waste gases in utilized. From the retort the gas passes to the hydraulic main. It leaves the main at a temperature of about 600C, and is reduced to the temperature of the air by condensers which are air-cooled or water-cooled, or both. It is then subjected to purification and passed to the gas holder where it is stored. EXERCISES A. Read and translate into Vietnamese gas manufacture, condensation, atmospheric temperature, exhaustion, retorts, wet purification, estimation, distribution, horizontal retorts, vertical retorts, coke oven, extractor, carbonize, cross-section, rectangular or oval form, flexibility, hydraulic main, calorific value B. Answer the following questions 1. What are the main composition of a typical bituminous coal? 2. Can you tell the systems for the distillation of coal in the gas manufacture? 3. What is the vertical retort? 4. What is the difference between the vertical retort and continuous vertical one? 5. What is concept of air-cooled or water-cooled apparatus? C. Translate into English 1. Có nhiều công đoạn khác nhau trong quá trình sản xuất khí đốt như: chưng cất, ngưng tụ, tách hết phần khí không ngưng.v.v. 2. Từ lò, khí được chuyển qua bộ phận làm khô, thường giữ ở nhiệt độ là 600C. 3. Bộ phận ngưng tụ làm lạnh có thể làm lạnh bằng không khí hoặc bằng nước. 29
- UNIT 20 : SULFURIC ACID Sulfuric acid, H2SO4, is one of the most important of all chemicals, finding use throughout the chemical industry and related industries. It is a heavy, oily liquid, density 1.838 g/cm3, which fumes slightly in air, as the result of the liberation of traces of sulfur trioxide which then combine with water vapor to form droplets of sulfuric acid. When heated, pure sulfuric acid yields a vapor rich in sulfur trioxide, and then boils, at 3380C, with the constant composition 98% H2SO4, 2% water. This is the ordinary concentrated sulfuric acid of commerce. Concentrated sulfuric acid is very corrosive. It has a strong affinity for water, and a large amount of heat is liberated when it is mixed with water, as the result of the formation of hydronium ion: + -2 H2SO4 + 2H2O = 2H3O + SO4 In diluting it, the concentrated acid should be poured into water in a thin stream, with stirring; water should never be poured into the acid, because it is apt to sputter and throw drops of acid out of the container. The Manufacture of Sulfuric Acid Sulfuric acid is made by two processes, the contact process and the lead-chamber process, which are now about equally important. In the contact process sulfur trioxide is made by the catalytic oxidation of sulfur dioxide/ the name of the process refers to the fact that reaction occurs on contact of the gases with the solid catalyst/. The gas containing sulfur trioxide is bubbled through sulfuric acid, which absorbs the sulfur trioxide. Water is added at the proper rate, and 98% acid is drawn off. The principle of the lead-chamber process is shown by the following experiment. A large flask is fitted with four inlet tubes and a small outlet tube. Three of the tubes come from wash bottles, and the fourth from a flask in which water may be boiled. When oxygen, sulfur dioxide, nitric oxide, and a small amount of water vapor are introduced into the large flask, crystals of nitrososulfuric acid/ sulfuric acid in which one hydrogen atom is replaced by the nitrous group/, are formed. When steam is sent into the flask by boiling the water in the small flask, the crystals react to form drops of sulfuric acid, liberating oxides of nitrogen, which serve to catalyze the oxidation of sulfur dioxide by oxygen. In practice the reactions take place in large lead-lined chambers. The acid produced, called chamber acid, is 65% to 70% H2SO4. It may be concentrated to 78% by the evaporation of water by the hot gases from the sulfur burner or pyrite burner. The Uses of Sulfuric Acid Sulfuric acid is used for the manufacture of soluble phosphate fertilizers and in the manufacture of many chemicals and drugs. It is also used as the electrolyte in ordinary storage cells, and hot concentrated sulfuric acid is an effective oxidizing agent. EXERCISES A. Read and translate into Vietnamese sulfuric acid, density, droplet, yield, sulfur trioxide, affinity, hydronium ion, pour, apt to, sputter, container, catalytic oxidation, bubble, fertilizer, electrolyte, drug B. Answer the following questions 1. What is the sulfuric acid? 2. What is the b.p. of sulfuric acid? and tell the constant composition of ordinary concentrated sulfuric acid of commerce? 3. Can you describe the method for the manufacture of sulfuric acid? 4. What is the main principle of the lead-chamber process? 5. Give examples of some usages of sulfuric acid. C. Translate into English 1. Axit sunfuric là một trong những hợp chất hóa học quan trọng nhất. 2. Axit sunfuric là một chất lỏng nặng hơn nước và linh động có tỷ trọng bằng 1,838 g/cm3. 3. Axit sunfuric đậm đặc là một chất ăn mòn mạnh. 4. Khi pha dung dịch axit sunfuric luôn rót axit vào nước từng dòng nhỏ, không bao giờ rót nước vào axit vì nó làm bắn axit ra. 30
- UNIT 21: GLASS Glass is generally a mixture of several silicates, produced by melting together silica, an alkali and lime or lead. There are two general kinds of glass: lime glass and lead glass. The former is the more common, is cheaper, harder, more resistive and less fusible than lead glass. The latter has greater luster and brilliancy and is used chiefly for cut-ware and optical purposes. In general, the higher the percentage of silica the harder, less fusible, and more brittle the glass. Fusibility is decreased and hardness increased by increasing the lime. In colored glass a part of the lime and lead is replaced by oxides of iron, manganese, cobalt, etc. The addition of borates and phosphates improves glass for various optical and chemical purposes, as do also zinc and barium. German optical glass contains both zinc and barium. Practically all glass is decolorized in manufacture by the addition of manganese dioxide. Window glass is generally a soda-lime glass and, formerly, was always blown. Plate glass is usually soda-lime glass cast on large iron plates and subsequently ground and polished. Ground plate glass is extensively used for flooring. Pressed glass is made by forming heat-softened glass to shape in dies under pressure. It is fairly inexpensive. Wire glass is glass having an iron wire screen thoroughly 1 embedded in it. It offers about 1 /2 times the resistance to bending that plain glass does, and very thin sheets may be walked on. It is used for flooring, fireproof doors, etc. Pyrex glass is a low-expansion boro- silicate containing no metals of the magnesia-lime-zinc group and no heavy metals. Principal uses are chemical ware, baking ware, high-tension insulators, sight glasses for chemical apparatus, glass pipe lines for chemical plants, etc. Owing to the low coefficient of expansion Pyrex glass withstands sudden changes of temperature without breaking. Safety glass consist of two layers of plate glass firmly held by an intermediate layer of celluloid, attached to the glass by a suitable adhesive. It can be struck by a sharp hammer blow without shattering, and when sufficiently thick is practically bulletproof. EXERCISES A. Read and translate into Vietnamese glass, silicate, silica, lime-glass, lead-glass, resistive, fusible, luster, brilliance, cut-ware, optical purposes, brittle, feasibility, soda-lime, cast, wire glass, embed, resistance, fireproof, insulator, adhesive, shattering, bulletproof B. Answer the following questions 1. What is the glass? 2. How many kinds of glass do you know? And what are they? 3. What are the difference of lime glass and lead glass? 4. Can you tell something about the safety glass? 5. Say few words about the production of glass? C. Translate into English 1. Thủy tinh nói chung là một hỗn hợp của các hợp chất silicat khi làm nóng chảy cát. 2. Độ nóng chảy của thủy tinh tăng lên khi tăng lượng canxi và độ cứng cũng vậy. 3. Thủy tinh quang học của Đức có cả kẽm và bari. 4. Trong thực tế các loại thủy tinh bị mất màu khi bổ sung oxit mangan vào. UNIT 22 : THE RAPID METHOD OF DETERMINATION OF POTASSIUM IN MINERALS Report of the development of a rapid method for detn. of K based on decompn. of minerals in molten CaCl2. The method is based on the use of a high-frequency generator which offers the possibility of heating the reactants to high temps. under exceptionally pure conditions. The mineral sample is ground to particle sizes of 0.25 - 0.15 mm. Then 0.2g of the mineral is placed in a crucible of high-quality 0 graphite. Then 1.2g of anhyd. CaCl2 is added. The crucible is heated in a furnace at 200 for 20 min. To remove H2O absorbed during weighing. After this the crucible is lowered into a dry quartz tube which is closed with a rubber stopper. The quartz tube is placed in a cooling jacket of running H2O. The temp. of 31
- the crucible is brought to 1500 - 17000C. As a result all the alk. elements are converted to chlorides. This reaction is completed after several min. Later complete dissolving of the salts from the crucible requires about 3 hrs. and requires no control. The soln. obtained is analysed photometrically. One difficulty encountered was the masking of the emission from K by an excess of Ca. An expt. was made in order to learn the relation between amt. of K extd. and time of fusion. Microcline was used as the mineral. It was found that complete extn. of K could be attained by a 3 - 4 min. fusion. A study of reproducibility of results was made by using Microcline, muscovite and biotite. Av. error did not exceed 0.97 relative %. In comparing the rapid new method with the usual methods for detg. K in minerals, It was found that the K content obtained was higher with the new method. Preliminary studies on using the new method in rock analysis have given entirely satisfactory results. A sketch of the app. is shown, and some data are given in tables. EXERCISES A. Read and translate into Vietnamese detn.= determination, decompn.= decomposition, generator, temps.= temperature, crucible, anhyd.= anhydride, graphite, furnace, quartz tube, alk.= alkaline, convert, dissolve, masking, emission, excess, photometrically, amt.= amount, extd.= extracted, extn. extraction, av.= average, expt.= experiment, soln.= solution, detg.= determining, app.= apparatus B. Answer the following questions 1. What is the rapid method for determination of potassium? 2. What are the particle size of mineral sample after grinding? 3. Tell some steps of preliminary studies on using a new method in rock analysis? 4. Write and read all words in abbreviations in the lesson. C. Translate into English 1. Để xác định Kali có một phương pháp nhanh dựa trên sự phân hủy quặng trong CaCl2 nóng chảy. 2. Mẫu quặng được nghiền nhỏ thành các hạt có kích thước từ 0,25 - 0,15 mm. 3. Phản ứng này kết thúc sau ít phút. 4. Một thí nghiệm được tiến hành để biết mối quan hệ giữa lượng K tách ra được và thời gian nóng chảy của nó. UNIT 23 : THE USE OF RADIOACTIVE ELEMENTS AS TRACERS An extremely valuable technique for research that has been developed in recent years is the use of both radioactive and non-radioactive isotopes as tracers. By the use of these isotopes an element can be observed in the presence of large quantities of the same element. For example, one of the earliest uses of tracers was the experimental determination of the rate at which lead atoms move around through a crystalline sample of the metal lead. This phenomenon is called self-diffusion. If some radioactive lead is placed as a surface layer on a sheet of lead, and sample is allowed to stand for a while, it can then be cut up into thin sections parallel to the original surface layer, and the radioactivity present in each section can be measured. The presence of radioactivity in layers other than the original surface layer shows that lead atoms from the surface layer have diffused through the metal. Perhaps the greatest use for isotopes as tracers will be in the field of biology and medicine. The human body contains such large amounts of the elements carbon, hydrogen, nitrogen, oxygen, sulfur, etc. that it is difficult to determine the state of the organic material in the body. An organic compound containing a radioactive isotope, however, can be traced through the body. An especially useful radioactive isotope for these purposes is carbon 14. This isotope of carbon has a half-life of about 5000 years. It undergoes slow decomposition with emission of beta rays, and the amount of the isotope in a sample can be followed by measuring the beta activity. Large quantities of C14 can be readily made in a uranium pile, by the action of slow neutrons on nitrogen. The process can be carried out by running a solution of ammonium nitrate into the uranium pile, where it is exposed to neutrons. The carbon which is made in this way is in the form of bicarbonate ion, and can be precipitated as barium carbonate by adding 32
- barium hydroxide solution. The samples of radioactive carbon are very strongly radioactive, containing as much as 5% of the radioactive isotope. EXERCISES A. Read and translate into Vietnamese radioactive, non-radioactive, isotope, traces, phenomenon, self-diffusion, determination, surface layer, sheet, parallel, radioactivity, biology, medicine, pile, expose to, bicarbonate B. Answer the following questions 1. What is an extremely valuable technique for research in recent years? 2. What is the phenomenon called self-diffusion? 3. Can you cite some usage of isotopes as tracers in the body? 4. How many elements are there in the body? 5. Is it difficult to determine the state of the organic material in the body. C. Translate into English 1. Bằng sử dụng các chất đồng vị phóng xạ một nguyên tố người ta có thể quan sát được khi có mặt một lượng lớn ở các nguyên tố cùng loại. 2. Khả năng phóng xạ trên các lớp cắt mỏng song song lớn hơn ở lớp bề mặt ban đầu. 3. Quá trình này có thể được tiến hành bằng cách cho dung dịch nitrat amon vào lò phản ứng uran, ở đấy dung dịch này được chuyển thành các neutron. UNIT 24 : ACETONE Acetone is the simplest and most important of the ketones. It is a colorless, mobile, flammable liquid with a mildly pungent and somewhat aromatic odor. It is miscible in all proportions with water and with organic solvents such as ether, methanol, ethyl alcohol, and esters. Acetone is used chiefly as a solvent and as a raw material for the synthesis of organic compounds. Acetone is not easily oxidized; it is unaffected by nitric acid at room temperature and is stable to neutral permanganate. The more powerful oxidizing agents, such as alkaline permanganate and chromic acid, break it down to acetic and formic acid, and the latter decomposes further to carbon dioxide and water. Acetone does not reduce ammoniacal silver or Fehling's solution. The flash point of acetone is -200C. The explosive 1/mits of acetoneair mixtures appear to lie between 2.55% and 12.80% of acetone at room temperature. Acetone occurs in small quantities in human blood and urine. It is also formed by thermal decomposition of coal peat, acetic acid salts, formates, and citric acid, and by the dry distillation of sugars with lime. The largest use of acetone is in the production of acetic anhydride, which in turn is chiefly consumed in making cellulose acetate for acetate rayon, photographic film, and plastics. When acetone is passed through a heated tube at about 7000C/ preferably of a non-ferrous metal, since iron increases carbon formation and reduces yields/, it is converted into ketene and methane; the ketene on reaction with glacial acetic acid forms acetic anhydride. Acetone is also an excellent solvent for nitrocellulose and is used in making films, cements, artificial leather, and other similar products. By far the largest production of acetone is from petroleum-derived propylene by way of isopropyl alcohol. The production of acetone from isopropyl alcohol may be conducted either by catalytic dehydrogenation or by catalytic oxidation. Catalysts for the dehydrogenation include metals, such as copper, brass, and lead,/ sometimes with promoters/, and various metal oxides and salts or oxide-salt combinations, and recommended temperatures are of the order of 3000C and higher. The oxidation, being exothermic, is difficult to control; typical catalysts are copper, copper alloys, silver, and metal oxides, and temperatures are in the range 200 to 8000C. The availability of high-quality acetone in large quantities from the petroleum chemical industry has been a major factor in the expansion of rayon production and other acetone-consuming industries in recent years. 33