Luận văn Xây dựng bộ băm xung song song bằng ti-Ri-sto hoặc IGBT(Boot Choper)

pdf 65 trang phuongnguyen 3290
Bạn đang xem 20 trang mẫu của tài liệu "Luận văn Xây dựng bộ băm xung song song bằng ti-Ri-sto hoặc IGBT(Boot Choper)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pdfluan_van_xay_dung_bo_bam_xung_song_song_bang_ti_ri_sto_hoac.pdf

Nội dung text: Luận văn Xây dựng bộ băm xung song song bằng ti-Ri-sto hoặc IGBT(Boot Choper)

  1. BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG Luận văn Xây dựng bộ băm xung song song bằng ti-ri-sto hoặc IGBT(Boot Choper)
  2. LỜI MỞ ĐẦU Ngày nay hầu như tất cả các máy móc thiết bị trong công nghiệp cũng như trong đời sống đều phải sử dụng điện năng, có thể là dùng hoàn toàn nguồn năng lượng điện năng hoặc một phần năng lượng điện năng kết hợp với năng lượng khác. Có nhiều phương pháp sản xuất điện năng, tuy nhiên vấn đề ô nhiễm môi trường và nguồn tài nguyên đang ngày càng cạn kiệt đòi hỏi con người phải tìm ra những phương pháp sản xuất điện năng mới. Sau cuộc khủng hoảng năng lượng thế giới năm 1968 và 1973, năng lượng điện mặt trời được nghiên cứu và ứng dụng ở một số nước công nghiệp phát triển. Năng lượng điện mặt trời có nhiều ưu điểm như nguồn tài nguyên vô tận, không gây ô nhiễm môi trường Tuy nhiên quá trình sản xuất điện năng phụ thuộc nhiều vào thời tiết. Thời tiết luôn thay đổi dẫn đến điện áp ra của dàn Pin mặt trời cũng luôn thay đổi. Do đó, trong hệ thống điện mặt trời phải có bộ ổn định điện áp để cung cấp điện năng cho tải tiêu thụ. Nội dung bản đồ án này là thiết kế bộ ổn định điện áp sử dụng phần tử bán dẫn bằng tiristor hoặc IGBT. Trong thời gian thực hiện bản đồ án, được sự chỉ dẫn tận tình của GS.TSKH Thân Ngọc Hoàn cùng sự cố gắng của bản thân, em đã hoàn thành đồ án này đúng thời hạn được giao. Tuy nhiên, do thời gian có hạn và kiến thức còn hạn chế nên trong đồ án này không tránh khỏi những thiếu sót, em rất mong nhận được sự đóng góp của các thầy cô và các bạn để đồ án hoàn thiện hơn. Em xin chân thành cảm ơn! Sinh viên thực hiện Hoàng Xuân Hiệp 1
  3. CHƢƠNG 1. NĂNG LƢỢNG ĐIỆN MẶT TRỜI 1.1. Mở đầu Hầu như tất cả các nguồn năng lượng mà con người hiện nay đang sử dụng xét cho cùng đều xuất phát hay có liên quan tới năng lượng mặt trời (chỉ trừ năng lượng nguyên tử, địa nhiệt và các nhà máy phát điện hoạt động bằng năng lượng thuỷ triều). Người ta chia các nguồn năng lượng thành 2 nhóm năng lượng chính: - Năng lượng hoá thạch như dầu, than đá hay khí đốt. - Năng lượng tái tạo từ những nguồn năng lượng như mặt trời, gió. Năng lượng mặt trời là năng lượng được tạo ra từ các phản ứng nhiệt hạt nhân trên mặt trời. Năng lượng này có thể thu được dưới dạng sóng bức xạ điện từ truyền đến trái đất. Ở ngoài khí quyển quả đất cường độ của bức xạ mặt trời có giá trị là E = 1,367 kW/m² và được gọi là hằng số mặt trời. Nhưng khi đi qua lớp khí quyển quả đất, do bị hấp thụ và tán xạ, nên năng lượng mặt trời bị giảm khoảng 30%. Năng lượng mặt trời dùng chủ yếu để làm ấm bầu khí quyển, vỏ trái đất và nước. Chỉ có khoảng 1 - 2 % NLMT được biến thành năng lượng gió, khoảng 0,02 – 0, 03 % được sử dụng để tạo ra các hợp chất hữu cơ sinh khối. Ứng dụng của năng lượng mặt trời hiện nay bao gồm 2 lĩnh vực: - Thứ nhất là công nghệ điện mặt trời: năng lượng mặt trời được biến đổi trực tiếp thành điện nhờ các tế bào quang điện bán dẫn (hiệu ứng quang điện) hay còn gọi là Pin mặt trời. Các Pin mặt trời sản xuất ra điện năng một cách liên tục chừng nào còn bức xạ mặt trời chiếu tới. - Thứ hai là công nghệ nhiệt mặt trời: năng lượng mặt trời được tích trữ dưới dạng nhiệt năng thông qua thiết bị thu bức xạ nhiệt mặt trời. Công nghệ nhiệt mặt trời dùng trong nhiều mục đích khác nhau như: thiết bị đun nước nóng dùng năng lượng mặt trời, bếp nấu dùng năng lượng mặt trời, thiết bị chưng cất nước dùng năng lượng mặt trời, động cơ Stirling chạy bằng năng lượng mặt trời 2
  4. Năng lượng mặt trời có những ưu điểm như: nguồn nhiên liệu vô tận, không gây ô nhiễm môi trường, an toàn cho người sử dụng Đồng thời, việc sử dụng năng lượng mặt trời sẽ góp phần thay thế các nguồn năng lượng hóa thạch, giảm phát khí thải nhà kính, bảo vệ môi trường. Vì thế, đây được coi là nguồn năng lượng quý giá, có thể thay thế những dạng năng lượng cũ đang ngày càng cạn kiệt. 1.2. Hệ thống điện mặt trời cơ bản 1.2.1. Sơ đồ khối hệ thống điện mặt trời Không như các hệ năng lượng khác, “nhiên liệu” của máy phát điện là bức xạ mặt trời, nó thay đổi phức tạp theo thời gian, theo địa phương và phụ thuộc vào các điều kiện như khí hậu, thời tiết nên với cùng một tải điện yêu cầu, có thể có một số thiết kế khác nhau tùy theo các thông số riêng của hệ. Vì vậy, nói chung là không nên áp dụng các hệ thiết kế mẫu dùng cho tất cả hệ thống điện mặt trời. Hệ thống điện mặt trời là một hệ thống bao gồm một số các thành phần như: các tấm pin mặt trời (máy phát điện), các tải tiêu thụ điện, các thiết bị tích trữ năng lượng và các thiết bị điều phối năng lượng Hình 1.1 Sơ đồ khối hệ thống điện mặt trời Trong hai thành phần được quan tâm ở đây là dàn pin mặt trời và bộ acquy. Đây là hai thành phần chính của hệ thống và chiếm một tỷ trọng lớn nhất trong chi phí của hệ thống điện mặt trời. Cùng một phụ tải tiêu thụ có 3
  5. nhiều phương án lựa chọn hệ thống điện mặt trời, trong đó giữa dung lượng dàn pin mặt trời và bộ acquy có quan hệ tương hỗ như sau: - Tăng dung lượng acquy thì giảm được dung lượng dàn pin mặt trời. - Tăng dung lượng dàn pin mặt trời thì giảm được dung lượng acquy. Tuy nhiên, nếu lựa chọn dàn pin mặt trời quá nhỏ thì acquy sẽ bị phóng kiệt hoặc luôn luôn bị “đói”, dẫn đến hư hỏng. Ngược lại nếu dung lượng dàn pin mặt trời quá lớn sẽ gây ra lãng phí lớn. Do vậy phải lựa chọn thích hợp để hệ thống có hiệu quả cao nhất. Các khối trong hệ thống đều gây ra tổn hao năng lượng. Vì vậy cần lựa chọn sơ đồ khối sao cho số khối hay thành phần trong hệ là ít nhất. Ví dụ, nếu tải là các thiết bị 12VDC (đèn 12VDC, radio, ) thì không nên dùng bộ biến đổi điện. Trong thực tế có những hệ thống điện mặt trời nằm trong những tổ hợp hệ thống năng lượng, gồm hệ thống điện mặt trời, máy phát điện gió, máy phát diezen Trong hệ thống đó, điện năng từ hệ thống mặt trời được hòa vào lưới điện chung cùng tổ hợp hệ thống. 4
  6. Hình 1.2. Sơ đồ lắp đặt hệ thống điện mặt trời nối lưới Hình1.3. Sơ đồ hệ thống điện mặt trời gia đình 5
  7. 1.2.2. Pin mặt trời Pin mặt trời là phương pháp sản xuất điện trực tiếp từ năng lượng mặt trời qua các thiết bị biến đổi điện quang. Khi chiếu sáng một lớp tiếp xúc bán dẫn PN thì năng lượng ánh sáng có thể được bíến đổi thành năng lượng của dòng điện một chiều. Hiện tượng đó được gọi là hiệu ứng quang điện và nó được ứng dụng để chuyển đổi năng lượng mặt trời thành điện năng. Trong công nghệ quang điện, người ta sử dụng các modun pin mặt trời mà thành phần chính của nó là các lớp tiếp xúc bán dẫn Silic loại N và loại P. Hình 1.4. Nguyên lý cấu tạo Pin mặt trời 6
  8. Hình 1.5. Modun Pin mặt trời Hiệu suất biến đổi quang điện của các modun Pin mặt trời Si thương mại trong khoảng 11-14%. Công nghệ sản xuất điện năng này hoàn toàn không gây ra ô nhiễm môi trường. 1.2.3. Acquy Acquy trong hệ thống điện mặt trời dùng để tích trữ năng lượng điện và làm nguồn điện cung cấp cho các thiết bị điện, duy trì sự ổn định và liên tục cho hệ thống điện mặt trời. Hình 1.6. Bộ acquy 7
  9. Acquy là nguồn năng lượng có tính chất thuận nghịch: nó tích trữ năng lượng dưới dạng hoá năng và giải phóng năng lượng dưới dạng điện năng. Quá trình acquy cấp điện cho mạch ngoài được gọi là quá trình phóng điện, quá trình acquy dự trữ năng lượng được gọi là quá trình nạp điện. Các tính năng cơ bản của acquy: -Sức điện động lớn, ít thay đổi khi phóng nạp điện. -Năng lượng điện nạp vào bao giờ cũng bé hơn năng lượng điện mà acquy phóng ra . -Điện trở trong của acquy nhỏ. Nó bao gồm điện trở của các bản cực, điện trở dung dịch điện phân có xét đến sự ngăn cách của các tấm ngăn giữa các bản cực. Thường trị số điện trở trong của ăc-quy khi đã nạp điện đầy là 0.001 đến 0.0015 và khi ăc-quy phóng điện hoàn toàn là 0.02 đến 0.025 . Có hai loại acquy là acquy a-xit (hay còn gọi là acquy chì) và acquy kiềm. Trong đó acquy a-xit được dùng phổ biến và rộng rãi hơn. 1.2.4. Bộ điều khiển quá trình nạp phóng điện Bộ điều khiển là một thiết bị điện tử có chức năng kiểm soát tự động các quá trình nạp và phóng điện của acquy. Bộ điều khiển theo dõi trạng thái của acquy thông qua hiệu điện thế trên các điện cực của nó. Hình 1.7. Bộ điều khiển nạp phóng điện 8
  10. Các thông số kỹ thuật cần được quan tâm - Ngưỡng điện thế cắt trên Vmax là giá trị hiệu điện thế trên hai cực của bộ acquy đã được nạp điện đầy, dung lượng đạt 100%. Khi đó nếu tiếp tục nạp cho bộ acquy thì acquy sẽ bị quá đầy, dung lượng acquy sẽ bị sôi dẫn đến sự bay hơi nước và làm hư hỏng các bản cực. Vì vậy khi có dấu hiệu acquy đã được nạp đầy, hiệu điện thế trên các bản cực của bộ acquy đạt đến V = Vmax thì bộ điều khiển sẽ tự động cắt hoặc hạn chế dòng điện nạp từ dàn pin mặt trời. Sau đó khi hiệu điện thế bộ acquy giảm xuống dưới giá trị ngưỡng, bộ điều khiển lại tự động đóng mạch nạp. - Ngưỡng cắt dưới Vmin là giá trị hiệu điện thế trên hai cực bộ acquy khi acquy đã phóng điện đến giá trị cận dưới của dung lượng acquy (ví dụ, đối với acquy chì – axit, khi trong acquy chỉ còn lại 30% dung lượng). Nếu tiếp tục sử dụng acquy thì nó sẽ bị phóng điện quá kiệt, dẫn đến hư hỏng acquy. Vi vậy, khi bộ điều khiển nhận thấy tín hiệu điện bộ acquy V < Vmin thì nó sẽ tự động cắt mạch tải tiêu thụ. Sau đó, nếu hiệu điện thế bộ acquy tăng lên trên giá trị ngưỡng, bộ điều khiển sẽ tự động đóng mạch nạp lại. Đối với acquy chì – axit, hiệu điện thế chuẩn trên các cực của một bình là V = 12V, thì thông thường người ta chọn Vmax = (14 ÷ 15,4)V, còn Vmin = (10,5 ÷ 11)V. - Điện thế trễ ΔV là giá trị khoảng điện thế (hiệu số) của các giá trị điện thế cắt trên hay cắt dưới và điện thế đóng mạch lại của bộ điều khiển, tức là: ΔV = Vmax – Vd hay ΔV = Vmin – Vd Với Vd là giá trị điện thế đóng mạch trở lại của bộ điều khiển. Thông thường ΔV = (1 ÷ 2)V. - Công suất P của bộ điều khiển thông thường nằm trong khoảng 1,3 PL < P < 2 PL Trong đó PL là tổng công suất các tải có trong hệ nguồn, PL = ∑Pi i = 1, 2, 3, , n. Hiệu suất của bộ biến đổi phải càng cao càng tốt, ít nhất cũng phải đạt giá trị lớn hơn 85%. 9
  11. 1.2.5. Bộ biến đổi điện DC-AC Bộ biến đổi điện có chức năng biến đổi dòng điện một chiều (DC) từ dàn pin mặt trời hoặc từ bộ acquy thành dòng điện xoay chiều (AC). Các thông số kỹ thuật chính cần quan tâm bao gồm: - Điện thế vào Vin một chiều. - Điện thế ra Vout xoay chiều. - Tần số và dạng dao động điện. - Công suất yêu cầu cũng được xác định như đối với bộ điều khiển, nhưng ở đây chỉ tính các tải của riêng bộ biến đổi điện. - Hiệu suất biến đổi η phải đạt yêu cầu η ≥ 85% đối với trường hợp sóng điện xoay chiều có dạng vuông góc hay biến điệu và η≥ 75% đối với bộ biến đổi có sóng điện ra hình sin. Việc dùng bộ biến đổi điện có tín hiệu ra dạng xung vuông, biến điệu hay hình sin lại phụ thuộc vào tải tiêu thụ. Nếu tải chỉ là ti vi, radio, tăng âm, thì chỉ cần dùng loại sóng ra dạng xung vuông hay biến điệu. Nhưng nếu tải là các động cơ điện, quạt điện, tức là những thiết bị có cuộn cảm thì phải dùng các bộ biến đổi có sóng ra dạng sin. Hình 1.8. Bộ biến đổi DC - AC Vì hiệu điện thế trong hệ nguồn điện pin mặt trời thay đổi theo. Cường độ bức xạ và trạng thái nạp của acquy, nên các điện thế vào và ra của bộ điều khiển cũng như bộ biến đổi điện phải được thiết kế trong một khoảng dao động khá rộng nào đó. Ví dụ đối với hệ nguồn làm việc với điện thế V = 12V thì bộ điều khiển và bộ đổi điện phải làm việc được trong giải điện thế từ 10
  12. Vmin = 10 V đến Vmax = 15 V. Để có thể dễ dàng kiểm tra, theo dõi quá trình hoạt động của hệ nói chung và của từng thành phần nói riêng cần phải lắp đặt thêm các bộ chỉ thị như: - Chỉ thị điện thế ra, dòng ra của tấm pin mặt trời; - Chỉ thị dòng và điện thế nạp acquy; - Chỉ thị dòng và điện thế cấp cho tải; - Chỉ thị mức độ nạp hoặc phóng điện cho acquy; - Chỉ thị nhiệt độ của tấm pin mặt trời, của acquy hoặc của các thành phần khác trong hệ thống. Nhờ các chỉ thị này ta có thể nhanh chóng xác định được trạng thái làm việc của hệ, giúp tìm các hư hỏng trong hệ một cách dễ dàng hơn. Không nhất thiết phải lắp đặt tất cả các chỉ thị trên mà có thể chỉ cần một số chỉ thị quan trọng nhất tùy thuộc đặc điểm của hệ nguồn. Để bảo vệ dàn pin mặt trời khỏi các hư hỏng trong các trường hợp một hoặc một vài pin hay modun trong dàn pin bị hư hỏng, bị bóng che, bị bụi bẩn bao phủ, người ta dùng các diode bảo vệ mắc song song và. Cần phải lựa chọn các diode thích hợp, tức là chịu được dòng điện và hiệu điện thế cực đại trong mạch của diode. Việc đưa vào các diode bảo vệ trong mạch gây ra tổn hao năng lượng của hệ và sụt thế trong mạch. Vì vậy cần phải tính đến các tổn hao này khi thiết kế, tính toán hệ thống năng lượng mặt trời. 1.3. Các thông số chính của hệ thống điện mặt trời Hệ thống điện mặt trời có các thông số chính sau: - Yêu cầu của phụ tải - Vị trí lắp đặt hệ thống. 1.3.1. Yêu cầu của phụ tải - Gồm bao nhiêu thiết bị, các đặc trưng điện của mỗi thiết bị như công suất tiêu thụ, hiệu điện thế, tần số làm việc, hiệu suất của các thiết bị điện - Thời qian làm việc của mỗi thiết bị bao gồm thời gian biểu và khoảng thời gian trong ngày, trong tuần trong tháng 11
  13. - Thứ tự ưu tiên của các thiết bị điện, thiết bị nào cần phải hoạt động liên tục và yêu cầu độ ổn định cao, thiết bị nào có thể ngừng tạm thời. Các thông số trên trước hết cần thiết cho việc lựa chọn sơ đồ khối. Ví dụ nếu tải làm việc vào ban đêm thì hệ cần phải có thành phần dự trữ năng lượng, tải làm việc với điện xoay chiều hiệu điện thế cao cần có thêm bộ biến đổi. Ngoài ra, các thông số này cũng chính là cơ sở để tính toán định lượng dung lượng của hệ thống. 1.3.2. Vị trí lắp đặt hệ thống - Yêu cầu này xuất phát từ việc thu thập các số liệu về bức xạ mặt trời và các số liệu về thời tiết khí hậu. Bức xạ mặt trời phụ thuộc vào từng địa điểm trên mặt đất và các điều kiện tự nhiên của địa điểm đó. Các số liệu về bức xạ mặt trời và khí hậu, thời tiết được các trạm khí tượng ghi lại và xử lí trong khoảng thời gian rất dài, hàng chục, có khi hàng trăm năm. Vì các thông số này biến đổi rất phức tạp nên trong việc thiết kế hệ thống điện mặt trời cần phải lấy số liệu ở các trạm khí tượng đã hoạt động trên mười năm. - Khi thiết kế hệ thống điện mặt trời, để hệ cung cấp đủ năng lượng cho tải trong suốt cả năm, ta phải chọn giá trị cường độ bức xạ tổng của tháng thấp nhất trong năm làm cơ sở. Tất nhiên khi đó, ở các tháng mùa hè năng lượng của hệ sẽ dư thừa và có thể gây lãng phí lớn nếu không dùng thêm các tải phụ. Ta không thể dùng các bộ tích trữ năng lượng như acquy để tích trữ năng lượng trong các tháng mùa hè để dùng trong các tháng mùa đông vì không kinh tế. Để giải quyết vấn đề trên người ta dùng thêm một nguồn điện dự phòng như máy phát diezen, máy nổ cấp điện thêm cho những tháng có cường độ bức xạ mặt trời thấp hoặc sử dụng công nghệ nguồn tổ hợp (hybrid system technology). Trong trường hợp này có thể chọn cường độ bức xạ trung bình trong năm để tính toán và giảm được dung lượng dàn pin mặt trời. Ngoài ra còn một số thông số liên quan đến bức xạ mặt trời như số ngày không có nắng trung bình trong năm. Nếu không tính toán đến thông số này, vào mùa mưa có thể có thể có một số ngày không có nắng, acquy sẽ bị kiệt và tải phải ngưng hoạt động. 12
  14. CHƢƠNG 2. GIỚI THIỆU MỘT SỐ MẠCH BĂM XUNG ĐIỆN ÁP MỘT CHIỀU 2.1 Giới thiệu về băm xung một chiều Bộ băm xung điện áp một chiều (bộ biến đổi áp một chiều) sử dụng các ngắt bán dẫn dùng để biến đổi điện áp một chiều thành một chuỗi các xung áp, nhờ đó sẽ thay đổi được trị số điện áp đầu ra. Hình 2.1. Định nghĩa bộ biến đổi áp một chiều Bộ băm xung điện áp một chiều có chức năng biến đổi điện áp một chiều, nó có ưu điểm là có thể thay đổi điện áp trong một phạm vi rộng với hiệu suất của bộ biến đổi cao và tổn thất của bộ biến đổi chủ yếu trên các phần tử đóng cắt rất nhỏ. So với các phương pháp thay đổi điện áp một chiều để điều chỉnh tốc độ động cơ một chiều như phương pháp điều chỉnh bằng biến trở, bằng máy phát một chiều, bằng bộ biến đổi có khâu trung gian xoay chiều, bằng chỉnh lưu có điều khiển thì phương pháp dùng mạch băm xung có nhiều ưu điểm đáng kể: điều chỉnh tốc độ và đảo chiều dễ dàng, tiết kiệm năng lượng, kinh tế và hiệu quả cao, đồng thời đảm bảo được trạng thái hãm tái sinh của động cơ. Cùng với sự phát triển và ứng dụng ngày càng rộng rãi các linh kiện bán dẫn công suất lớn đã tạo nên các mạch băm xung có hiệu suất cao, tổn thất nhỏ, độ nhạy cao, điều khiển trơn tru, chi phí bảo trì thấp, kích thước nhỏ. 13
  15. Điện áp trung bình đầu ra sẽ được điều khiển theo mức mong muốn mặc dù điện áp đầu vào có thể là hằng số (acquy, pin) hoặc biến thiên (đầu ra của chỉnh lưu), tải có thể thay đổi. Với một giá trị điện áp vào cho trước, điện áp trung bình đầu ra có thể điều khiển theo hai cách: - Thay đổi độ rộng xung. - Thay đổi tần số băm xung. Hình 2.2. Điện áp ra bộ băm xung một chiều Điện áp ra của bộ băm xung là điện áp một chiều thay đổi theo chu kỳ T gồm thời gian có xung t1 và thời gian nghỉ t2. 2.1.1 Phƣơng pháp thay đổi độ rộng xung Nội dung của phương pháp này là thay đổi thời gian t1, giữ nguyên chu kì T. Giá trị trung bình của điện áp ra khi thay đổi độ rộng là: tU. UU1 . d T 14
  16. Trong đó đặt: t 1 T γ gọi là hệ số lấp đầy hay còn gọi là tỉ số chu kỳ. Như vậy theo phương pháp này thì dải điều chỉnh của Ura là rộng (0 < γ 1). 2.1.2 Phƣơng pháp thay đổi tần số xung Nội dung của phương pháp này là thay đổi T, còn t1 = const. Khi đó: t U1 .U t .f.U d1T t1 Khi đó Ud = f1.U với f1 = T Ngoài ra có thể phối hợp cả hai phương pháp trên, nghĩa là điều khiển hỗn hợp, thay đổi cả T và t1. Thực tế phương pháp biến đổi độ rộng xung được dùng phổ biến hơn vì đơn giản hơn, không cần thiết bị biến tần đi kèm. 2.1.3 Nhận xét Ở đây ta chọn cách thay đổi độ rộng xung, phương pháp này gọi là PWM (Pulse Width Modulation). Theo phương pháp này tần số băm xung sẽ là hằng số.Việc điều khiển trạng thái đóng mở của van dựa vào việc so sánh một điện áp điều khiển với một sóng tuần hoàn (thường là dạng tam giác (Sawtooth)) có biên độ đỉnh không đổi. Nó sẽ thiết lập tần số đóng cắt cho van, tần số đóng cắt này là không đổi với dải tẩn từ 400Hz đến 200kHz. Khi uuControl st thì xuất hiện tín hiệu điều khiển mở van, ngược lại khóa van. 15
  17. 2.2 Các sơ đồ băm xung 2.2.1. Băm xung nối tiếp – giảm áp (Step – down (Buck)) Hình 2.3. Sơ đồ băm xung nối tiếp Phần tử điều chỉnh quy ước là khoá S (van bán dẫn điều khiển). Đặc điểm của sơ đồ này là khoá S, cuộn cảm và tải mắc nối tiếp. Tải có tính chất cảm kháng hoặc dung kháng. Bộ lọc LC. Diode mắc ngược với Ud để thoát dòng tải khi khoá K ngắt. + S đóng U được đặt vào đầu của bộ lọc. Giả thiết các van là lý tưởng (bỏ qua sụt áp trên các van trong bộ biến đổi) khi đó ud = U. + S mở hở mạch giữa nguồn và tải, nhưng vẫn có dòng id do năng lượng tích luỹ trong cuộn L và Ltải, dòng chạy qua D, khi đó mặc dù ud=0 nhưng id 0 . Như vậy, Ud U. Tương ứng ta có bộ biến đổi hạ áp. U t Đặc tính truyền đạt: W d 1 I UT 16
  18. 2.2.2. Băm xung song song – Tăng áp (Step – up (boost)) Hình 2.4. Sơ đồ băm xung song song Đặc điểm: L nối tiếp với tải, khoá S mắc song song với tải. Cuộn cảm L không tham gia vào quá trình lọc gợn sóng mà chỉ có tụ C đóng vai trò này. Cuộn L tham gia vào quá trình tích lũy năng lượng. + S đóng, dòng điện từ +U qua L S -U. Khi đó D tắt vì trên tụ có UC (đã được tích điện trước đó). + S ngắt, dòng điện chạy từ +U qua L D Tải. Vì từ thông trong L không giảm tức thời về không do đó trong L xuất hiện suất điện động tự d cảm eL w , có cùng cực tính U. Do đó tổng điện áp: ud =U + eL. Vậy ta dt có bộ biến đổi tăng áp. Đặc tính của bộ biến đổi là tiêu thụ năng lượng từ nguồn U ở chế độ liên tục và năng lượng truyền ra tải dưới dạng xung nhọn. Ud T 1 Đặc tính truyền đạt: WI U T t1 1 17
  19. 2.2.3. Băm xung đảo cực (Step – down / up (buck – boost)) Hình 2.5. Sơ đồ băm xung đảo cực Tải là động cơ một chiều được thay bởi mạch tương đương R-L-E. L1 chỉ đóng vai trò tích luỹ năng lượng. C đóng vai trò là tụ lọc. + S đóng, trên L1 có U, dòng chạy từ +U S L1 -U. Năng lượng tích luỹ trong cuộn cảm L1; diode D tắt; Ud =UC, tụ C phóng điện qua tải. + S ngắt, cuộn cảm L1 sinh ra sức điện động ngược chiều với trường hợp đóng D thông năng lượng từ trường nạp vào C, tụ C tích điện, Ud sẽ ngược chiều với U. Vậy điện áp ra trên tải đảo dấu so với U. Giá trị tuyệt đối |Ud| có thể lớn hơn hay nhỏ hơn U nguồn. Ud t1 1 Đặc tính truyền đạt: WI ()() U T t1 1 18
  20. 2.2.4 Bộ Chopper lớp C (Bộ đảo dòng) Sơ đồ nguyên lý Hình 2.6. Bộ Chopper lớp C Tải là phần ứng động cơ một chiều kích từ độc lập, nó được thay bởi mạch tương đương R-L-E. Nguyên lý hoạt động. Chế độ động cơ: Trong khoảng 0 t T , động cơ được nối nguồn qua S1 , điện áp đặt lên động cơ là U. Trong khoảng T t T , ngắt, động cơ được nối ngắn mạch qua D2 , điện áp đặt lên động cơ là 0. Chế độ hãm tái sinh: Trong khoảng 0 t T , S2 ngắt, động cơ được nối nguồn qua D1 , điện áp đặt lên động cơ là U. Trong khoảng T t T , dẫn, động cơ được nối ngắn mạch qua , điện áp đặt lên động cơ là 0. 19
  21. Biểu đồ dạng sóng dòng và áp trên tải udk2 Hình 1.7. Biểu đồ dạng sóng dòng và áp trên tải Tính toán các thông số trên sơ đồ Trong khoảng S1 (D1 ) dẫn, điện áp đặt lên động cơ là U, ta có: di Ri L E U . dt Giải bằng phương pháp toán tử Laplace: UE tt i(t) .(1 e ) I .e R min Trong khoảng S2 (D2 ) dẫn, điện áp đặt lên động cơ là 0, ta có: 20
  22. di Ri L E 0. dt Giải bằng phương pháp toán tử Laplace: E (t T) (t T) i(t) (1 e ) I e R max T T U e 1 E U 1 e E I ; I min RRT max RRT e1 1e L Trong đó R 11T T Điện áp trung bình trên động cơ: Udd u dt Udt U TT00 UEUE Dòng điện trung bình:I d d RR T T (1 )T I I U 1 e e e Độ nhấp nhô dòng điện: I max min d 2 2R T e1 2 T x Do 1 nên sử dụng công thức tính gần đúng ex 1 x ta được 2 U U ΔI (1 ) ΔI d 2fL d max 8fL Dòng trung bình qua van S1 (D1 ) là:II1d Dòng trung bình qua van S (D ) là:I (1 )I 2 2 2d 21
  23. 2.2.5 Bộ đảo áp Sơ đồ nguyên lý Hình 2.8. Sơ đồ bộ đảo áp Nguyên lý hoạt động Chu kỳ đóng cắt của mỗi van là T, S1 và S2 được kích dẫn lệch pha một khoảng thời gian T/2, mỗi van S1, S2 được kích với góc dẫn như nhau. Chế độ động cơ (0,5 1) T Trong các khoảng 0 t T( 0,5) và tT thì S1 và S2 cùng 2 dẫn, điện áp đặt lên phần ứng động cơ là U, dòng điện qua động cơ tăng từ di I tới Imax ta có phương trình: Ri L E U . min dt T Trong các khoảng T( 0,5) t và T t T thì S1 và S2 không 2 đồng thời dẫn, do đó động cơ được nối ngắn mạch qua các diot D1 hoặc D2, điện áp đặt lên động cơ là 0, dòng điện qua động cơ giảm từ Imax xuống , di ta có phương trình Ri L E 0. dt 22
  24. Biểu đồ dạng sóng dòng và áp trên tải Hình2.9. Biểu đồ dòng và áp trên tải ở chế độ động cơ Các thông số trên sơ đồ. Biểu thức dòng tải Trong khoảng 0 t T( 0,5) : điện áp đặt lên động cơ là U. Dòng qua động cơ tăng từ Imin tới Imax. di Phương trình dòng qua động cơ: Ri L E U dt Giải phương trình bằng phương pháp toán tử Laplace ta có: UE tt i(t) .(1 e ) I .e . R min T Trong khoảng T( 0,5) t : dòng i ngắn mạch qua S và D điện 2 d 1 2 áp đặt lên động cơ là 0, id giảm từ Imax về Imin. di Phương trình dòng qua động cơ: Ri L E 0. dt 23
  25. Giải phương trình bằng phương pháp toán tử Laplace ta có: E (t T) (t T) i(t) 1 e I e trong đó 0,5 R max T Với điều kiện i(0) i( ) I , dựa vào hai phương trình trên ta có: 2 min T T U e 1 E U 1 e E L I ;I trong đó min RRT max RRT R e12 1e2 Độ nhấp nhô dòng điện: II UU Imax min (2 1)(1 ) d 2 2fL 16fL Điện áp trung bình đặt trên động cơ: T 222 T Udd udt Udt 2U(2 1)U TT00 U E (2 1)U E Dòng điện trung bình I d d RR Điện áp ngược lớn nhất đặt lên các phần tử là V (2 1)U E Dòng trung bình qua các van S1, S2: II 1d R (2 1)U E Dòng trung bình qua các diot: I (1 )I (1 ) 2d R Chế độ hãm tái sinh (0 0.5) 24
  26. Hình2.10. Biểu đồ dòng và áp trên tải ở chế độ hãm tái sinh Trong khoảng 0 t T động cơ được ngắn mạch qua S1 và D2, dòng điện qua động cơ tăng từ Imin tới Imax, điện áp đặt lên động cơ là 0, ta có di phương trình:Ri L E (đối với sơ đồ này thì khi làm việc ở chế độ hãm dt tái sinh phải đảo chiều quay của động cơ). Giải phương trình trong khoảng E tt ta được:i(t) (1 e ) Imin e R 25
  27. T Trong khoảng Tt , động cơ trả năng lượng về nguồn qua các 2 diot D1 và D2, dòng qua động cơ giảm từ Imax xuống Imin, ta có phương trình di Ri L E U . dt Giải phương trình trong khoảng t ta được: EU (t T) (t T) i(t) (1 e ) I e R max Điện áp trung bình đặt lên động cơ: 22T 2 T 2 Udd udt (U)dt (2 1)U TT0T U ( E) E (1 2 )U Dòng điện trung bình là: I d d RR Dòng trung bình qua các van S1, S2 là: II1d Dòng trung bình qua các diode D1, D2là: I2d (1 )I Điện áp ngược lớn nhất đặt lên các van là: UU ng.max 2.2.6 Bộ Chopper lớp E Sơ đồ nguyên lý Hình 2.11. Sơ đồ bộ choopper lớp E 26
  28. Ở đây ta sử dụng van bán dẫn IGBT. Bộ băm xung một chiều dùng van điều khiển hoàn toàn IGBT có khả năng thực hiện điều chỉnh điện áp và đảo chiều dòng điện tải. Trong các hệ truyền động tự động có yêu cầu đảo chiều động cơ do đó bộ biến đổi này thường hay dùng để cấp nguồn cho động cơ một chiều kích từ độc lập có nhu cầu đảo chiều quay. Các van IGBT làm nhiệm vụ khoá không tiếp điểm. Các diode Đ1,Đ2,Đ3,Đ4 dùng để trả năng lượng phản kháng về nguồn và thực hiện quá trình hãm tái sinh. Có các phương pháp điều khiển khác nhau như : Điều khiển độc lập, điều khiển không đối xứng và điều khiển đối xứng . Các phƣơng pháp điều khiển a.Phƣơng pháp điều khiển độc lập Nếu ta muốn động cơ chạy theo chiều nào thì ta sẽ chỉ cho một cặp van chạy ,cặp còn lại sẽ khoá. +Muốn cho động cơ quay thuận cho S1,S2 dẫn ,S3,S4 nghỉ. +Muốn cho động cơ quay nghịch cho S1,S2 nghỉ ,S3,S4 dẫn. b. Phƣơng pháp điều khiển không đối xứng Giả sử động cơ quay theo chiều thuận (động cơ sẽ làm việc ở góc phần tư thứ 1và thứ 2) tương ứng với cặp van S, S2 làm việc, S3 luôn bị khoá, S4 được đóng mở ngược pha với S1. Bộ BXMC có 3 trạng thái làm việc : Trạng thái 1: E>Et : Động cơ làm việc ở góc phần tư thứ nhất. Năng lượng cấp cho động cơ được cấp từ nguồn thông qua các van S1, S2 dẫn trong khoảng 0 t1. +Trong khoảng t1 T: Năng lượng tích trữ trong điện cảm sẽ duy trì cho dòng điện theo chiều cũ và khép mạch qua S2, Đ4. 27
  29. Trạng thái 2: E E :Động cơ trả năng lượng về nguồn qua Đ1 và Đ2 (IĐ1=IĐ2=It) +Trong khoảng t0 t1 : E>Et : Động cơ làm việc ở chế độ động cơ Năng lượng từ nguồn qua S1 ,S2 cấp cho động cơ +Trong khoảng t1 t2: S1 khóa ,S4 mở .Năng lượng tích luỹ trong điện cảm sẽ cấp cho động cơ và duy trì dòng điện qua Đ2 ,Đ4 +Trong khoảng t2 T :Khi năng lượng dự trữ trong điện cảm hết ,suất điện động động cơ sẽ đảo chiều dòng điện và dòng tải sẽ khép mạch qua S4, Đ2. Để động cơ làm việc theo chiều ngược lại ,luật điều khiển các van sẽ thay đổi theo chiều ngược lại Các biểu thức tính toán: +Giá trị dòng trung bình qua tải di Ta có L. t R.i E U dt t T T T T 1 dit 1 1 1 Do đó . L. R.it dt Et .dt U t dt T o dt T 0 T 0 T 0 R.It +E= U U E I t R 1 L U(1 b1 )(1 a1.b1 ) +Dòng trung bình qua van I S . R T.(1 a1 ) t t0 Với a1 e b1 e Rút gọn ta có IS = It 28
  30. +Dòng trung bình qua diode 1 U.L.(1 a1b1 )(1 b1 ) E I D (1 ) (1 )I t 1 a1 R +Giá trị trung bình điện áp ra tải Ut= U Vậy để điều khiển động cơ ta chỉ cần điều khiển để điều chỉnh điện áp ra tải. c. Phƣơng pháp điều khiển đối xứng Cách 1: Điện áp ra đơn cực tính (Unipolar Voltage Switching) Nguyên tắc điều khiển Chu kì đóng cắt của các van bán dẫn là 2T; S1 dẫn trong khoảng 0 t 2 T , S2 dẫn trong khoảng 2 T t 2T;S3 dẫn trong khoảng T t (1 )T , và S4 dẫn trong khoảng (1 )T t 2T . Chế độ làm việc ở góc phần tƣ thứ 1(1 0,5) * Trong khoảng 1, S1 và S2 được kích dẫn, động cơ được nối với nguồn U, dòng phần ứng tăng. * Trong khoảng 2, S2 tắt, S3 được kích dẫn, do phần ứng có tính chất điện cảm nên dòng qua phần ứng ngắn mạch qua S1 và D3. Lúc này điện áp đặt lên động cơ là 0, dòng trong động cơ giảm. * Trong khoảng 3, S2 lại được kích dẫn, S3 tắt, do đó động cơ được cấp điện áp U từ nguồn, dòng qua phần ứng tăng. * Trong khoảng 4, S4 được kích dẫn, S1 tắt, do đó dòng qua phần ứng khộp mạch qua S2 và D4, dòng qua phần ứng giảm do ngược chiều suất điện động E. 29
  31. Biểu đồ dạng sóng dòng và áp trên tải Hình 2.12. Điện áp ra đơn cực tính ở góc phần tư thứ nhất 30
  32. Các thông số trong mạch Khảo sát trong một chu kì biến thiên T của dòng điện phần ứng. Trong khoảng 0 t T(2 1) động cơ được nối với nguồn qua S1, S4; dòng di qua phần ứng tăng từ I tới I , ta có:Ri L E U . min max dt Giải phương trình trong khoảng ta được: UE tt i(t) .(1 e ) I e R min UE TT Do đó I .(1 e ) I e với 21. maxR min Trong khoảng (2 1)T t 2T , động cơ được ngắn mạch qua S1 và D3,điện áp đặt lên động cơ là 0, dòng phần ứng giảm từ Imax tới Imin ,ta có di Ri L E 0. dt E (t T) (t T) Giải phương trình trên ta được: i(t) (1 e ) I e R max E ( 1)T ( 1)T Do đó I (1 e ) I e minR max Giải ra ta được: T T U e 1 E U 1 e E L Imin T ;Imax T trong đó RRe1 RR1e R T T (1 )T Imax I min U 1 e e e Độ nhấp nhô dòng điện: Id T 2 2R e1 31
  33. 2 T x Do 1 nên sử dụng công thức tính gần đúng ex 1 x ta được 2 VT U ΔI (1 ) ΔI . d 2L d max 16fL 11T T Điện áp trung bình trên động cơ: Udd u dt Udt T TT00 U E U E (2 1)U E Dòng điện trung bình:I d d RRR Dòng điện trung bình qua S1, S4 là II1d Dòng điện trung bình qua D2, D3 là I2d (1 )I Chế độ làm việc ở góc phần tƣ 2 thứ ( 0,5 ). Để chuyển từ chế độ động cơ sang chế độ hãm tái sinh bằng cách thay U E (2 1)U E đổi chiều dòng điện tức là I0d tức là giảm hoặc tăng d RR E. Để quá trình điều khiển được đơn giản ta chọn phương pháp giảm gần tới 0,5 mà do tính quán tính của động cơ nên E biến đổi chậm, do đó I0d , dòng qua phần ứng đổi chiều. 32
  34. Biểu đồ dạng sóng dòng, áp trên tải Hình 2.13. Điện áp ra đơn cực tính ở góc phần tư thứ hai. 33
  35. Trong khoảng 1: S1 và S3 nhận tín hiệu điều khiến, sức điện động sinh ra dòng điện chảy qua D1 và S3. Trong khoảng này, dòng qua phần ứng tăng và tích lũy năng lượng trong điện kháng mạch phần ứng. Trong khoảng 2: S3 tắt, S1 và S4 được kích dẫn, do tính chất điện kháng nên dòng qua phần ứng sẽ qua D1, U và D4, năng lượng được đưa trả về nguồn, dòng qua phần ứng giảm. Trong khoảng 3: S1 tắt, S2 và S4 được kích dẫn, khi đó dòng qua phần ứng khộp mạch qua S2 và D4, dòng qua phần ứng tăng. Trong khoảng 4: S1 và S4 được kích dẫn, S2 tắt,dũng phần ứng chảy qua D1, U và D4, năng lượng phần ứng trả về nguồn, dòng qua phần ứng giảm. Chế độ làm việc của động cơ ở các góc phần tƣ 3 và 4 ứng với 0 0,5 . Cách 2: Điện áp ra đảo cực tính (Bipolar Voltage Switching) Nguyên tắc điều khiển Theo phương pháp điều khiển này các cặp van S1 và S2; S3 và S4 lập thành hai cặp van mà trong mỗi cặp thì hai van được điều khiển đóng cắt đồng thời. Tín hiệu điều khiển được tạo ra bằng cách so sánh điện áp điều khiển với điện áp tựa (thường là dạng xung tam giác): -Nếu Udk>utua thì S1 và S2 được kích dẫn; S3 và S4 được kích tắt. -Nếu Udk<utua thì S1và S2 được kích tắt; S3 và S4 được kích dẫn. 34
  36. Biểu đồ dạng sóng dòng, áp trên tải Hình 2.14. Điện áp ra đảo cực tính. 35
  37. Chế độ hoạt động: +Trong khoảng 1: S1 và S2 được kích dẫn, S3 và S4 được kích tắt, động cơ được nối với nguồn U, dòng qua phần ứng tăng đến giá trị Imax. +Trong khoảng 2:S1và S2 được kích tắt,S3 và S4 được kích dẫn, nhưng do tải có tính cảm kháng nên dòng điện phần ứng khớp mạch qua D3 và D4 về nguồn, S3 và S4 bị đặt điện áp ngược bởi hai diode D3 và D4, dòng id giảm từ Imax về 0. +Trong khoảng 3:S3 và S4 được kích dẫn, điện áp đặt lên động cơ là – U, dòng id tăng theo chiều ngược lại (giảm từ 0 về Imin theo chiểu dương). +Trong khoảng 4: S3 và S4 được kích tắt, S1 và S2 được kích dẫn, nhưng do trước đó dòng id chạy theo chiều ngược lại nên dòng id tiếp tục chảy theo chiều cũ, khớp mạch qua ccác diode D1 và D2 về nguồn; S1 và S2 bị đặt điện áp ngược bởi hai diode D1 và D2 phân cực thuận, do đó id giảm theo chiều ngược lại từ Imin về 0. Các thông số của mạch: +Trong khoảng 0 t T , S1 và S2 dẫn hoặc khi D1 và D2 dẫn thì di điện áp đặt lên động cơ là U,ta có phương trình: U E Ri L d . d dt Giải phương trình bằng phương pháp toán tử Laplace với sơ kiện đầu i(0) Imin UE tt L Ta có: i(t) .(1 e ) I .e trong đó . R min R Trong khoảng TT, S3 và S4 dẫn hoặc D3 và D4 dẫn, điện áp đặt lên động cơ là -U di ta có: Ri L E U . dt Giải bằng phương pháp toán tử Laplace: (E U) (t T) (t T) i(t) (1 e ) I e R max 36
  38. T 2U e 1 U E Imin T RRe1 T 2U 1 e U E Imax T RR1e Điện áp trung bình trên động cơ +Trong khoảng 0 0.5 thì Ut >0 +Nếu γ < 0.5 thì Ut <0 Như vậy bằng cách thay đổi giá trị γ mà ta thay đổi được giá trị điện áp ra tải và cả dấu của nó. Do đó sẽ đảo chiều quay của động cơ. 37
  39. 2.3. Một số loại van dùng trong mạch băm xung Các linh kiện bán dẫn công suất trong lĩnh vực điện tử công suất có hai chức năng cơ bản: đóng và ngắt dòng điện đi qua nó. Trạng thái linh kiện dẫn điện (đóng) là trạng thái linh kiện có tác dụng như một điện trở rất nhỏ (gần bằng không). Trạng thái linh kiện không dẫn điện (ngắt) là trạng thái linh kiện có tác dụng trong mạch như một điện trở lớn vô cùng. Linh kiện bán dẫn hoạt động với hai chế độ làm việc đóng và ngắt dòng điện được xem là lý tưởng nếu ở trạng thái dẫn điện nó có độ sụt áp bằng không và ở trạng thái không dẫn điện (ngắt), dòng điện qua nó bằng không. 2.3.1. Phân loại linh kiện bán dẫn Linh kiện bán dẫn điều khiển được: Các linh kiện bán dẫn có thể chuyển đổi trạng thái làm việc cùa mình từ trạng thái không dẫn điện (ngắt) sang trạng thái dẫn điện (đóng) và ngược lại thông qua tác dụng kích thích của tín hiệu lên cổng điều khiển của linh kiện, gọi linh kiện có tính điều khiển. Tín hiệu điều khiển có thể tồn tại dưới dạng dòng điện hay điện áp. Ví dụ BJT, MOSFET, IGBT, GTO, IGCT, MCT, MT SCR, TRIAC. Linh kiện bán dẫn điều khiển hoàn toàn – linh kiện đóng ngắt cưỡng bức (forced commutated device): là linh kiện có thể điều khiển đóng ngắt hoàn toàn bằng tín hiệu điều khiển, ví dụ BJT, MOSFET, IGBT, GTO, IGCT, MCT, MT. Linh kiện bán dẫn điều khiển đóng: là linh kiện chỉ có thể điều khiển đóng bằng tín hiệu điều khiển mà không điều khiển ngắt được: SCR, TRIAC. Linh kiện bán dẫn không điều khiển được: Là những linh kiện không có cổng điều khiển và quá trình chuyển trạng thái làm việc của linh kiện xảy ra dưới tác dụng của nguồn công suất. Ví dụ: diode, diac. 38
  40. 2.3.2. Các linh kiện bán dẫn công suất cơ bản Hình 2.15. Các linh kiện bán dẫn công suất cơ bản - Diode: Dòng định mức của diode từ 1A đến 5000A. Điện áp định mức từ 10V đến 10kV. Thời gian đóng ngắt từ 20 ns cho đến 100 ms. Diode được ứng dụng trong bộ chỉnh lưu và các mạch biến đổi DC- DC: Zener, optoelectronic and Schottky diodes, and diacs. - BJT (Bipolar Junction Transistor): dẫn dòng Collector khi trên cực Base có dòng điện điều khiển đủ để BJT dẫn. Dòng định mức của BJT từ 0.5A đến 500 A; Điện áp từ 30V đến 1200V. Thời gian đóng ngắt của BJT 0.5ms đến 100 ms. BJT được ứng dụng trong mạch các bộ biến đổi DC-DC; kết hợp với diode sử dụng trong các bộ biến tần. Tuy nhiên trong các bộ công suất lớn thì người ta thay thế BJT bằng MOSFET và IGBT. - MOSFET (Metal Oxide Field Effect Transistor): dẫn dòng Drain khi có điện áp vừa đủ trên cực điều khiển Gate. MOSFET được mắc song song với diode trong cấu trúc của nó. Dòng điện định mức từ 1đến 100A, điện áp định mức từ 30 đến 1000V. Thời gian đóng ngắt rất nhỏ từ 50 đến 200ns. MOSFET ứng dụng cho bộ biến đổi DC-DC, và trong các bộ biến tần. - IGBT (Insulated Gate Bipolar Transistor): đây là dạng đặc biệt kết hợp giữa BJT và MOSFET. Là linh kiện rất dễ sử dụng, thời gian đóng 39
  41. ngắt nhỏ hơn thời gian đóng ngắt của BJT. Dòng định mức từ 10 đến 600 A, điện áp định mức từ 600 đến 1700V. IGBT ứng dụng nhiều trong các bộ biến tần từ1 dến100kW và được ứng dụng rộng rãi trong điện tử công suất. - SCR (Silicon Controlled Rectifier): Thyristor cũng giống như diode khi có xung trên cực Gate. SCR chỉ ngắt khi dòng qua nó bằng 0. Dòng định mức thay đổi từ 10 đến 5000A. Điện áp định mức thay đổi từ 200V đến 6 kV. Thời gian đóng ngắt từ 1 đến 200ms. SCR được ứng dụng rộng rãi trong bộ chỉnh lưu điều khiển và là linh kiện thuộc họ thyristor được ứng dụng rộng rãi nhất. - GTO (Gate Turn-Off Thyristor) thuộc họ Thyristor và có khả năng điều khiển ngắt bằng xung âm trên cổng Gate. GTO có thể thay thế BJT khi cần ứng dụng trong các bộ công suất lớn, cần dòng và điện áp lớn. Dòng và điện áp định mức gần tương tự như SCR và nó được ứng dụng trong các bộ biến tần lớn hơn 100kW. - TRIAC (Triode for Alternating Current) Là linh liện có cấu trúc cấu tạo bởi hai SCR mắc đối song. Dòng điện định mức từ 2 đến 50A, điện áp định mức từ 200 đến 800V. TRIAC được sử dụng trong điều chỉnh ánh sáng, những thiết bị điện cầm tay Hình 2.16. Ký hiệu các linh kiện bán dẫn công suất 40
  42. 2.3.3 Chọn van bán dẫn Trong sơ đồ mạch boost chopper ta chọn van bán dẫn là IGBT vì: - IGBT là phần tử kết hợp khả năng đóng cắt nhanh của MOSFET và khả năng chịu quá tải lớn của transistor thường, tần số băm điện áp cao thì làm cho động cơ chạy êm hơn . - Công suất điều khiển yêu cầu cực nhỏ nên làm cho đơn giản đáng kể thiết kế của các bộ biến đổi và làm cho kích thước hệ thống điều khiển nhỏ ,hơn nữa nó cũng làm tiết kiệm năng luợng (điều khiển) - IGBT là phần tử đóng cắt với dòng áp lớn, nó đang dần thay thế transistor BJT nó ngày càng thông dụng hơn do đó việc mua thiết bị cũng đơn giản hơn.Cùng với sự phát triển của IGBT thì các IC chuyên dụng điều khiển chúng (IGBT Driver) ngày càng phát triển và hoàn thiện do đó việc điều khiển cũng chuẩn xác và việc thiết kế các mạch điều khiển cũng đơn giản, gọn nhẹ. 41
  43. CHƢƠNG 3. XÂY DỰNG BỘ BĂM XUNG SONG SONG BẰNG IGBT (BOOST CHOPPER) 3.1. Đặt vấn đề Yêu cầu đặt ra của bài toán là xây dựng bộ tự động điều chỉnh để ổn định điện áp ra theo sự thay đổi của tải và điện áp vào, sử dụng bộ băm xung song song IGBT. Mạch hoạt động dựa trên nguyên tắc lấy sự thay đổi của dòng điện tải phản hồi về và lấy sự thay đổi của điện áp lưới để thay đổi tần số xung điều khiển đặt lên van IGBT. Hình 3.1. Yêu cầu công nghệ bộ băm xung Nguyên tắc hoạt động của mạch điều khiển như sau: khi dòng tải nhỏ ta điều chỉnh tỉ số băm để cho áp ra bằng 12V, khi tải tăng lên kéo theo sụt áp trên van IGBT điều dòng giảm đồng thời sụt áp trên MBA và các van tăng lên làm cho áp ra thay đổi do vậy ta phải thay đổi tỉ số băm để giữ cho áp ra không đổi và khi áp vào thay đổi kéo theo sự thay đổi của áp ra ta phải thay đổi tỉ số băm để giữ cho áp ra không đổi . Trong mạch điều khiển có những khối chính sau: khối tạo dao động làm nhiệm vụ tạo ra xung dao động chuẩn . Khối tạo xung răng cưa tạo ra dạng xung răng cưa chuẩn để tạo ra xung điều khiển . Khối lấy điện áp sai lệch có nhiệm vụ phát hiện sự thay đổi của điện áp lưới và lấy sai lệch so với điện áp chuẩn . Khối phản hồi áp lấy sự sai lệch của áp rơi trên van điều dòng về để thay đổi độ rộng xung điều khiển nhằm mục đích giữ áp ra không đổi . Khối so sánh làm nhiệm vụ so sánh tín hiệu chuẩn với các tín hiệu đặt và tín 42
  44. hiệu phản hồi để có xung điều khiển . Khối khuếch đại làm nhiệm vụ khuếch đại xung điều khiển để có xung có độ rộng đủ lớn. 3.2. Mạch động lực 3.2.1. Sơ đồ mạch động lực Hình 3.2. Sơ đồ mạch động lực. Ở mạch trên điện áp tại đặt vào chân C của Transistor Q6 có thể thay đổi và còn gợn xoay chiều nhưng điện áp tại điểm chân B là không thay đổi và tương đối phẳng. Nguyên lý ổn áp : Giả sử điện áp đặt vào chân C của Transistor Q6 giảm hoặc khi tăng tải dẫn đến dòng tải tăng đồng thời gây sụt áp trên tải. Khi đó điện áp chân E đèn Q6 giảm mạch điều khiển tác dụng làm tăng tần số băm xung dòng qua đèn Q6 tăng > làm điện áp chân E của đèn tăng. Ngược lại khi điện áp chân E đèn Q6 tăng mạch điều khiển tác dụng làm giảm tần số băm xung dòng qua đèn Q6 giảm làm điện áp chân E của đèn giảm. 43
  45. 3.2.2. Tính toán thông số máy biến áp Máy biến áp công suất cỡ vài kVA thuộc loại MBA công suất nhỏ, sụt áp trên điện trở tương đối lớn, khoảng 4%, sụt áp trên điện kháng ít hơn cỡ 1,5% . Điện áp sụt trên hai Diode nối tiếp khoảng 2 V do đó ta có điện áp chỉnh lưu lúc không tải sẽ là : Ud0 = 24.1,055 + 2 = 27.32 V Trị số hiệu dụng của điện áp pha thứ cấp MBA : U 27.32 UVd 0 19.32 2 22 Vì điện áp nguồn không ổn định, thay đổi trong khoảng từ 9 – 24 VDC do đó ta tính tỷ số biến áp với điện áp vào nhỏ nhất: U 19,32 k 2 2,15 U1 9 + Dòng điện các cuộn dây: - Dòng điện của cuộn thứ cấp: I2 = 5 A - Dòng điện của sơ cấp: I1 = k.I1 =10.72 A Công suất của MBA : S = 24.10.72 = 257.28 W 3.2.3. Tính toán các thông số để chọn van IGBT Việc chọn van bán dẫn mạch lực được chọn theo các thông số cơ bản của van. Hai thông số cơ bản để chọn van là: + Giá trị dòng trung bình lớn nhất của van (Itb max); đây là giá trị dòng lớn nhất mà van có thể chịu được ứng với chế độ làm mát tốt nhất cho van (chế độ lý tưởng). Trong thực tế, không đạt được điều kiện làm mát lý tưởng nên việc sử dụng van không được quá giá trị này. + Giá trị biên độ điện áp ngược lớn nhất cho phép đặt lên van (Ungược max ); nếu vượt quá giá trị này thì van bị chọc thủng. 44
  46. Như đã đề cập ở phần trước, ta dùng các van bán dẫn là các tranzito công suất; tức là các van điều kiển hoàn toàn. Xuất phát từ đặc điểm công nghệ, ta chọn điều kiện làm mát là làm mát cưỡng bức bằng cánh tản nhiệt, với các cơ cấu: Van + cánh tản nhiệt chuẩn . Vì vậy: Itb van thực= (0,4 0,5) Itb van max. - Với mỗi van IGBT đều có một diode nối ngược chiều nên nó không phải chịu điện áp ngược. Các giá trị dòng áp lớn nhất sẽ đạt được khi mạch hoạt động ở các chế độ khắc nghiệt nhất đối với từng van, do vậy ta sẽ xét trường hợp van làm việc ở chế độ nặng nề nhất. - Ta có: dòng điện lớn nhất qua van IGBT Imax = Iđm = 10.72 (A). Vì van làm việc với hiệu suất 25%, nên dòng điện IC MAX cần tính là: I 10.72 I max 42.88 A Cmax 25% 0.25 Ta chọn van IBGT là loại IR MG50J2YS50 với các thông số sau: 1) ICMAX = 60( A) 2) VCES=30 (V) 3) VCE = 0.48 V 3.2.4. Tính toán các thông số để chọn van Q6 Chọn tranzito công suất. Từ biểu thức dòng trung bình qua van Q6 xác định ở trên, ta có: IAtbvanmax 5 Từ biểu đồ dạng sóng điện áp đặt trên van, ta thấy điện áp ngược lớn nhất đặt lên van là US; tức là : Ung van max = US =19.3V. Từ kết quả hai thông số tính toán được ở trên ta chọn loại transistor TIP 41 có các thông số sau: 1) ICMAX = 10( A) 2) VCES= 40 (V) 45
  47. 3.3. Mạch điều khiển 3.3.1. Yêu cầu chung của mạch điều khiển - Yêu cầu về độ rộng xung điều khiển đó là phải thay đổi được độ rộng xung điều khiển. - Yêu cầu về độ dốc sườn trước của xung (càng cao thì việc mở càng tốt thông di thường dk 0,1A/ S dt - Phát xung điều khiển đến các van lực theo đúng pha và với góc điều khiển cần thiết. - Đảm bảo phạm vi điều chỉnh góc điều khiển min đến max tương ứng với phạm vi thay đổi điện áp ra tải của mạch lực. - Cho phép động cơ làm việc với các chế độ đã tính toán như chế độ khởi động, hãm tái sinh, đảo chiều quay - Có độ đối xứng điều khiển tốt, tức là góc điều khiển với mọi van không vượt quá 10 đến 30 điện. - Có khả năng chống nhiễu công nghiệp tốt: không được gây ra các nhiễu vô tuyến. - Độ tác động của mạch điều khiển nhanh. - Thực hiện các yêu cầu bảo vệ các van nếu cần như ngắt các xung điều khiển khi có sự cố, thông báo các hiện tượng không bình thường của lưới và bản thân mạch mạch điều khiển . - Có độ tin cậy cao. 46
  48. 3.3.2. Nguyên lý chung của mạch điều khiển Hình 3.3. Sơ đồ chung của mạch ổn áp có hồi tiếp * Một số đặc điểm của mạch ổn áp có hồi tiếp ( mạch ổn áp tuyến tính): Cung cấp điện áp một chiều ở đầu ra không đổi trong hai trường hợp điện áp đầu vào thay đổi hoặc dòng tiêu thụ của tải thay đổi, tuy nhiên sự thay đổi này phải có giới hạn. Cho điện áp một chiều đầu ra có chất lượng cao, giảm thiểu được hiện tượng gợn xoay chiều. * Nguyên tắc hoạt động của mạch. Mạch lấy mẫu sẽ theo dõi điện áp đầu ra thông qua một cầu phân áp tạo ra ( Ulm : áp lấy mẫu) Mạch tạo áp chuẩn gim lấy một mức điện áp cố định (Uc : áp chuẩn) Mạch so sánh sẽ so sánh hai điện áp lấy mẫu Ulm và áp chuẩn Uc để tạo thành điện áp điều khiển. 47
  49. Mạch khuếch đại sửa sai sẽ khuếch đại áp điều khiển, sau đó đưa về điều chỉnh sự hoạt động của đèn công xuất theo hướng ngược lại, nếu điện áp đầu ra tăng thông qua mạch hồi tiếp điều chỉnh đèn công xuất dẫn giảm điện áp đầu ra giảm xuống . Ngược lại nếu điện áp đầu ra giảm thông qua mạch hồi tiếp điều chỉnh đèn công xuất lại dẫn tăng và điện áp đầu ra tăng lên kết quả điện áp đầu ra được giữ ổn định. 3.3.3. Mạch tạo áp chuẩn Hình 3.4. Mạch tạo áp chuẩn Bộ ổn áp có điện áp ra 12 VDC. Do đó ta thiết kế mạch tạo điện áp chuẩn sử dụng IC ổn áp LM7812 để gìm điện áp ra chân E của van Q6 cố định là 12 VDC. 3.3.4. Khâu phản hồi áp ( Khâu lấy mẫu) Khi dòng tải càng lớn làm cho Q6 càng dẫn và sụt áp trên van này càng giảm do đó khi áp vào không thay đổi thì áp ra sẽ tăng lên do vậy ta phải thay đổi giá trị áp vào để giữ cho áp ra không đổi. 48
  50. Hình 3.5.Khâu phản hồi áp Khi áp ra bằng 12 VDC ta chọn Uph = 6VDC. Khi đó U RR ph 14 13 0.5 URRra 14 13 => R14 + R13 = 2. Ta chọn điện trở R14 = R13 = 1K 3.3.5. Tạo sóng tam giác từ mạch so sánh và tích phân Khâu so sánh có nhiệm vụ so sánh điện áp một chiều Uđk với điện áp tam giác có tần số cao số cao. Điện áp tam giác được tạo ra thông qua mạch tích phân. Điểm cân bằng giữa Utg và Uđk sẽ là điểm phát xung điều khiển để mở các van bán dẫn. Hình 3.6. Tạo sóng tam giác từ mạch so sánh và tích phân 49
  51. Mạch tích phân là mạch mà điện áp đầu ra tỷ lệ với tích phân với điện áp đầu vào. t Ura k U vào dt 0 Trong đó k là hệ số khuếch đại. Ta có dòng điện đi qua trở R chính là dòng điện nạp cho tụ C7 để tạo ra điện áp Ura theo hướng giảm dần Iv = Ic hay dU UU C ra ph dat dRt 1 t Nên Ura() U ph U dat dt U ra0 RC 0 Ura0 là điện áp đặt trên tụ tại thời điểm t = 0 (là hằng số tích phân xác định từ điều kiện ban đầu). 1 t Ura() U ph U dat dt U dat RC 0 1 Ura( U ph U dat ). t U dat Với RC gọi là hằng số thời gian của mạch tích phân. Hình 3.7. Điện áp ra từ khâu so sánh và tích phân 50
  52. 3.3.6. Khâu dao động đa hài tạo xung vuông 3.3.6.1. Cổng NAND Trước khi đi vào phân tích nguyên lý hoạt động của mạch dao động đa hài tạo xung vuông sử dụng cổng NAND, ta tìm hiểu khái quát về cổng NAND. Kí hiệu , sơ đồ của NAND. Hình 3.8. Cổng NAND Quy ước kí hiệu giá trị đầu ra của NAND là 1/A.B Nhìn hình a là ký hiệu của cổng NAND trong các sơ đồ mạch. Nó cũng có 2 đầu vào và 1 đầu ra và giá trị đầu ra bằng phủ định của tích đầu vào A và B (Y = 1/A.B) và nó cũng tương tự như hàm NOR hầm hiểu là phủ điịnh của hàm AND. Cấu tạo của cổng này hơi khác so với các cổng khác là nó hẳn 3 diode và 2 điện trở và kết hợp với 1 transitor. Cách lớp kiểu sơ đồ này được lắp theo hình c.Nên nhớ ở đây là BJT kênh N. Và nguyên tắc hoạt động của nó như sau: Nếu A = 1 và B = 1 . Như vậy thì hai diode D1 và D2 sẽ phân cực nghịch không dẫn dòng khi đó D3 lại dẫn dòng từ nguồn vào Baze làm cho BJT phân cực thuận và mở hoàn toàn BJT nên khi đó dòng điện lại từ nguồn qua Colector xuống Emiter xuống đất làm cho đầu ra 1/A.B không có điện áp nên nó bằng 0V. 51
  53. Nếu các trường hợp A=B=0 và A=1,B=0 hay B=1, A=0 thì lúc này hai diode D1 và D2 đều được phân cực trong từng trường hợp nên dòng điện từ nguồn qua một trong hai diode D1 và D2 xuống đất => không có dòng điện qua D3 do đó BJT không được phân cực khóa hoàn toàn BJT nên đầu ra của 1/A.B =1. Hình b là bảng biểu diễn ra trị vào ra của NAND Hình d là bảng xung đầu vào và đầu ra của NAND Hình 3.9. Cổng NAND 4011. b)Mạch dao động đa hài tạo xung vuông Mạch dao động lấy tín hiệu điều khiển từ khâu so sánh, sau đó đưa về để điều chỉnh sự hoạt động của đèn công suất xuất theo hướng ngược lại, nếu điện áp ra tăng => thông qua mạch hồi tiếp điều chỉnh => đèn công xuất dẫn giảm =>điện áp ra giảm xuống . Ngược lại nếu điện áp ra giảm => thông qua mạch hồi tiếp điều chỉnh => đèn công xuất lại dẫn tăng => và điện áp ra tăng lên =>>kết quả điện áp đầu ra không thay đổi. 52
  54. Hình 3.10. Mạch dao động đa hài tạo xung vuông Nguyên lý hoạt động của khâu này như sau: Khi mức logic đặt vào ngõ vào U3:D = 0 thì ngõ ra U3:B = 1 (hay Ura = 12 V). Tín hiệu ngõ ra U3:B phản hồi qua transistor Q2, qua trở R4 nạp cho tụ C6. Khi tụ C6 được nạp đầy (Umax >= 6V) tụ bắt đầu xả U3:D = 1 dẫn tới U3:B = 0. Việc thay đổi tần số phóng nạp của tụ phụ thuộc vào tín hiệu điều khiển transistor Q2. Nếu Udk càng lớn, thời gian phóng nạp của tụ càng nhanh làm cho tần số băm xung tăng và ngược lại. R5: Điện trở phân dòng có công suất vô cùng lớn. 3.3.7. Khâu tạo trễ Để đảm bảo chắc chắn rằng hai van thẳng hàng không cùng dẫn, ta sẽ thêm vào trước cặp van Q1 Q3 một khâu tạo trễ. Sơ đồ: Hình 3.11. Khâu tạo trễ 53
  55. Các cổng logic chạy họ CMOS với nguồn cung cấp là 12V. Nguyên lý làm việc: Hình 3.12. Sơ đồ điện áp sau khâu tạo trễ Thời gian trễ được xây dựng bởi ttrễ = 0,693.R4.C6. Để mạch làm việc an toàn thì ta phải có ttrễ toff của van. 3.4. Thiết kế nguồn nuôi cấp cho mạch điều khiển Ta cần tạo ra nguồn điện áp 12 (V) để nuôi IC đồng thời làm nguồn điện đóng mở các transistor, tạo điện áp đặt trong mạch điều khiển. 3.4.1. Sơ đồ nguyên lý. Hình 3.13. Nguồn nuôi cấp cho mạch điều khiển 54
  56. 3.4.2. Nguyên lý hoạt động Mạch điện gồm những phần sau : Hạ áp, chỉnh lưu, lọc, ổn áp. Nguồn điện xoạy chiều 220VAC-50Hz qua biến áp là hạ áp xuống còn 24VAC - 1A và được qua bộ chỉnh lưu nhằm biến đổi xoay chiều thành 1 chiều. Thành phần 1 chiều này có độ gợn nên phải qua bộ lọc C để san phảng điện áp gợn đó cho ra điện áp 1 chiều. Sau đó điện áp 1 chiều qua bộ ổn áp 7812 cho ra điện áp ổ . a) Hạ áp : Ở đây chúng ta biến đổi điện áp lưới 220VAC - 50Hz xuống còn 24VAC - 1A. Mục đích là cấp đầy vào cho bộ biến đổi và bộ lọc để có điện áp một chiều mong muốn b) Chỉnh lƣu: Thành phần chỉnh lưu là biến đổi tín hiệu xoay chiều thành tín hiệu 1 chiều thông qua 4 con diode chỉnh lưu. Đây là sơ đồ chỉnh lưu cả chu kì với dạng sóng đầu vào và đầu ra sau chỉnh lưu như sau: Hình 3.14. Dạng điện áp vào và ra sau chỉnh lưu Dạng điện áp sau chỉnh lưu nó vẫn còn các sóng nhấp nhô như ngọn núi và dạng điện áp này vẫn được coi là điện áp 1 chiều nhưng chưa ổn định. c) Thành phần lọc: Tụ điện C1, C2 dùng để lọc thành phần sóng hài bậc cao. Tụ C3 và C4 lọc các thành phần cao tần. Dạng điện áp sau khi qua bộ lọc 55
  57. Hình 3.15. Dạng điện áp ra sau chỉnh lưu và sau bộ lọc Dựa vào nguyên tắc phóng nạp của tụ điện mà nó cho ra dòng điện 1 chiều thằng như trên hình vẽ. Tụ càng lớn thì độ gợn điện áp càng giảm. Những sóng có tần số cao tần phải được lọc đi nhờ 2 tụ C2 và C4 vì trong mạch dùng IC nếu tồn tại những thành phần này thì sẽ gây ra những sai sót khó phát hiện làm cho mạch hoạt động không bình thường. Qua bộ lọc là ta đã tạo được điện áp 1 chiều cấp vào cho bộ biến đổi đổi hay là bộ ổn áp d) Bộ ổn áp Hình 3.16. Hình dạng và cấu tạo IC 87XX + Dòng họ 78xx cho ra nhiều loại ổn áp điện khác nhau : như 7805 nó ổn áp 5V, 7806 cho ổn áp 6V 56
  58. + Điện áp đầu vào của họ 78xx là điện áp 1 chiều và max <=40V. Dòng điện không vượt quá 1A + Đảm bảo thông số là : Vi - V0 = 2V đến 3V ( lúc đó mạch mới hoạt động ổn áp được) + Khi hoạt động với tải thì 78xx rất nóng. Do đó cần sử dụng bộ tản nhiệt để bảo vệ 78xx. 3.4.3. Tính toán các tham số cho mạch nguồn nuôi Chọn máy biến áp có 2 cuộn dây phía thứ cấp với các thông số giống hệt nhau để chỉnh lưu 2 nửa chu kỳ. Để ổn định điện áp ra của nguồn nuôi ta dùng 2 vi mạch ổn áp 7812 và 7912. Điện áp đầu ra của các IC này là 12V. Điện áp đầu vào 24V lấy từ thứ cấp máy biến áp .+ Điện áp đầu vào của bộ chỉnh lưu : Uv = 24 2 = 34VDC + Điện áp sụt áp trên cầu là : 34VDC - 1.5VDC = 32.5VDC (Do đi qua 2 diode nên mỗi đioe nó bị sụt áp mất 0.7V) + Điện áp sau chỉnh lưu là : Ucl = 32.5.0.9 = 29VDC ( 0.9 là hệ số chỉnh lưu của chỉnh luu cầu) Để ổn định điện áp ra của nguồn nuôi ta dùng 2 vi mạch ổn áp LM7812 và LM7912. Các thông số chung của vi mạch này: Điện áp đầu vào : UV = 7 35 (V). Điện áp đầu ra : Ura= 12(V) với IC 7812. Ura= -12(V) với IC 7912. Dòng điện đầu ra :Ira = 0 1 (A). Chọn C1= C2= 2000 ( F) C3= C4= 100 (nF) 57
  59. Hình 3.17. Sơ đồ nguyên lý bộ ổn định điện áp sử dụng phần tử bán dẫn IGBT bándẫn tử phần dụng sử áp điện định ổn lýbộ nguyên đồ Sơ 3.17. Hình 58
  60. KẾT LUẬN Sau thời gian ba tháng nỗ lực tìm hiểu và nghiên cứu, đến nay đồ án tốt nghiệp của em đã hoàn thành với ba phần cụ thể sau: Chương 1. Năng lượng điện mặt trời Chương 2. Giới thiệu một số mạch băm xung điện áp một chiều Chương 3. Xây dựng bộ băm xung song song bằng IGBT (boost chopper) Đồ án tốt nghiệp của em đã hoàn thành với sự chỉ bảo tận tình của GS.TSKH Thân Ngọc Hoàn cùng sự nỗ lực cao của bản thân trong việc tìm hiểu hệ thống, nguyên lý hoạt động. Bằng những kiến thức đã được trang bị ở trường, và tìm hiểu một số tài liệu tham khảo có liên quan đến vấn đề đang nghiên cứu, em đã cố gắng trình bày đồ án một cách ngắn gọn và đầy đủ nhất. Tuy nhiên do trình độ còn hạn chế, kinh nghiệm thực tế còn yếu nên đề tài của em còn có nhiều khiếm khuyết. Qua đây em mong muốn nhận được ý kiến đóng góp của các thầy cô giáo và các bạn sinh viên để đồ án của em ngày càng hoàn thiện hơn. Em xin chân thành cảm ơn GS.TSKH Thân Ngọc Hoàn, cùng các thầy cô giáo trong Ngành Điện Công Nghiệp đã giúp đỡ em trong quá trình làm đồ án này. Sinh viên thực hiện Hoàng Xuân Hiệp 59
  61. TÀI LIỆU THAM KHẢO 1. GS.TSKH THÂN NGỌC HOÀN (2003), Mô phỏng hệ thống điện tử công suất và truyền động điện, Nhà xuất bản Xây Dựng. 2. PGS - TS Nguyễn Bính (2000), Điện tử công suất, Nhà xuất bản khoa học kỹ thuật. 3. Phạm Quốc Hải - Dương Văn Nghi (2000), Phân tích và giải mạch điện tử công suất, Nhà suất bản Giáo dục. 4. Đỗ Văn Thụ (1999), Kỹ thuật điện tử, Nhà xuất bản giáo dục. 5. T.S Hoàng Dương Hùng (2007), Năng lượng mặt trời lý thuyết và ứng dụng, Nhà xuất bản khoa học kỹ thuật. 6. Đặng Đình Thống (2005), Pin mặt trời và ứng dụng, Nhà xuất bản khoa học kỹ thuật. 7. Trịnh Quang Dũng (1992), Năng lượng điện mặt trời, Nhà xuất bản khoa học kỹ thuật. 60
  62. PHỤ LỤC PL1. Mô hình mạch nguồn thay thế Pin mặt trời. PL2. Modul IGBT MG50J2YS50 của TOSHIBA
  63. PL 3. Mô hình bộ ổn định điện áp.
  64. MỤC LỤC LỜI MỞ ĐẦU 1 CHƢƠNG 1. NĂNG LƢỢNG ĐIỆN MẶT TRỜI 2 1.1. Mở đầu 2 1.2. Hệ thống điện mặt trời cơ bản 3 1.2.1. Sơ đồ khối hệ thống điện mặt trời 3 1.2.2. Pin mặt trời 6 1.2.3. Acquy 7 1.2.4. Bộ điều khiển quá trình nạp phóng điện 8 1.2.5. Bộ biến đổi điện DC-AC 10 1.3. Các thông số chính của hệ thống điện mặt trời 11 1.3.1. Yêu cầu của phụ tải 11 1.3.2. Vị trí lắp đặt hệ thống 12 CHƢƠNG 2. GIỚI THIỆU MỘT SỐ MẠCH BĂM XUNG ĐIỆN ÁP MỘT CHIỀU 13 2.1 Giới thiệu về băm xung một chiều 13 2.1.1 Phương pháp thay đổi độ rộng xung 14 2.1.2 Phương pháp thay đổi tần số xung 15 2.1.3 Nhận xét 15 2.2 Các sơ đồ băm xung 16 2.2.1. Băm xung nối tiếp – giảm áp (Step – down (Buck)) 16 2.2.2. Băm xung song song – Tăng áp (Step – up (boost)) 17 2.2.3. Băm xung đảo cực (Step – down / up (buck – boost)) 18 2.2.4 Bộ Chopper lớp C (Bộ đảo dòng) 19 2.2.5 Bộ đảo áp 22 2.2.6 Bộ Chopper lớp E 26 2.3. Một số loại van dùng trong mạch băm xung 38 2.3.1. Phân loại linh kiện bán dẫn 38
  65. 2.3.2. Các linh kiện bán dẫn công suất cơ bản 39 2.3.3 Chọn van bán dẫn 41 CHƢƠNG 3. XÂY DỰNG BỘ BĂM XUNG SONG SONG BẰNG IGBT (BOOST CHOPPER) 42 3.1. Đặt vấn đề 42 3.2. Mạch động lực 43 3.2.1. Sơ đồ mạch động lực 43 3.2.2. Tính toán thông số máy biến áp 44 3.2.3. Tính toán các thông số để chọn van IGBT 44 3.2.4. Tính toán các thông số để chọn van Q6 45 3.3. Mạch điều khiển 46 3.3.1. Yêu cầu chung của mạch điều khiển 46 3.3.2. Nguyên lý chung của mạch điều khiển 47 3.3.3. Mạch tạo áp chuẩn 48 3.3.4. Khâu phản hồi áp ( Khâu lấy mẫu) 48 3.3.5. Tạo sóng tam giác từ mạch so sánh và tích phân 49 3.3.6. Khâu dao động đa hài tạo xung vuông 51 3.3.7. Khâu tạo trễ 53 3.4. Thiết kế nguồn nuôi cấp cho mạch điều khiển 54 3.4.1. Sơ đồ nguyên lý. 54 3.4.2. Nguyên lý hoạt động 55 3.4.3. Tính toán các tham số cho mạch nguồn nuôi 57 KẾT LUẬN 59 TÀI LIỆU THAM KHẢO 60