Luận văn Nghiên cứu về điện tử công suất và ứng dụng của điện tử công suất để điều chỉnh tốc độ động cơ một chiều kích từ độc lập

pdf 74 trang phuongnguyen 5850
Bạn đang xem 20 trang mẫu của tài liệu "Luận văn Nghiên cứu về điện tử công suất và ứng dụng của điện tử công suất để điều chỉnh tốc độ động cơ một chiều kích từ độc lập", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pdfluan_van_nghien_cuu_ve_dien_tu_cong_suat_va_ung_dung_cua_die.pdf

Nội dung text: Luận văn Nghiên cứu về điện tử công suất và ứng dụng của điện tử công suất để điều chỉnh tốc độ động cơ một chiều kích từ độc lập

  1. LUẬN VĂN TỐT NGHIỆP ĐỀ TÀI: NGHIÊN CỨU VỀ ĐIỆN TỬ CÔNG SUẤT VÀ ỨNG DỤNG CỦA ĐIỆN TỬ CÔNG SUẤT ĐỂ ĐIỀU CHỈNH TỐC ĐỘ ĐỘNG CƠ MỘT CHIỀU KÍCH TỪ ĐỘC LẬP
  2. LỜI NÓI ĐẦU Trong giai đoạn công nghiệp hóa, hiện đại hóa đất nước, ngày càng có nhiều thiết bị bán dẫn công suất hiện đại được sử dụng không chỉ trong lĩnh vực sản xuất mà cả trong việc phục vụ đời sống sinh hoạt của con người. Sự ra đời và phát triển của các linh kiện bán dẫn công suất như: diode, transistor, tiristor, triac Cùng với việc hoàn thiện mạch điều khiển chúng đã tạo nên sự thay đổi sâu sắc, vượt bậc của kỹ thuật biến đổi điện năng và của cả ngành kỹ thuật điện nói chung. Hiện nay, mạng điện ở nước ta chủ yếu là điện xoay chiều với tần số điện công nghiệp. Để cung cấp nguồn điện một chiều có giá trị điện áp và dòng điện điều chỉnh được cho những thiết bị điện dùng trong các hệ thống truyền động điện một chiều, người ta đã hoàn thiện bộ chỉnh lưu có điều khiển dùng tiristor. Vì những lý do trên, đề tài “ Nghiên cứu về điện tử công suất và ứng dụng của điện tử công suất để điều chỉnh tốc độ động cơ một chiều kích từ độc lập “ sẽ đi sâu vào nghiên cứu các hệ thống truyền động có dùng điện tử công suất để điều chỉnh tốc độ động cơ một chiều kích từ độc lập. Luận văn được trình bày gồm ba chương: Chương I: Giới thiệu về điện tử công suất. Chương II: Nghiên cứu và trình bày các phương pháp điều chỉnh tốc độ động cơ một chiều kích từ độc lập Chương III: Các hệ thống điều chỉnh tốc độ động cơ một chiều kích từ độc lập có dùng điện tử công suất. Do điều kiện thời gian, kiến thức còn hạn hẹp, nên tập luận văn sẽ không tránh khỏi những thiếu sót về mặt nội dung lẫn hình thức. Sinh viên thực hiện rất mong nhận được sự quan tâm, chỉ bảo của quý thầy cô, bạn bè để tập luận văn được hoàn thiện hơn. Sinh viên thực hiện
  3. BỘ GIÁO DỤC VÀ ĐÀO TẠO CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM ĐẠI HỌC QUỐC GIA TP. HCM ĐỘC LẬP - TỰ DO - HẠNH PHÚC. TRƯỜNG ĐẠI HỌC SƯ PHẠM KỸ THUẬT TP. HCM. 0O0 KHOA ĐIỆN - ĐIỆN TỬ BỘ MÔN ĐIỆN TỬ NHIỆM VỤ LUẬN VĂN TỐT NGHIỆP Họ và tên sinh viên : VÕ NGỌC TOẢN Lớp : 95KĐĐ Ngành : Điện - Điện tử 1. Tên đề tài: Nghiên cứu về điện tử công suất và ứng dụng của điện tử công suất để điều chỉnh tốc độ động cơ một chiều kích từ độc lập. 2. Các số liệu ban đầu: 3. Nội dung các phần thuyết minh, tính toán: 4. Các bản vẽ:
  4. Chương I GIỚI THIỆU VỀ ĐIỆN TỬ CÔNG SUẤT I. DIODE CÔNG SUẤT: I. 1 Cấu tạo: - + P - + N Anốt q P N d - 0 Hình 1. 1 Katốt ( a ) ( b ) a). Cấu tạo của diode. b). Ký hiệu của diode. Diode công suất là linh kiện bán dẫn có hai cực, được cấu tạo bởi một lớp bán dẫn N và một lớp bán dẫn P ghép lại. Silic là một nguyên tố hóa học thuộc nhóm IV trong bảng hệ thống tuần hoàn. Silic có 4 điện tử thuộc lớp ngoài cùng trong cấu trúc nguyên tử. Nếu ta kết hợp thêm vào một nguyên tố thuộc nhóm V mà lớp ngoài cùng có 5 điện tử thì 4 điện tử của nguyên tố này tham gia liên kết với 4 điện tử tự do của Silic và xuất hiện một điện tử tự do. Trong cấu trúc tinh thể, các điện tử tự do làm tăng tính dẫn điện. Do điện tử có điện tích âm nên chất này được gọi là chất bán dẫn loại N (negative), có nghĩa là âm. Nếu thêm vào Silic một nguyên tố thuộc nhóm III mà có 3 nguyên tử thuộc nhóm ngoài cùng thì xuất hiện một lổ trống trong cấu trúc tinh thể. Lỗ trống này có thể nhận 1 điện tử, tạo nên điện tích dương và làm tăng tính dẫn điện. Chất này được gọi là chất bán dẫn loại P (positive), có nghĩa là dương. Trong chất bán dẫn loại N điện tử là hạt mang điện đa số, lỗ trống là thiểu số. Với chất bán dẫn loại P thì ngược lại. Ở giữa hai lớp bán dẫn là mặt ghép PN. Tại đây xảy ra hiện tượng khuếch tán. Các lỗ trống của bán dẫn loại P tràn sang N là nơi có ít lỗ trống. Các điện tử của bán dẫn loại N chạy sang P là nơi có ít điện tử. Kết quả tại mặt tiếp giáp phía P nghèo đi về diện tích dương và giàu lên về điện tích âm. Còn phía bán dẫn loại N thì ngược lại nên gọi là vùng điện tích không gian dương. Trong vùng chuyển tiếp (- ) hình thành một điện trường nội tại. Ký hiệu là Ei và có chiều từ N sang P hay còn gọi là barie điện thế (khoảng từ 0,6V đến 0,7V đối với vật liệu là Silic). Điện trường này ngăn cản sự di chuyển của các điện tích đa số và làm dễ dàng cho sự di chuyển của các điện tích thiểu số (điện tử của vùng P và lổ trống của vùng N). Sự di chuyển của các điện tích thiểu số hình thành nên dòng điện ngược hay dòng điện rò.
  5. I. 2 Nguyên lý hoạt động: E i Ei P N P N U U + - - + ( a ) ( b ) Hình 1. 2 a). Sự phân cực thuận diode. b). Sự phân cực ngược diode. Khi đặt diode công suất dưới điện áp nguồn U có cực tính như hình vẽ, chiều của điện trường ngoài ngược chiều với điện trường nội Ei. Thông thường U > Ei thì có dòng điện chạy trong mạch, tạo nên điện áp rơi trên diode khoảng 0,7V khi dòng điện là định mức. Vậy sự phân cực thuận hạ thấp barie điện thế. Ta nói mặt ghép PN được phân cực thuận. Khi đổi chiều cực tính điện áp đặt vào diode, điện trường ngoài sẽ tác động cùng chiều với điện trường nội tại Ei. Điện trường tổng hợp cản trở sự di chuyển của các điện tích đa số. Các điện tử của vùng N di chuyển thẳng về cực dương nguồn U làm cho điện thế vùng N vốn đã cao lại càng cao hơn so với vùng P. Vì thế vùng chuyển tiếp lại càng rộng ra, không có dòng điện chạy qua mặt ghép PN. Ta nói mặt ghép PN bị phân cực ngược. Nếu tiếp tục tăng U, các điện tích được gia tốc, gây nên sự va chạm dây chuyền làm barie điện thế bị đánh thủng. Đặc tính volt-ampe của diode công suất được biểu diễn gần đúng bằng biểu thức sau: I = IS [ exp (eU/kT) – 1 ] ( 1. 1 ) Trong đó: - IS : Dòng điện rò, khoảng vài chục mA - e = 1,59.10- 19 Coulomb - k = 1,38.10- 23 : Hằng số Bolzmann - T = 273 + t0 : Nhiệt độ tuyệt đối (0 K) - t0 : Nhiệt độ của môi trường (0 C) - U : Điện áp đặt trên diode (V) I 1 U UZ U 2 Hình 1. 3 Đặc tính volt-ampe của diode. Đặc tính volt-ampe của diode gồm có hai nhánh: 1. Nhánh thuận 2. Nhánh ngược Khi diode được phân cực thuận dưới điện áp U thì barie điện thế Ei giảm xuống gần bằng 0. Tăng U, lúc đầu dòng I tăng từ từ cho đến khi U lớn hơn khoảng 0,1V thì I tăng một cách nhanh chóng, đường đặc tính có dạng hàm mũ.
  6. Tương tự, khi phân cực ngược cho diode, tăng U, dòng điện ngược cũng tăng từ từ. Khi U lớn hơn khoảng 0,1V dòng điện ngược dừng lại ở giá trị vài chục mA và được ký hiệu là IS. Dòng IS là do sự di chuyển của các điện tích thiểu số tạo nên. Nếu tiếp tục tăng U thì các điện tích thiểu số di chuyển càng dễ dàng hơn, tốc độ di chuyển tỉ lệ thuận với điện trường tổng hợp, động năng của chúng tăng lên. Khi U = UZ thì sự va chạm giữa các điện tích thiểu số di chuyển với tốc độ cao sẽ bẻ gảy được các liên kết nguyên tử Silic trong vùng chuyển tiếp và xuất hiện những điện tử tự do mới. Rồi những điện tích tự do mới này chịu sự tăng tốc của điện trường tổng hợp lại tiếp tục bắn phá các nguyên tử Silic. Kết quả tạo một phản ứng dây chuyền làm cho dòng điện ngược tăng lên ào ạt và sẽ phá hỏng diode. Do đó, để bảo vệ diode người ta chỉ cho chúng hoạt động với giá trị điện áp: U = (0,7 0,8)UZ. Khi diode hoạt động, dòng điện chạy qua diode làm cho diode phát nóng, chủ yếu ở tại vùng chuyển tiếp. Đối với diode loại Silic, nhiệt độ mặt ghép cho phép là 2000C. Vượt quá nhiệt độ này diode có thể bị phá hỏng. Do đó, để làm mát diode, ta dùng quạt gió để làm mát, cánh tản nhiệt hay cho nước hoặc dầu biến thế chảy qua cánh tản nhiệt với tốc độ lớn hay nhỏ tùy theo dòng điện. Các thông số kỹ thuật cơ bản để chọn diode là: - Dòng điện định mức Iđm (A) - Điện áp ngược cực đại Ungmax ( V ) - Điện áp rơi trên diode U ( V ) I. 3 Ứng dụng: Ứng dụng chủ yếu của diode công suất là chỉnh lưu dòng điện xoay chiều thành dòng điện một chiều cung cấp cho tải. Các bộ chỉnh lưu của diode được chia thành hai nhóm chính: - Chỉnh lưu bán kỳ hay còn gọi là chỉnh lưu nửa sóng. - Chỉnh lưu toàn kỳ hay còn gọi là chỉnh lưu toàn sóng. II. TRANSISTOR CÔNG SUẤT: II. 1 Cấu tạo: Transistor là linh kiện bán dẫn gồm 3 lớp: PNP hay NPN.
  7. C B P N P C B E E ( a ) ( b ) Về mặt vật lý,Hình transistor 1. 4 Transistor gồm 3 phần: PNP: phần phát, phần nền và phần thu. Vùng nền (B) rất mỏng. a). Cấu tạo Transistor công suất có cấu trúc và ký hiệu như sau: b). Ký hiệu IC C C B C U I CE B B N UBE E P E B N C IE B Hình( 1. a )6 Transistor công (su bất ) a). CấuE trúc b). Ký hiệuE ( a ) ( b ) II. 2 Nguyên lý hoạt động: Hình 1. 5 Transistor NPN: Ea). Cấu tạo C b). Ký hiệu N pP p N Emite Colecto E C I E Base IC I E - + - + Hình 1. 7 Sơ RđồE phân cực U EEtransistor. UCC RC Điện thế UEE phân cực thuận mối nối B - E (PN) là nguyên nhân làm cho vùng phát (E) phóng điện tử vào vùng P (cực B). Hầu hết các điện tử (electron) sau khi qua vùng B rồi qua tiếp mối nối thứ hai phía bên phải hướng tới vùng N (cực thu), khoảng 1 electron được giữ lại ở vùng B. Các lỗ trống vùng nền di chuyển vào vùng phát. Mối nối B - E ở chế độ phân cực thuận như một diode, có điện kháng nhỏ và điện áp rơi trên nó nhỏ thì mối nối B - C được phân cực ngược bởi điện áp
  8. UCC. Bản chất mối nối B - C này giống như một diode phân cực ngược và điện kháng mối nối B - C rất lớn. Dòng điện đo được trong vùng phát gọi là dòng phát IE. Dòng điện đo được trong mạch cực C (số lượng điện tích qua đường biên CC trong một đơn vị thời gian là dòng cực thu IC). Dòng IC gồm hai thành phần: - Thành phần thứ nhất (thành phần chính) là tỉ lệ của hạt electron ở cực phát tới cực thu. Tỉ lệ này phụ thuộc duy nhất vào cấu trúc của transistor và là hằng số được tính trước đối với từng transistor riêng biệt. Hằng số đã được định nghĩa là . Vậy thành phần chính của dòng IC là IE. Thông thường = 0,9 0,999. - Thành phần thứ hai là dòng qua mối nối B - C ở chế độ phân cực ngược lại khi IE = 0. Dòng này gọi là dòng ICBO – nó rất nhỏ. - Vậy dòng qua cực thu: IC = IE + ICBO. * Các thông số của transistor công suất: - IC: Dòng colectơ mà transistor chịu được. - UCEsat: Điện áp UCE khi transistor dẫn bão hòa. - UCEO: Điện áp UCE khi mạch badơ để hở, IB = 0 . - UCEX: Điện áp UCE khi badơ bị khóa bởi điện áp âm, IB < 0. - ton: Thời gian cần thiết để UCE từ giá trị điện áp nguồn U giảm xuống UCESat 0. - tf: Thời gian cần thiết để iC từ giá trị IC giảm xuống 0. - tS: Thời gian cần thiết để UCE từ giá trị UCESat tăng đến giá trị điện áp nguồn U. - P: Công suất tiêu tán bên trong transistor. Công suất tiêu tán bên trong transistor được tính theo công thức: P = UBE.IB + UCE.IC. - Khi transistor ở trạng thái mở: IB = 0, IC = 0 nên P = 0. - Khi transistor ở trạng thái đóng: UCE = UCESat. Trong thực tế transistor công suất thường được cho làm việc ở chế độ khóa: IB = 0, IC = 0, transistor được coi như hở mạch. Nhưng với dòng điện gốc ở trạng thái có giá trị bão hòa, thì transistor trở về trạng thái đóng hoàn toàn. Transistor là một linh kiện phụ thuộc nên cần phối hợp dòng điện gốc và dòng điện góp. Ở trạng thái bão hòa để duy trì khả năng điều khiển và để tránh điện tích ở cực gốc quá lớn, dòng điện gốc ban đầu phải cao để chuyển sang trạng thái dẫn nhanh chóng. Ở chế độ khóa dòng điện gốc phải giảm cùng qui luật như dòng điện góp để tránh hiện tượng chọc thủng thứ cấp. I C a IC IC b U CE U CE ( b ) Hình 1. 8 Trạng thái( a )dẫn và trạng thái bị khóa a). Trạng thái đóng mạch hay ngắn mạch IB lớn, IC do tải giới hạn. b). Trạng thái hở mạch IB = 0.
  9. Các tổn hao chuyển mạch của transistor có thể lớn. Trong lúc chuyển mạch, điện áp trên các cực và dòng điện của transistor cũng lớn. Tích của dòng điện và điện áp cùng với thời gian chuyển mạch tạo nên tổn hao năng lượng trong một lần chuyển mạch. Công suất tổn hao chính xác do chuyển mạch là hàm số của các thông số của mạch phụ tải và dạng biến thiên của dòng điện gốc. * Đặc tính tĩnh của transistor: UCE = f (IC). Để cho khi transistor đóng, điện áp sụt bên trong có giá trị nhỏ, người ta phải cho nó làm việc ở chế độ bão hòa, tức là IB phải đủ lớn để IC cho điện áp sụt UCE nhỏ nhất. Ở chế độ bão hòa, điện áp sụt trong transistor công suất bằng 0,5 đến 1V trong khi đó tiristor là khoảng 1,5V. UCE Vùng tuyến tính Vùng gần bão hòa Vùng bão hòa IC Hình 1. 9 Đặc tính tĩnh của transistor: UCE = f ( IC ). II. 3 Ứng dụng của transistor công suất: Transistor công suất dùng để đóng cắt dòng điện một chiều có cường độ lớn. Tuy nhiên trong thực tế transistor công suất thường cho làm việc ở chế độ khóa. IB = 0, IC = 0: transistor coi như hở mạch. II. 4 Transistor Mos công suất: Transistor trường FET (Field – Effect Transistor) được chế tạo theo công nghệ Mos (Metal – Oxid – Semiconductor), thường sử dụng như những chuyển mạch điện tử có công suất lớn. Khác với transistor lưỡng cực được điều khiển bằng dòng điện, transistor Mos được điều khiển bằng điện áp. Transistor Mos gồm các cực chính: cực máng (drain), nguồn (source) và cửa (gate). Dòng điện máng - nguồn được điều khiển bằng điện áp cửa – nguồn. Điện = 9V trở Máng Dòng = 7,5V hằng iện số = 6V máng Cửa = 4,5V = 3V Nguồn Điện áp máng – nguồn ( a ) Hình 1. 10 Transistor Mos công suất: ( b ) a). Họ đặc tính ra. b). Ký hiệu thông thường kênh N.
  10. Transistor Mos là loại dụng cụ chuyển mạch nhanh. Với điện áp 100V tổn hao dẫn ở chúng lớn hơn ở transistor lưỡng cực và tiristor, nhưng tổn hao chuyển mạch nhỏ hơn nhiều. Hệ số nhiệt điện trở của transistor Mos là dương. Dòng điện và điện áp cho phép của transistor Mos nhỏ hơn của transistor lưỡng cực và tiristor. III. TIRISTOR: III. 1 Cấu tạo: Tiristor là linh kiện gồm 4 lớp bán dẫn PNPN liên tiếp tạo nên anốt, katốt và cực điều khiển. A A P1 J1 N1 J2 G P 2 G N2 J3 K K Hình 1. 11 ( a ) ( b ) a). Cấu tạo của tiristor. b). Ký hiệu của tiristor. Trong đó: - A: anốt. - K: katốt. - G: cực điều khiển. - J1, J2, J3: các mặt ghép. Tiristor gồm 1 đĩa Silic từ đơn thể loại N, trên lớp đệm loại bán dẫn P có cực điều khiển bằng dây nhôm, các lớp chuyển tiếp được tạo nên bằng kỹ thuật bay hơi của Gali. Lớp tiếp xúc giữa anốt và katốt là bằng đĩa môlipđen hay tungsen có hệ số nóng chảy gần bằng với Gali. Cấu tạo dạng đĩa kim loại để dễ dàng tản nhiệt. III. 2 Nguyên lý hoạt động: Đặt tiristor dưới điện áp một chiều, anốt nối vào cực dương, katốt nối vào cực âm của nguồn điện áp, J1, J3 phân cực thuận, J2 phân cực ngược. Gần như toàn bộ điện áp nguồn đặt trên mặt ghép J2. Điện trường nội tại Ei của J2 có chiều từ N1 hướng về P2. Điện trường ngoài tác động cùng chiều với Ei vùng chuyển tiếp cũng là vùng cách điện càng mở rộng ra không có dòng điện chạy qua tiristor mặc dù nó bị đặt dưới điện áp.
  11. I IH U Z U 0 Uch Hình 1. 12 Đặc tính volt-ampe của tiristor. * Mở tiristor: Cho một xung điện áp dương Ug tác động vào cực G ( dương so với K ), các điện tử từ N2 sang P2. Đến đây, một số ít điện tử chảy vào cực G và hình thành dòng điều khiển Ig chạy theo mạch G - J3 - K - G còn phần lớn điện tử chịu sức hút của điện trường tổng hợp của mặt ghép J2 lao vào vùng chuyển tiếp này, tăng tốc, động năng lớn bẻ gảy các liên kết nguyên tử Silic, tạo nên điện tử tự do mới. Số điện tử mới được giải phóng tham gia bắn phá các nguyên tử Silic trong vùng kế tiếp. Kết quả của phản ứng dây chuyền làm xuất hiện nhiều điện tử chạy vào N1 qua P1 và đến cực dương của nguồn điện ngoài, gây nên hiện tượng dẫn điện ào ạt, J2 trở thành mặt ghép dẫn điện, bắt đầu từ một điểm ở xung quanh cực G rồi phát triển ra toàn bộ mặt ghép. Điện trở thuận của tiristor khoảng 100K khi còn ở trạng thái khóa, trở thành 0,01 khi tiristor mở cho dòng chạy qua. Tiristor khóa + UAK > 1V hoặc Ig > Igst thì tiristor sẽ mở. Trong đó Igst là dòng điều khiển được tra ở sổ tay tra cứu tiristor. ton: Thời gian mở là thời gian cần thiết để thiết lập dòng điện chạy trong tiristor, tính từ thời điểm phóng dòng Ig vào cực điều khiển. Thời gian mở tiristor kéo dài khoảng 10s. * Khóa tiristor: Có 2 cách: - Làm giảm dòng điện làm việc I xuống dưới giá trị dòng duy trì IH ( Holding Current ). - Đặt một điện áp ngược lên tiristor. Khi đặt điện áp ngược lên tiristor: UAK < 0, J1 và J3 bị phân cực ngược, J2 phân cực thuận, điện tử đảo chiều hành trình tạo nên dòng điện ngược chảy từ katốt về anốt, về cực âm của nguồn điện ngoài. Tiristor mở + UAK < 0 tiristor khóa. Thời gian khóa toff: Thời gian từ khi bắt đầu xuất hiện dòng điện ngược ( t0 ) đến dòng điện ngược bằng 0 ( t2 ), toff kéo dài khoảng vài chục s. * Xét sự biến thiên của dòng điện i( t ) trong quá trình tiristor khóa: I t0 t1 t2 t Hình 1. 13 Sự biến thiên của dòng iện i( t ) trong quá trình tiristor khóa.
  12. Từ t0 đến t1 dòng điện ngược lớn, sau đó J1, J3 trở nên cách điện. Do hiện tượng khuếch tán một ít điện tử giữa hai mặt J1 và J3 ít dần đi đến hết. J2 khôi phục tính chất của mặt ghép điều khiển. III. 3 Ứng dụng: Tiristor được sử dụng trong các bộ nguồn đặc biệt: trong mạch chỉnh lưu, bộ băm và trong bộ biến tần trực tiếp hoặc các bộ biến tần có khâu trung gian một chiều. - Ứng dụng tiristor trong mạch điều khiển tốc độ động cơ. - Chuyển mạch tĩnh. - Khống chế pha. - Nạp ắcqui. - Khống chế nhiệt độ. IV. TRIAC: IV. 1 Cấu tạo: Triac là thiết bị bán dẫn ba cực, bốn lớp có đường đặc tính volt-ampe đối xứng, nhận góc mở cho cả hai chiều. Triac được chế tạo để làm việc trong mạch điện xoay chiều, có tác dụng như 2 SCR đấu song song ngược. T 2 N P N P T2 N N G T1 Hình 1. 14 G T1 a). Cấu tạo của( triac.a ) ( b ) b). Ký hiệu của triac. Triac được chế tạo trên cùng một đơn tinh thể gồm hai cực và chỉ có một cực điều khiển. IV. 2 Nguyên lý làm việc: T1 là cực gần với cực điều khiển G. I ( I ) : T1 dương Trạng thái dẫn Ig2 > Ig1 Ig = 0 : Trạng thái khóa 0 - Ut Ut UB2 UB1 UB0 ( III ) : T2 âm
  13. Ở góc phần tư thứ nhất ( I ): UT2 > UT1 còn ( III ) thì ngược lại. Điện áp UB0 là giá trị điện áp mở đưa triac từ trạng thái bị khóa sang dẫn khi không có dòng điều khiển, Ig = 0. Khi có dòng điều khiển Ig triac sẽ mở với điện áp đặt vào nhỏ hơn. Triac chỉ bị khóa khi Ig = 0 và điện áp đặt vào nhỏ hơn ngưỡng UB và mở theo chiều này hoặc chiều khác tùy theo cực tính của dòng điện điều khiển. * Có 4 cách để mở triac: - Ở góc phần tư thứ nhất ( I ): Cách I+: Dòng, áp, cực điều khiển dương. Cách I-: Dòng, áp, cực điều khiển âm. - Ở góc phần tư thứ ba ( III ): Cách III+: Dòng, áp, cực điều khiển dương. Cách III-: Dòng, áp, cực điều khiển âm. - Triac có ưu điểm là mạch điều khiển đơn giản nhưng công suất giới hạn nhỏ hơn tiristor. IV. 3 Ứng dụng: Triac dùng để điều chỉnh tốc độ động cơ một chiều, trong mạch chỉnh lưu. Ngoài ra, triac còn dùng để điều chỉnh ánh sáng điện, nhiệt độ lò.
  14. Chương II NGHIÊN CỨU VÀ TRÌNH BÀY CÁC PHƯƠNG PHÁP ĐIỀU CHỈNH TỐC ĐỘ ĐỘNG CƠ MỘT CHIỀU KÍCH TỪ ĐỘC LẬP I. KHÁI NIỆM CHUNG: I. 1 Định nghĩa: Điều chỉnh tốc độ động cơ là dùng các biện pháp nhân tạo để thay đổi các thông số nguồn như điện áp hay các thông số mạch như điện trở phụ, thay đổi từ thông Từ đó tạo ra các đặc tính cơ mới để có những tốc độ làm việc mới phù hợp với yêu cầu. Có hai phương pháp để điều chỉnh tốc độ động cơ: - Biến đổi các thông số của bộ phận cơ khí tức là biến đổi tỷ số truyền chuyển tiếp từ trục động cơ đến cơ cấu máy sản suất. - Biến đổi tốc độ góc của động cơ điện. Phương pháp này làm giảm tính phức tạp của cơ cấu và cải thiện được đặc tính điều chỉnh. Vì vậy, ta khảo sát sự điều chỉnh tốc độ theo phương pháp thứ hai. Ngoài ra cần phân biệt điều chỉnh tốc độ với sự tự động thay đổi tốc độ khi phụ tải thay đổi của động cơ điện. Về phương diện điều chỉnh tốc độ, động cơ điện một chiều có nhiều ưu việt hơn so với các loại động cơ khác. Không những nó có khả năng điều chỉnh tốc độ dễ dàng mà cấu trúc mạch động lực, mạch điều khiển đơn giản hơn, đồng thời lại đạt chất lượng điều chỉnh cao trong dãy điều chỉnh tốc độ rộng. I. 2 Các chỉ tiêu kỹ thuật để đánh giá hệ thống điều chỉnh tốc độ: Khi điều chỉnh tốc độ của hệ thống truyền động điện ta cần chú ý và căn cứ vào các chỉ tiêu sau đây để đánh giá chất lượng của hệ thống truyền động điện: I. 2. a Hướng điều chỉnh tốc độ: Hướng điều chỉnh tốc độ là ta có thể điều chỉnh để có được tốc độ lớn hơn hay bé hơn so với tốc độ cơ bản là tốc độ làm việc của động cơ điện trên đường đặc tính cơ tự nhiên. I. 2. b Phạm vi điều chỉnh tốc độ (Dãy điều chỉnh): Phạm vi điều chỉnh tốc độ D là tỉ số giữa tốc độ lớn nhất nmax và tốc độ bé nhất nmin mà người ta có thể điều chỉnh được tại giá trị phụ tải là định mức: D = nmax/nmin. Trong đó: - nmax: Được giới hạn bởi độ bền cơ học. - nmin: Được giới hạn bởi phạm vi cho phép của động cơ, thông thường người ta chọn nmin làm đơn vị. Phạm vi điều chỉnh càng lớn thì càng tốt và phụ thuộc vào yêu cầu của từng hệ thống, khả năng từng phương pháp điều chỉnh. I. 2. c Độ cứng của đặc tính cơ khi điều chỉnh tốc độ: Độ cứng:  = M/ n. Khi  càng lớn tức M càng lớn và n nhỏ nghĩa là độ ổn định tốc độ càng lớn khi phụ tải thay đổi nhiều. Phương pháp điều
  15. chỉnh tốc độ tốt nhất là phương pháp mà giữ nguyên hoặc nâng cao độ cứng của đường đặc tính cơ. Hay nói cách khác  càng lớn thì càng tốt. I. 2. d Độ bằng phẳng hay độ liên tục trong điều chỉnh tốc độ: Trong phạm vi điều chỉnh tốc độ, có nhiều cấp tốc độ. Độ liên tục khi điều chỉnh tốc độ  được đánh giá bằng tỉ số giữa hai cấp tốc độ kề nhau:  = ni/ni+1 Trong đó: - ni: Tốc độ điều chỉnh ở cấp thứ i. - ni + 1: Tốc độ điều chỉnh ở cấp thứ ( i + 1 ). Với ni và ni + 1 đều lấy tại một giá trị moment nào đó.  tiến càng gần 1 càng tốt, phương pháp điều chỉnh tốc độ càng liên tục. Lúc này hai cấp tốc độ bằng nhau, không có nhảy cấp hay còn gọi là điều chỉnh tốc độ vô cấp.  1 : Hệ thống điều chỉnh có cấp. I. 2. e Tổn thất năng lượng khi điều chỉnh tốc độ: Hệ thống truyền động điện có chất lượng cao là một hệ thống có hiệu suất làm việc của động cơ  là cao nhất khi tổn hao năng lượng Pphụ ở mức thấp nhất. I. 2. f Tính kinh tế của hệ thống khi điều chỉnh tốc độ: Hệ thống điều chỉnh tốc độ truyền động điện có tính kinh tế cao nhất là một hệ thống điều chỉnh phải thỏa mãn tối đa các yêu cầu kỹ thuật của hệ thống. Đồng thời hệ thống phải có giá thành thấp nhất, chi phí bảo quản vận hành thấp nhất, sử dụng thiết bị phổ thông nhất và các thiết bị máy móc có thể lắp ráp lẫn cho nhau. II. ĐIỀU CHỈNH TỐC ĐỘ BẰNG CÁCH THAY ĐỔI ĐIỆN ÁP ĐẶT VÀO PHẦN ỨNG ĐỘNG CƠ: Đối với các máy điện một chiều, khi giữ từ thông không đổi và điều chỉnh điện áp trên mạch phần ứng thì dòng điện, moment sẽ không thay đổi. Để tránh những biến động lớn về gia tốc và lực động trong hệ điều chỉnh nên phương pháp điều chỉnh tốc độ bằng cách thay đổi điện áp trên mạch phần ứng thường được áp dụng cho động cơ một chiều kích từ độc lập. Để điều chỉnh điện áp đặt vào phần ứng động cơ, ta dùng các bộ nguồn điều áp như: máy phát điện một chiều, các bộ biến đổi van hoặc khuếch đại từ Các bộ biến đổi trên dùng để biến dòng xoay chiều của lưới điện thành dòng một chiều và điều chỉnh giá trị sức điện động của nó cho phù hợp theo yêu cầu. Phương trình đặc tính cơ của động cơ điện một chiều kích từ độc lập: U R u R f n 2 M K E  K E K M  Ta có tốc độ không tải lý tưởng: n0 = Uđm/KEđm.Và độ cứng của đường đặc tính cơ: dM K K  2  E M dn R u R f
  16. Khi thay đổi điện áp đặt lên phần ứng của động cơ thì tốc độ không tải lý tưởng sẽ thay đổi nhưng độ cứng của đường đặc tính cơ thì không thay đổi. Như vậy, khi ta thay đổi điện áp thì độ cứng của đường đặc tính cơ không thay đổi. Họ đặc tính cơ là những đường thẳng song song với đường đặc tính cơ tự nhiên: n n0 ncb TN ( Um ) n1 Um > U1 > U2 > U3 U1 n2 n > n > n > n U cb 1 2 3 n3 2 U 3 M Hình 2. 1 Họ đặc tínhMC cơ khi thay đổi điện áp đặt vào phần ứng động cơ. Phương pháp điều chỉnh tốc độ bằng cách thay đổi điện áp phần ứng thực chất là giảm áp và cho ra những tốc độ nhỏ hơn tốc độ cơ bản ncb. Đồng thời điều chỉnh nhảy cấp hay liên tục tùy thuộc vào bộ nguồn có điện áp thay đổi một cách liên tục và ngược lại. Theo lý thuyết thì phạm vi điều chỉnh D = . Nhưng trong thực tế động cơ điện một chiều kích từ độc lập nếu không có biện pháp đặc biệt chỉ làm việc ở phạm vi cho phép: Umincp = Uđm/10, nghĩa là phạm vi điều chỉnh: D = ncb/nmin = 10/1. Nếu điện áp phần ứng U < Umincp thì do phản ứng phần ứng sẽ làm cho tốc độ động cơ không ổn định. Nhận xét: Phương pháp điều chỉnh tốc độ bằng cách thay đổi điện áp đặt vào phần ứng động cơ sẽ giữ nguyên độ cứng của đường đặc tính cơ nên được dùng nhiều trong máy cắt kim loại và cho những tốc độ nhỏ hơn ncb. * Ưu điểm: Đây là phương pháp điều chỉnh triệt để, vô cấp có nghĩa là có thể điều chỉnh tốc độ trong bất kỳ vùng tải nào kể cả khi ở không tải lý tưởng. * Nhược điểm: Phải cần có bộ nguồn có điện áp thay đổi được nên vốn đầu tư cơ bản và chi phí vận hành cao.
  17. III. ĐIỀU CHỈNH TỐC ĐỘ BẰNG CÁCH THAY ĐỔI TỪ THÔNG: + - U Iư Đ C KĐ + - Hình 2. 2 Sơ đồ nguyên lý điUềuKT chỉnh tốc độ bằng cách thay đổi từ thông. Điều chỉnh từ thông kích thích của động cơ điện một chiều là điều chỉnh moment điện từ của động cơ M = KMIư và sức điện động quay của động cơ Eư = KEn. Thông thường, khi thay đổi từ thông thì điện áp phần ứng được giữ nguyên giá trị định mức. Đối với các máy điện nhỏ và đôi khi cả các máy điện công suất trung bình, người ta thường sử dụng các biến trở đặt trong mạch kích từ để thay đổi từ thông do tổn hao công suất nhỏ. Đối với các máy điện công suất lớn thì dùng các bộ biến đổi đặc biệt như: máy phát, khuếch đại máy điện, khuếch đại từ, bộ biến đổi van Thực chất của phương pháp này là giảm từ thông. Nếu tăng từ thông thì dòng điện kích từ IKT sẽ tăng dần đến khi hư cuộn dây kích từ. Do đó, để điều chỉnh tốc độ chỉ có thể giảm dòng kích từ tức là giảm nhỏ từ thông so với định mức. Ta thấy lúc này tốc độ tăng lên khi từ thông giảm: n = U/KE. Mặt khác ta có: Moment ngắn mạch Mn = KMIn nên khi  giảm sẽ làm cho Mn giảm theo. Độ cứng của đường đặc tính cơ: K K  2  E M R Khi  giảm thì độ cứng  cũng giảm, đặc tính cơ sẽ dốc hơn. Nên ta có họ đường đặc tính cơ khi thay đổi từ thông như sau: n  >  >  1 đm 1 2 n ncb < n1 < n2 2 1 m nnc M 0 MC M2 M1 Mn PhươngHình pháp 2. 3 đi Hềuọ chỉnhặc tính tốc c ơđ ộkhi bằng thay cách ổi thaytừ thông. đổi từ thông có thể điều chỉnh được tốc độ vô cấp và cho ra những tốc độ lớn hơn tốc độ cơ bản. Theo lý thuyết thì từ thông có thể giảm gần bằng 0, nghĩa là tốc độ tăng đến vô cùng. Nhưng trên thực tế động cơ chỉ làm việc với tốc độ lớn nhất: nmax = 3ncb tức phạm vi điều chỉnh: D = nmax/ncb = 3/1. Bởi vì ứng với mỗi động cơ ta có một tốc độ lớn nhất cho phép. Khi điều chỉnh tốc độ tùy thuộc vào điều kiện cơ khí, điều kiện cổ góp động cơ không thể đổi chiều dòng điện và chịu được hồ quang điện. Do đó, động cơ không được làm việc quá tốc độ cho phép.
  18. Nhận xét: Phương pháp điều chỉnh tốc độ bằng cách thay đổi từ thông có thể điều chỉnh tốc độ vô cấp và cho những tốc độ lớn hơn ncb. Phương pháp này được dùng để điều chỉnh tốc độ cho các máy mài vạn năng hoặc là máy bào giường. Do quá trình điều chỉnh tốc độ được thực hiện trên mạch kích từ nên tổn thất năng lượng ít, mang tính kinh tế. Thiết bị đơn giản. IV. ĐIỀU CHỈNH TỐC ĐỘ BẰNG CÁCH THAY ĐỔI ĐIỆN TRỞ PHỤ TRÊN MẠCH PHẦN ỨNG: Phương pháp điều chỉnh tốc độ bằng cách thay đổi điện trở phụ trên mạch phần ứng có thể được dùng cho tất cả động cơ điện một chiều. Trong phương pháp này điện trở phụ được mắc nối tiếp với mạch phần ứng của động cơ theo sơ đồ nguyên lý như sau: + U - Iư R E f CKĐ Hình 2. 4 Sơ đồ nguyên+ lý điềuU chỉnhKT tốc đ -ộ động cơ bằng cách thay đổi điện trở phụ trên mạch phần ứng. Ta có phương trình đặc tính cơ của động cơ điện một chiều kích từ độc lập: U R u R f n 2 M K E  K E K M  Khi thay đổi giá trị điện trở phụ Rf ta nhận thấy tốc độ không tải lý tưởng: và độ cứng của đường đặc tính cơ: 2 dm U dm K E K M  n0 const ;  KEdm R u R f sẽ thay đổi khi giá trị Rf thay đổi. Khi Rf càng lớn,  càng nhỏ nghĩa là đường đặc tính cơ càng dốc. Ứng với giá trị Rf = 0 ta có độ cứng của đường đặc tính cơ tự nhiên được tính theo công thức sau: 2 K E K M  dm  TN R u Ta nhận thấy TN có giá trị lớn nhất nên đường đặc tính cơ tự nhiên có độ cứng lớn hơn tất cả các đường đặc tính cơ có đóng điện trở phụ trên mạch phần ứng. Vậy khi thay đổi giá trị Rf ta được họ đặc tính cơ như sau: n n 0 ncb TN 0 n > n > n Rf1 cb 1 2 3 n 2 n Rf2 3 M, I 0 MC R Hình 2. 5 Họ đặc tính cơ khi f3thay đổi điện trở phụ trên mạch phần ứng.
  19. Nguyên lý điều chỉnh tốc độ bằng cách thay đổi điện trở phụ trên mạch phần ứng được giải thích như sau: Giả sử động cơ đang làm việc xác lập với tốc độ n1 ta đóng thêm Rf vào mạch phần ứng. Khi đó dòng điện phần ứng Iư đột ngột giảm xuống, còn tốc độ động cơ do quán tính nên chưa kịp biến đổi. Dòng Iư giảm làm cho moment động cơ giảm theo và tốc độ giảm xuống, sau đó làm việc xác lập tại tốc độ n2 với n2 > n1. Phương pháp điều chỉnh tốc độ này chỉ có thể điều chỉnh tốc độ n < ncb. Trên thực tế không thể dùng biến trở để điều chỉnh nên phương pháp này sẽ cho những tốc độ nhảy cấp tức độ bằng phẳng  xa 1 tức n1 cách xa n2, n2 cách xa n3 Khi giá trị nmin càng tiến gần đến 0 thì phạm vi điều chỉnh: D = ncb/nmin . Trong thực tế, Rf càng lớn thì tổn thất năng lượng phụ tăng. Khi động cơ làm việc ở tốc độ n = ncb/2 thì tổn thất này chiếm từ 40% đến 50%. Cho nên, để đảm bảo tính kinh tế cho hệ thống ta chỉ điều chỉnh sao cho phạm vi điều chỉnh: D = ( 2 3 )/1. Khi giá trị Rf càng lớn thì tốc độ động cơ càng giảm. Đồng thời dòng điện ngắn mạch In và moment ngắn mạch Mn cũng giảm. Do đó, phương pháp này được dùng để hạn chế dòng điện và điều chỉnh tốc độ dưới tốc độ cơ bản. Và tuyệt đối không được dùng cho các động cơ của máy cắt kim loại. Nhận xét: Phương pháp điều chỉnh tốc độ bằng cách thay đổi điện trở phụ trên mạch phần ứng chỉ cho những tốc độ nhảy cấp và nhỏ hơn ncb. * Ưu điểm: Thiết bị thay đổi rất đơn giản, thường dùng cho các động cơ cho cần trục, thang máy, máy nâng, máy xúc, máy cán thép. * Nhược điểm: Tốc độ điều chỉnh càng thấp khi giá trị điện trở phụ đóng vào càng lớn, đặc tính cơ càng mềm, độ cứng giảm làm cho sự ổn định tốc độ khi phụ tải thay đổi càng kém. Tổn hao phụ khi điều chỉnh rất lớn, tốc độ càng thấp thì tổn hao phụ càng tăng.
  20. V. ĐIỀU CHỈNH TỐC ĐỘ BẰNG CÁCH RẼ MẠCH PHẦN ỨNG: Động cơ điện một chiều kích từ độc lập khi điều chỉnh tốc độ bằng cách rẽ mạch phần ứng có sơ đồ nguyên lý như sau: + U - IS Rn RS Iư In E C Hình 2. 6 Sơ đồ nguyênK lýĐ phươngR KphápĐ đi ều chỉnh tốc độ bằng cách rẽ mạch phần ứng. Một hệ thống khi điều chỉnh cần tốc độ nhỏ hơn ncb và điều chỉnh nhảy cấp. Hệ thống có độ cứng tương đối lớn và thiết bị vận hành đơn giản thì người ta dùng phương pháp rẽ mạch phần ứng hay còn gọi là phân mạch. Theo phương pháp rẽ mạch phần ứng thì phần ứng động cơ nối song song với điện trở và nối nối tiếp với một điện trở khác. Phương pháp này giống với phương pháp thay đổi điện trở trên mạch phần ứng nhưng điện áp phần ứng lại không thay đổi. Do đó, phương pháp này đòi hỏi phải: - Điện áp đặt vào phần ứng động cơ không thay đổi. - Vì dòng kích từ không thay đổi nên khi điều chỉnh tốc độ, từ thông không đổi làm cho moment phụ tải cho phép được giữ không đổi và bằng trị số định mức. Ta có phương trình đặc tính cơ: R R R S n U R u R R n S S n M K  R R K K  E S n E M 2 R R R S n R u R R n n S S n M 0 R R 2 S n K E K M  R n ' n S n 0 0 R R 0 Từ phương trình trên, Sta nhậnn thấy tốc độ động cơ nĐ < ncb. Mặt khác ta có: RS Ru Rn Ru Ru RS Rn     Rf Rn PM TN Độ cứng của đường đặc tính cơ rẽ mạch phần ứng PM nhỏ hơn độ cứng của đặc tính cơ tự nhiên TN nhưng lại lớn hơn độ cứng của đặc tính cơ có điện trở phụ Rf với điện trở phụ chính là Rn. Để điều chỉnh tốc độ động cơ trong trường hợp này ta tiến hành như sau: * Giữ nguyên Rn, thay đổi giá trị RS: - Khi RS = 0: Đây là trạng thái hãm động năng với tốc độ hãm động năng nHĐN = 0. Udm Khi: RS : I A Rn Ta có họ ặc tính cơ như sau: n n0
  21. Hình 2. 7 Họ đặc tính cơ khi Rn = const, RS thay đổi. Như vậy, khi giữ nguyên Rn, thay đổi giá trị RS thì vùng điều chỉnh tốc độ bị hạn chế và modun độ lớn đặc tính cơ tăng dần khi tốc độ giảm. * Giữ nguyên RS, thay đổi giá trị Rn: - Khi Rn = 0: RS không ảnh hưởng đến đường đặc tính cơ. Lúc này ta xem RS như là tải nối song song với động cơ. Ta có được đường đặc tính cơ tự nhiên. - Khi Rn = : Động cơ điện bị hở mạch nên không có điện áp rơi trên phần ứng động cơ. Đây là trạng thái hãm động năng với RHĐN = RS. Ta có : IB = Uđm/RS. Ta có họ đặc tính cơ như sau: n n 0 n TN ( RN = 0 ) c n R 1 n1 0 < Rn1 < Rn2 < Rn = n2 Rn2 n < n < n I IB MC Rn = 0 Hình 2.8 Họ ặc tính cơ khi R = const, R thay Vậy, khi giữ nguyên RS và thay đổiS Rn thì phạmn vi điều chỉnh không bị hạn chế nhổưi. trường hợp trên. Nhưng khi tốc độ giảm xuống thì độ cứng đường đặc tính cơ lại bị giảm xuống. * Ngoài ra còn có phương pháp thay đổi đồng thời giá trị của RS và Rn: Phương pháp này thường được sử dụng trong thực tế. So với phương pháp điều chỉnh bằng cách thay đổi điện trở phụ trên mạch phần ứng ta nhận thấy: Khi tốc độ và moment động cơ như nhau nghĩa là khi công suất cơ như nhau dòng điện nhận từ lưới trong sơ đồ rẽ mạch phần ứng luôn luôn lớn hơn trong sơ đồ điều chỉnh bằng điện trở phụ trên mạch phần ứng một lượng bằng dòng điện chạy qua RS. Phương pháp này chỉ dùng cho cần trục, cầu trục, thang máy, máy cán thép. Đồng thời tuyệt đối không dùng cho máy cắt kim loại. Nhận xét: Phương pháp điều chỉnh tốc độ bằng cách rẽ mạch phần ứng thì điều chỉnh tốc độ nhảy cấp và cho những tốc độ nhỏ hơn ncb. * Ưu điểm:
  22. - Với cùng một tốc độ yêu cầu thì độ cứng của đường đặc tính cơ phân mạch có độ cứng lớn hơn đặc tính cơ dùng điện trở phụ trên mạch phần ứng. - Thiết bị vận hành đơn giản. * Nhược điểm: - Phương pháp này dùng tiếp điểm để đóng cắt điện trở nên độ tinh chỉnh không cao, điều chỉnh tốc độ có cấp, phạm vi điều chỉnh: D = ( 2 3 )/1. - Do tổn thất công suất trong sơ đồ này khá lớn nên phạm vi ứng dụng bị hạn chế. Phương pháp này chỉ áp dụng cho động cơ có công suất nhỏ, thời gian làm việc ngắn với tốc độ thấp. VI. ĐIỀU CHỈNH TỐC ĐỘ BẰNG HỆ THỐNG MÁY PHÁT - ĐỘNG CƠ ( F - Đ ): VI. 1 Sơ đồ nguyên lý: Với những hệ thống điều chỉnh tốc độ vô cấp, phạm vi điều chỉnh tốc độ tương đối rộng. Cần những tốc độ lớn hơn hay nhỏ hơn so với tốc độ cơ bản và cần điều chỉnh liên tục như truyền động chính của một số máy bào giường có năng suất thấp, truyền động quay trục cán thép có công suất trung bình và nhỏ, truyền động đúc ống trong phương pháp đúc liên tục thì người ta dùng hệ thống F - Đ có sơ đồ nguyên lý như sau:
  23. U1; f1 Iư P P mC CD + n K F Đ CKK UĐ Pcơ RKK - ĐSC Pcơ CCSX CKĐ IKF CKF I KĐ RKF UK RKĐ 2 CD 1 Hình 2. 9 Sơ đồ nguyên lý hệ thống máy phát – động cơ. Trong đó: - ĐSC: Động cơ sơ cấp, cung cấp động lực cho toàn hệ thống. Nhận công suất điện xoay chiều, biến đổi điện năng thành cơ năng kéo máy phát F và máy phát kích thích K. ĐSC có thể là động cơ nổ, động cơ điện tùy thuộc vào chỉ tiêu kỹ thuật của hệ thống. - F: Máy phát một chiều kích thích độc lập, cung cấp trực tiếp nguồn một chiều cho phần ứng động cơ. - Đ: Động cơ điện một chiều kích từ độc lập kéo cơ cấu sản xuất ( CCSX ), là đối tượng cần điều chỉnh tốc độ trong phạm vi tương đối nhỏ. - K: Máy phát kích thích, thực chất là máy phát điện một chiều đặc biệt có từ dư lớn nên có khả năng tự kích. Phát ra điện một chiều UK cung cấp cho mạch kích thích máy phát CKF và kích thích của động cơ CKĐ. VI. 2 Nguyên lý hoạt động: Để khởi động hệ thống F - Đ ta tiến hành các bước như sau: - Mở tất cả các cầu dao CD1, CD2. - Điều chỉnh biến trở ở mạch kích thích của động cơ RKĐ ở trị số cực tiểu sao cho Đmax và điều chỉnh biến trở ở mạch kích thích của máy phát RKF ở trị số cực đại sao cho Fmin. - Đóng cầu dao CD1 ( lúc này CD2 vẫn hở ) khởi động động cơ ĐSC. Động cơ ĐSC sẽ quay và đợi cho tốc độ ổn định. ĐSC quay làm cho máy phát F và máy phát kích thích K quay. - Đóng cầu dao CD2 để chọn chiều quay cho động cơ là thuận hay ngược. Lúc này có F nhưng rất bé sẽ làm cho EF bé nên UĐ = EF – IưRưF bé. Động cơ sẽ khởi động và quay với tốc độ thấp. - Để tăng dần điện áp đặt vào động cơ, ta điều chỉnh biến trở RKF giảm dần về trị số cực tiểu ( tăng dòng kích từ của máy phát ), do đó, dòng Iư tăng dần, động cơ tăng tốc độ cho đến khi đạt đến ncb. Quá trình khởi động đến đây là chấm dứt. - Để ngừng truyền động ta điều chỉnh RKF tăng dần để giảm dòng kích thích của máy phát làm cho điện áp phát ra của máy phát UF giảm. Do đó,
  24. tốc độ của động cơ giảm xuống và ngừng hẳn vào lúc UF = 0. Sau đó mở cầu dao CD2 dừng động cơ ĐSC. Muốn thay đổi chiều quay của động cơ ta gạt cầu dao CD2 sang vị trí 2. Với hệ thống F - Đ ta có thể điều chỉnh tốc độ theo hai hướng như sau: * Để cho nĐ ncb : Ta giữ UF ở trị số định mức và điều chỉnh biến trở RKĐ đạt giá trị cực đại để giảm từ thông kích thích của động cơ. Lúc này tốc độ của động cơ tăng lên đạt nĐ > ncb. Gọi DĐ: Phạm vi điều chỉnh tốc độ bằng cách thay đổi từ thông của động cơ. Ta có: DĐ = nmax/ncb = 3/1. Kết hợp hai phương pháp điều chỉnh là giảm điện áp đặt vào phần ứng động cơ UĐ và giảm từ thông Đ ta được phạm vi điều chỉnh chung: D = DUĐDĐ = nmax/nmin = 30/1. VI. 3 Thành lập phương trình đặc tính cơ của hệ thống F - Đ: Phương trình đặc tính cơ tổng quát: U R n I u KE  KE  U R n uD I K  K  u E D E D E F R uD R uF n 2 M K E  D K E K M  D Phương trình cân bằng sức điện động của máy phát: UĐ = EF – IưRưF Thay vào phương trình đặc tính cơ ta được: E F R uD R uF n I u K E  D K E  D Đây là phương trình đặc tính tốc độ của hệ thống.
  25. Thay Iư = M / KMĐ vào phương trình đặc tính tốc độ ta được phương trình đặc tính cơ của động cơ trong hệ thống F - Đ như sau: EF RuD RuF nD 2 M K E  D K E K M  D Từ phương trình đặc tính cơ của hệ thống ta nhận thấy: Ứng với mỗi hướng điều chỉnh tốc độ động cơ khác nhau ( lớn hay nhỏ hơn so với tốc độ cơ bản ) ta sẽ có những họ đặc tính điều chỉnh khác nhau như đã trình bày ở trên. n  n’3 3 R  n’2 KĐ 2 Đ  n’1 1 nc Um, m n1 n RKF  2 U UĐ  1 U2 M Hình 2. 10 Họ đặc0 tínhM cơ điều chỉnh trong hệ thống F - Đ. C VI. 4 Đánh giá hệ thống F - Đ: VI. 4. a Ưu điểm: - Hệ thống này có thể điều chỉnh tốc độ vô cấp, phạm vi điều chỉnh rộng: D = ( 10 30 )/1 bởi vì quá trình điều chỉnh được thực hiện bằng mạch kích thích của máy phát và động cơ. Có thể dùng phương pháp biến trở. - Hệ thống có sự chuyển đổi trạng thái làm việc rất linh hoạt, khả năng quá tải lớn nên thường được sử dụng ở các máy khai thác trong công nghiệp nhỏ. VI. 4. b Nhược điểm: - Dùng 4 máy để quay nên khi làm việc sẽ gây tiếng ồn lớn, chiếm nhiều diện tích để đặt máy. Đồng thời tổng công suất đặt vào hệ thống F - Đ quá lớn: Gấp 3 lần so với yêu cầu nên vốn đầu tư lớn. - Hiệu suất hoạt động của hệ thống tương đối thấp:  = Pcơ2/Pđ < 0,75 - Đặc tính cơ dốc nên khi có dao động ở phụ tải thì thể hiện rõ hơn nữa. - Ngoài ra, do các máy phát một chiều có từ dư, đặc tính từ hóa có trể nên khó điều chỉnh sâu tốc độ. VI. 4. c Nhận xét: Với hệ thống F - Đ vòng hở như trên, ta không thể thực hiện việc ổn định tốc độ động cơ là nhiệm vụ cần thiết đối với các hệ thống truyền động nhằm nâng cao chất lượng sản phẩm được gia công trên máy, nâng cao chất lượng kỹ thuật của một qui trình công nghệ mà máy sản xuất tham gia hoặc nâng cao năng suất của máy. Để thực hiện nhiệm vụ đó, ta thường dùng các hệ thống F-Đ có khuếch đại máy điện dùng phản hồi vòng kín. Trong các hệ thống này, các bộ khuếch đại máy điện sẽ sư dụng các liên hệ phản hồi, nghĩa là đưa một tín hiệu
  26. đầu ra của hệ thống quay trở lại đầu vào của nó. Tín hiệu đầu ra có thể là điện áp, dòng điện trong mạch chính hoặc tốc độ quay của động cơ. Tín hiệu đầu vào là sức từ động của khuếch đại máy điện. Các khuếch đại máy điện thường dùng hiện nay là máy kích từ nhiều cuộn dây điều chỉnh được, khuếch đại máy điện tự kích và khuếch đại máy điện từ trường giao trục. VII. HỆ THỐNG KHUẾCH ĐẠI MÁY ĐIỆN – ĐỘNG CƠ: VII. 1 Khuếch đại máy điện ( KĐMĐ ): KĐMĐ là máy phát một chiều đặc biệt. Có 2 loại KĐMĐ: - KĐMĐ tự kích. - KĐMĐ từ trường giao trục. VII. 1. a Khuếch đại máy điện tự kích: Là loại máy phát điện một chiều đặc biệt. Mạch từ được làm bằng thép kỹ thuật cán nguội nên có từ trở nhỏ và đặc tính từ trễ hẹp. Hệ thống kích từ có từ 3 đến 4 cuộn dây: - Một cuộn làm kích từ độc lập ( kích từ chính ) đặt điện áp một chiều vào và dùng để điều khiển sức điện động phát ra của phần ứng máy điện. - Một cuộn làm nhiệm vụ tự kích, lấy điện áp phát ra hai đầu phần ứng hoặc dòng điện trên mạch phần ứng quay trở lại tự kích. - Các cuộn còn lại dùng để thực hiện các phản hồi trong hệ thống. Sơ đồ nguyên lý KĐMĐ tự kích: * KĐMĐ tự kích theo điện áp ( tự kích song song ): R1 CK + CK R2 KĐM Ung U ĐTK KĐMĐ F 1 F2 - CK CK Hình 2. 11 Sơ đồ nguyên lý KĐMĐ tự kích song song.
  27. * KĐMĐ tự kích theo dòng điện ( tự kích nối tiếp ): R1 CK IKĐMĐ + CK F1 KĐM F2 Ung CK UKĐMĐ ĐTK - CK R Hình 2. 12 Sơ đồ nguyên lý KĐMĐ tự kích2 nối tiếp. Nhờ cuộn tự kích mà điện áp phát ra của KĐMĐ được nâng cao so với máy phát thông thường. Dựa vào đặc tính volt-ampe của KĐMĐ ta thấy: UđmKĐMĐ = Uđm1 + Uđm2 UKĐMĐ CK Um2 U mKĐMĐ CK Um1 IK Hình 2. 13 Đặc tính voltI-ampem của hệ thống KĐMĐ. Khi có thêm CK2 thì U tăng lên một lượng Uđm2. Hệ số công suất: KP = Pfư/PKT = UKĐMĐIKĐMĐ/UKIK = hàng trăm/1. VII. 1 Khuếch đại máy điện từ trường giao trục: Là máy phát một chiều đặc biệt: - Mạch từ làm bằng thép kỹ thuật điện cán nguội, cực từ dạng ẩn. - Phần kích có từ 3 đến 4 cuộn dây: . Một cuộn làm kích thích chính ( kích từ độc lập ) tạo ra từ trường chính. . Một cuộn làm nhiệm vụ bù. . Các cuộn còn lại dùng để thực hiện phản hồi trong truyền động. - Trên cổ góp đặt hai cặp chổi than có trục vuông góc nhau. Trong đó, một cặp được nối tắt với nhau còn một cặp để lấy điện áp ra. R1 + I1 I2 Ung E1 E2 UKĐMĐ F1 F2 - MF ; K MFII ; KPII Hình 2. 14 SơI đồ PItương đương KĐMĐ từ trường giao trục. Đứng về mặt khuếch đại ta có thể xem KĐMĐ từ trường giao trục tương đương với hai máy phát điện làm việc kế tiếp nhau và có sơ đồ nguyên lý như trên. Hệ số khuếch đại: KP = KPIKPII = UKĐMĐI2/UKIK. Đây là loại máy điện có hệ số khuếch đại cao nhất, KP có giá trị hàng ngàn lần.
  28. VII. 2 Khuếch đại máy điện tự kích – động cơ dùng phản hồi âm tốc độ: VII. 2. a Sơ đồ nguyên lý: ĐSC U1, f1 R1 CK1 CK3 CK2 R2 + n F3 KĐM Ung Đ ĐTK UĐ FT F2 F CCSX - 1 + - CKĐ R3 Hình 2. 15 Sơ đồ nguyên lý khuếch đ ại máy điện tự kích – động cơ dùng phản hồi âm tốc độ. Trong đó: - Pđm của động cơ 5KW. - CK1: Cuộn kích thích chủ đạo ( kích từ độc lập ), sinh ra sức từ động F1. - CK2: Cuộn tự kích thích, sinh ra sức từ động F2 cùng chiều với F1. - R2: Điều chỉnh hệ số tự kích. Giá trị R2 càng nhỏ thì hệ số từ kích càng lớn và ngược lại. - CK3: Cuộn phản hồi âm tốc độ ( tín hiệu đưa về để khử F1 ), sinh ra sức từ động F3 ngược chiều F1. VII. 2. b Nguyên lý hoạt động: Ta có: F3 = I3WCK3 E FT I 3 RuFT R3 RCK 3 EFT: Sức điện động của máy phát đo tốc độ FT. Là máy phát một chiều đặc biệt được chế tạo với mạch từ bảo hòa rất sâu để từ thông này phát ra hoàn toàn bằng hằng số nên sức điện động phát ra của máy phát tỷ lệ bậc nhất với tốc độ. Do đó, khi đọc sức điện động người ta biết được tốc độ theo mối quan hệ: EFT = KEFTnFT = KEFTn. Vì mạch từ bão hòa sâu nên FT xem như là hằng số nên EFT tỷ lệ thuận với nFT. Từ các biểu thức trên, ta nhận thấy khi R3 = const thì: F3  I3  EFT  n. Vì vậy F3  n. Sức từ động của KĐMĐ: FT = F1 + F2 + F3. Hệ thống này có khả năng điều chỉnh tốc độ theo hai hướng: * Để cho n > ncb: Ta giảm từ thông bằng cách tăng giá trị RKĐ. * Để cho n < ncb: Ta giảm điện áp đặt lên phần ứng của động cơ UĐ thông qua điều chỉnh giảm giá trị R1. Ngoài ra, khi điều chỉnh R2 để thay đổi hệ số tự kích nghĩa là thay đổi độ cứng của đường đặc tính cơ. Thực chất quá trình này là nâng cao độ cứng của đường đặc tính cơ để đạt được tốc độ cao nhất khi động cơ được mở rộng lên. Đồng thời nhờ phản hồi âm tốc độ mà động cơ có khả năng làm việc với tốc
  29. độ thấp hơn ncb/10, nghĩa là có thể mở rộng thêm tốc độ thấp và cao nên ta được phạm vi điều chỉnh lớn: D = ( 40 hàng trăm )/1. Hệ thống này có khả năng ổn định tốc độ khi phụ tải thay đổi nhờ khâu phản hồi âm tốc độ: Khi động cơ đang làm việc với phụ tải Mc và tốc độ đạt yêu cầu nyc. Vì lý do nào đó, moment phụ tải đặt lên trục động cơ thay đổi, khác nyc thì nhờ quá trình phản hồi âm tốc độ hệ thống sẽ tự động ổn định tốc độ đạt nyc. Quá trình tự động này được giải thích như sau: Giả sử khi Mc tăng sẽ làm cho nĐ giảm < nyc. Mà khi n giảm EFT giảm I3 giảm F3 giảm FT = F1 + F2 + F3 tăng EKĐMĐ tăng UĐ tăng n tăng đạt đến nyc. Và khi Mc giảm thì quá trình sẽ tự động xảy ra theo chiều ngược lại để tốc độ động cơ đạt nyc. n n0 ny TN c n M M M Hình 2. 16 Đặc tính cCơ củaC1 hệ thống khuếch đại máy điện tự kích – động cơ dùng phản hồi âm tốc độ. VII. 2. c Nhận xét: * Ưu điểm: Dùng sai số tốc độ quay trở lại điều khiển hệ thống để tự động ổn định tốc độ ( khâu phản hồi trực tiếp ). Việc tính toán khâu phản hồi âm tốc độ tiến hành rất đơn giản, tiện lợi. * Nhược điểm: Dùng máy phát tốc độ nên giá thành của hệ thống cao.
  30. VII. 3 Hệ thống khuếch đại máy điện từ trường giao trục – động cơ dùng phản hồi dương dòng điện và phản hồi âm điện áp: VII. 3. a Sơ đồ nguyên lý: ĐSC U1, f1 Iư R1 CK1 CK3 CK2 + n R KĐMĐ 4 Đ Ung TTGT R2 UĐ R 3 CCSX - F1 F3 F2 UfhI + - C KĐ Hình 2. 17 Sơ đồ nguyên U lýfhU hệ thống khuếch đại máy điện từ trường giao trục – động cơ dùng phản hồi dương dòng điện và phản hồi âm điện áp. Trong đó: - CK1: Cuộn kích thích chủ đạo, sinh ra sức từ động F1. - CK2: Cuộn phản hồi dương dòng điện, sinh ra sức từ động F2 cùng chiều với F1. - CK3: Cuộn phản hồi âm điện áp, sinh ra sức từ động F3 ngược chiều với F1. VII. 3. b Nguyên lý hoạt động: Ta có: . F2 = I2WCK2 Với: U fhI R 2 R CK 2 I 2 ;U fhI I u R CK 2 R 2 R CK 2 Nếu cho R2 = const thì ta được: F2  I2  UfhI  Iư F2  Iư. . F3 = I3WCK3 Với: U fhU R3 I3 ;U fhU UD RCK3 R3 R4 Khi giữ cho R3 = const thì ta được: F3  I3  UfhU  UĐ F3  UĐ. Tương tự như hệ thống KĐMĐ tự kích – động cơ dùng phản hồi âm tốc độ, hệ thống này cũng có khả năng điều chỉnh tốc độ theo hai hướng lớn hay nhỏ hơn so với ncb. Hệ thống này có khả năng mở rộng phạm vi điều chỉnh, tự động ổn định tốc độ nhờ phản hồi dương dòng điện và phản hồi âm tốc độ. Giả sử: Khi hệ thống làm việc với phụ tải Mc và tốc độ đạt nyc. Khi Mc tăng n giảm nhỏ so với nyc, lúc đó hệ thống sẽ: Mc tăng M tăng ( moment động cơ tăng để cân bằng với phụ tải ) Iư tăng F2 tăng. Khi Iư tăng UKĐMĐ = IưRưKĐKĐ tăng UĐ = EKĐMĐ – UKĐMĐ giảm FT = F1 + F2 + F3 tăng EKĐMĐ tăng UĐ tăng n sẽ tăng đạt nyc. Khi Mc giảm thì quá trình xảy ra theo chiều ngược lại. VII. 3. c Nhận xét: * Ưu điểm: Sử dụng thiết bị đơn giản (chỉ dùng các điện trở R2, R3, R4) nên giá thành thấp.
  31. * Nhược điểm: Việc tính toán thiết kế phối hợp giữa hai khâu phản hồi này để ổn định tốc độ là khá phức tạp (khâu phản hồi gián tiếp). VII. 3 Nhận xét hệ thống khuếch đại máy điện – động cơ: VII. 3. a Ưu điểm: Ngoài những ưu điểm của các hệ thống F - Đ vòng hở như: - Phạm vi điều chỉnh tốc độ rộng với độ chính xác và tin cậy cao. - Khởi động máy êm. - Có khả năng hãm tái sinh, trả năng lượng lại cho lưới điện. - Tổn hao năng lượng khi điều chỉnh tốc độ và mở máy thấp. Các hệ thống KĐMĐ – động cơ vòng kín còn có những ưu điểm: - Có khả năng tự động ổn định tốc độ động cơ khi phụ tải thay đổi. - Có khả năng tăng tính ổn định tốc độ của hệ thống nhờ khâu ổn định. - Có hệ số khuếch đại công suất lớn. VII. 4. b Nhược điểm: Hệ thống KĐMĐ – động cơ có những nhược điểm tương tự như hệ thống F - Đ: - Dùng nhiều máy điện với tổng công suất lắp đặt lớn do đó đòi hỏi giá thành cao. - Hiệu suất hoạt động thấp. - Diện tích lắp đặt máy rộng và đòi hỏi nền móng chắc chắn nên phí tổn vận hành lớn. - Gây tiếng ồn lớn. VIII. HỆ THỐNG KHUẾCH ĐẠI TỪ - ĐỘNG CƠ: VIII. 1 Sơ đồ nguyên lý: Khuếch đại từ ( KĐT ) hay còn gọi là bộ biến đổi van từ, là tổ hợp của kháng bão hòa với chỉnh lưu không điều khiển. KĐT được dùng để làm bộ điều chỉnh dòng điện và điện áp trong các hệ thống điều khiển, điều chỉnh và kiểm tra tự động. Trong các máy nâng vận chuyển, KĐT thường được dùng làm máy kích thích cho các máy phát trong hệ thống F - Đ. Đối với máy cắt gọt kim loại, KĐT thường được dùng kết hợp với chỉnh lưu diode bán dẫn để cung cấp cho phần ứng động cơ một chiều với sơ đồ nguyên lý như sau:
  32. U , f 1 1 BA + + W Wlv Đ Uk CKĐ - RKĐ V0 - ( a ) U , f 1 1 BA W V0 lv + W Uk - Hình 2. 18 Sơ đồ nguyên lý hệĐ thống KĐT – động cơ. a). Tia ba pha. ( b ) b). Cầu ba pha.+ - Trong các sơ đồ này, máy biếnCK ápĐ BA có chức năng biến đổi giá trị điện áp cho phù hợp với yêu cầu của động cơ. Tạo ra số pha hoặc điểm trung tính cho phù hợp với sơ đồ chỉnh lưu nếu cần và nâng cao hệ số công suất của hệ. Các van không điều khiển Vo dùng để biến đổi dòng điện xoay chiều thành một chiều và tạo ra thành phần dòng điện tự từ hóa cho KĐT. Cuộn kháng bão hòa KBH dùng để điều chỉnh giá trị sức điện động của bộ biến đổi. VIII. 2 Nguyên lý hoạt động: Trong hệ thống KĐT – động cơ, tốc độ động cơ được điều chỉnh bằng cách thay đổi trị số trung bình của sức điện động chỉnh lưu bằng cách biến đổi dòng điện điều khiển, tức là biến đổi mức độ bão hòa của mạch từ.
  33. Để đơn giản trong việc khảo sát nguyên lý hoạt động của hệ thống này, ta tách ra một trong ba pha từ các sơ đồ trên và giả thuyết rằng đặc tính từ trễ của lõi thép có dạng lý tưởng. B u2 +B + S Ik U k Rt H - B0 V0 Hình 2. 19 -BS a). Sơ đ( ồa nguyên) lý một pha của ( bộb ) biến đổi. b). Dạng đặc tính từ trễ lý tưởng của lõi thép. Ta có: u2 = U2msint = iRt + XK ( di / dt ) Trong đó: XK có giá trị thay đổi theo trạng thái từ hóa của lõi thép. Lúc đầu, lõi thép được từ hóa cố định nhờ cuộn điều khiển Wđk đến một giá trị B0 nào đó trong phạm vi ( -BS B0 +BS ). * Ở bán kỳ dương của nguồn u2: dòng điện thuận đi qua V0 từ hóa lõi cuộn kháng, làm cho biên độ từ cảm biến thiên. Lúc này, vì lõi thép chưa bão hòa nên XK rất lớn, nguồn chủ yếu rơi trên cuộn kháng còn giá trị iRt 0. Ta có: u2 = U2msint = iRt + XK ( di/dt ) = NlvS ( dB / dt ) Với điều kiện ban đầu: t = 0, B = B0, giải phương trình này ta được: B = B0 + Bm ( 1 - cost ) Trong đó: - Biên độ từ cảm: Bm = U2m/WNlvS - Nlv: Số vòng dây của cuộn làm việc. - S : Diện tích tiết diện lõi của cuộn kháng. -  : Tần số gốc của dòng điện. Khi lõi thép bão hòa, ta có XK = 0. Do đó, toàn bộ nguồn áp chỉ đặt lên tải. Khi đó: u2 = U2msint = iRt = ub Với ub là điện áp ra của bộ biến, tức là điện áp đặt trên tải. * Ở bán kỳ âm của nguồn u2: V0 ngưng dẫn, dòng điện từ hóa không có nên lõi thép bị khử từ bởi cuộn điều khiển Wđk và độ từ cảm B sẽ giảm dần về giá trị ban đầu B0, điện áp trên tải ub u2 = 0. Giá trị trung bình của điện áp chỉnh lưu được xác định theo công thức: p p U U sin td t U (1 cos ) KDT 2 m 2 m 2 2 Trong đó: - p: Số lần đập mạch trong bộ chỉnh lưu. - : Góc bão hòa B B arccos(1 S 0 ) Bm - BS: Từ cảm bão hòa. Nếu ta chọn Bm = BS thì = arccos ( B0/BS ). Lúc này giá trị trung bình của điện áp chỉnh lưu: UKĐT = Um [ 1 + ( B0/BS )] = f ( B0 ).Với:
  34. Um = pU2m/2 Ta nhận thấy: Khi thay đổi giá trị B0 từ –BS đến +BS ta sẽ điều chỉnh được điện áp chỉnh lưu UKĐT từ 0 đến giá trị U2m( p/ ). Vì B0 là do dòng điều khiển Iđk tạo ra nên thực chất giá trị UKĐT chính là hàm của Iđk: UKĐT = f ( Iđk ). VIII. 3 Phương trình đặc tính cơ của hệ thống KĐT – động cơ: Từ công thức: n = n0 - M/, ta được phương trình đặc tính cơ của động cơ trong hệ thống: U KDT Rb Ru n Iu K E  K E  B U (1 0 ) m B R R S b u n I u K E  K E  B0 U m (1 ) B S Rb Ru n 2 M Đây chính là phươngK trEình đặc tínhK E cKơM của động cơ trong hệ thống KĐT – động cơ với Rb là điện trở trong của hệ thống. Nếu xem cuộn kháng là phần tử tuyến tính thì ta sẽ được họ những đường đặc tính cơ của động cơ là những đường thẳng song song nhau và được gọi là họ đặc tính cơ lý tưởng. n n0 n yc n1 Hình 2. 20 Họ đặc tính cơ lý tưởng của động c ơM trong hệ thống KĐT – 0 M động cơ. C VIII. 4 Nhận xét: VIII. 4. a Ưu điểm: - Dễ chế tạo. - Bền và giá thành hạ. - Do KĐT là bộ biến đổi tĩnh nên khắc phục được những nhược điểm của hệ thống F - Đ như đã trình bày ở phần trên. VIII. 4. b Nhược điểm: - Do điện trở trong của bộ biến đổi van từ khá lớn nên độ cứng của đường đặc tính cơ thấp, sai số tốc độ lớn và dãy điều chỉnh hẹp. - Về hình thức điều khiển, hệ thống KĐT – động cơ kém linh hoạt hơn hệ F - Đ. Đảo chiều quay động cơ khó khăn và gây tổn thất năng lượng lớn. Quán tính của hệ KĐT - động cơ lớn do ảnh hưởng của điện kháng KĐT, hệ số công suất thấp.
  35. Chương III CÁC HỆ THỐNG ĐIỀU CHỈNH TỐC ĐỘ ĐỘNG CƠ MỘT CHIỀU KÍCH TỪ ĐỘC LẬP CÓ DÙNG ĐIỆN TỬ CÔNG SUẤT I. HỆ THỐNG CHỈNH LƯU ĐỘNG CƠ: Để tạo ra bộ nguồn một chiều có điện áp thay đổi được, ngoài các máy phát điện một chiều, KĐMĐ, người ta còn dùng các bộ chỉnh lưu có điều khiển. Vào những năm cuối của thập niên bảy mươi, khi công nghệ chế tạo chất bán dẫn phát triển, đặc biệt là các tiristor chịu được dòng điện lớn và điện áp cao thì các bộ chỉnh lưu tiristor ra đời. Các bộ chỉnh lưu này ngày càng phát triển mạnh mẽ vì có những ưu điểm nổi bật so với dùng nguồn máy phát một chiều hoặc chỉnh lưu dùng đèn khí: - Có thể tạo ra những bộ nguồn công suất lớn hàng ngàn Kw mà các máy phát điện hoặc đèn thủy ngân cơ khí không thể tạo ra được. - Tổn thất điện áp trên đèn rất bé, chỉ khoảng từ 0,5V đến 1,5V. - Độ nhạy của hệ thống cao vì có tính quán tính điện từ bé. - Làm việc được ở những nơi di chuyển, chấn động mà máy phát điện, đèn khí, thủy ngân khó thực hiện được. - Hiệu suất cao. Hệ thống chỉnh lưu được phân chia thành nhiều loại: chỉnh lưu một pha hay ba pha, đối xứng hay không đối xứng, có điều khiển hay không điều khiển Nhưng trong chương này người viết chỉ xin trình bày hệ thống chỉnh lưu – động cơ điện ba pha dùng linh kiện bán dẫn tiristor để điều khiển. Hệ thống này dùng để thay đổi điện áp và dòng điện ngõ ra bằng cách thay đổi thời điểm đặt xung kích lên cực điều khiển của tiristor, từ đó có thể điều chỉnh tốc độ của động cơ điện. Việc điều chỉnh này thực hiện vô cấp và không cần tiếp điểm. I. 1 Hệ thống chỉnh lưu ba pha hình tia – động cơ: I. 1. a Sơ đồ nguyên lý: Chỉnh lưu ba pha hình tia còn được gọi là chỉnh lưu ba pha nửa chu kỳ hay chỉnh lưu ba pha có “ đầu không “. Điện áp chỉnh lưu là một nửa sóng của điện áp xoay chiều. U1, f1 I1 BA U2 I2 n U C0 Đ Đ T1 T2 T3 ĐK CCSX GT3 G GT2 T1 Iư
  36. Hình 3. 1 Sơ đồ nguyên lý hệ thống chỉnh lưu ba pha hình tia – động cơ. Trong đó: - BA: Máy biến áp chỉnh lưu có nhiệm vụ: . Biến đổi điện áp nguồn Ung thành điện áp phù hợp Un đặt lên bộ chỉnh lưu. . Biến đổi số pha nguồn thành số pha phù hợp với bộ chỉnh lưu. . Đảm bảo cho nguồn và bộ chỉnh lưu chỉ quan hệ với nhau về từ mà không quan hệ trực tiếp về điện nên bảo vệ và điều chỉnh bộ chỉnh lưu được dễ dàng hơn. - T1, T2, T3: Các tiristor, biến điện áp xoay chiều U2 thành điện áp một chiều. - ĐK: Cuộn điện kháng cân bằng. - Đ: Động cơ điện một chiều kích từ độc lập. Đây là thành phần chủ yếu, đối tượng cần điều chỉnh tốc độ. - Bộ lọc ( Đ và C0 ): Cho những thành phần xoay chiều còn sót lại đi qua tụ. Làm cho dòng đi qua động cơ ít nhấp nhô nên moment ít thay đổi, do đó tốc độ động cơ được ổn định. - BKC: Bộ khống chế. Có nhiệm vụ làm bộ tạo xung, đếm xung và phân phối xung đặt lên các cực điều khiển của các tiristor. I. 1. b Nguyên lý hoạt động và dạng sóng: Với sơ đồ nguyên lý như trên, các tiristor được nối theo nhóm katốt chung nên các phần tử chỉnh lưu có đặc điểm như sau: - Tirisror dẫn điện là tiristor có anốt được nối với điện áp cao nhất và phải được kích xung đồng pha với điện áp của pha đó. - Tiristor nào dẫn điện thì nó sẽ gánh trọn dòng điện tải. - Khi có một tiristor dẫn điện thì hai tiristor còn lại sẽ không dẫn ( nếu ta xét bỏ qua sự chuyển mạch ). Chế độ làm việc của chỉnh lưu phụ thuộc vào phương thức điều khiển và các tính chất của phụ tải. Trong truyền động điện, tải của chỉnh lưu thường là cuộn kích từ ( L, R ) và mạch phần ứng động cơ ( R, L và E ). Để đơn giản trong việc tìm hiểu nguyên lý hoạt động của hệ thống chỉnh lưu ba pha hình tia – động cơ trên ta có sơ đồ thay thế như sau: u2a u2b u2c  EĐ Ud T T T Ld 1 2 3 Rd Id
  37. Hình 3. 2 Sơ đồ thay thế hệ thống chỉnh lưu ba pha hình tia – động cơ. Trong đó: - EĐ: Sức phản điện động của động cơ điện. - u2a, u2b, u2c: Điện áp thứ cấp của máy biến áp BA. - Rd: Điện trở mạch một chiều ( kể cả điện trở dây quấn thứ cấp của máy biến áp ). - Ld: Điện cảm mạch một chiều. Để tiến hành điều chỉnh tốc độ động cơ, người ta thay đổi góc kích của tiristor sẽ thay đổi được điện áp chỉnh lưu, làm cho điện áp đặt lên phần ứng động cơ thay đổi. Xét hai trường hợp: * Khi = 0: Ta kích tiristor tại thời điểm chuyển mạch tự nhiên làm cho điện áp ra trung bình là cực đại: Ud0 = Udmax m U U cos 2U Sin ( 3. 1 ) d 0 d max 2 f m Trong đó: - Ud0: Điện áp chỉnh lưu tại thời điểm = 0. - m: Số pha của chỉnh lưu ( m = 3 ). - U2f: Điện áp pha thứ cấp máy biến áp. * Khi 0: Ud = Udmaxcos m U 2U sin cos ( 3. 2 ) d 2 f m - Khi 0 < < 300: Dòng chỉnh lưu sẽ liên tục và có sơ đồ dạng sóng như sau:
  38. Hình 3. 3 Đồ thị điện áp ngõ ra của bộ chỉnh lưu và điện áp ngược đặt lên tiristor T1. Trong khoảng thời gian O1O2 điện áp ra Ua có giá trị lớn nhất, đồng thời tại thời điểm O1 kích xung cho T1. T1 nhận xung kích nên dẫn điện, mở cho dòng điện chạy qua còn hai van T2 và T3 bị khóa. Sau thời điểm O2 trở đi Ub có giá trị lớn nhất. Tại O2, kích xung cho T2 nên T2 dẫn. Lúc này ta có Ua < Ub nên anốt của T1 có điện thế thấp hơn so với katốt của nó, do đó T1 bị khóa. Tương tự, tại thời điểm O3, T3 dẫn còn T1 và T2 bị khóa. Như vậy mỗi tiristor sẽ cho dòng chạy qua nó trong khoảng thời gian 1200 điện và giá trị trung bình của điện áp chỉnh lưu tiristor: 2 3 6 3 3 6 U 2U sind U cos ( 3. 3 ) d 2 2 2 2 6 Điện áp ngược đặt lên mỗi tiristor là hiệu số điện thế giữa anốt và katốt của tiristor đó: . Khi T2 dẫn: U U U 6U cos( ) ( 3. 4 ) ngT1 b a 2 3 . Khi T3 dẫn: 2 U U U 6U cos( ) ( 3. 5 ) ngT1 c a 2 3 Điểm cực trị của điện áp ngược đặt lên T1 là: 4 U 6U khi ngT1 2 3 11 U 6U khi DòngngT1 điện chỉnh2 lưu đư3 ợc san bằng có giá trị: U d Id ( 3. 6 ) R X Giá trị trungd dbình của dòng điện chạy qua mỗi tiristor là: 2 1 3 I I I d d ( 3. 7 ) dtb d 2 0 3 - Khi 300 < < 900: Điện áp ra tức thời sẽ âm trong một số khoảng:
  39. Hình 3. 4 Đồ thị điện áp ra của bộ chỉnh lưu khi 300 900: Dạng sóng ra của điện áp chỉnh lưu có dạng như sau: Hình 3. 5 Dạng sóng điện áp ra của bộ chỉnh lưu khi > 900. Ta nhận thấy: Trong khoảng 0 0. Và trong khoảng 90 < < 180 , bộ biến đổi làm việc ở chế độ nghịch lưu với Ud < 0. Mối quan hệ giữa Ud = f ( ) của bộ chỉnh lưu tiristor được biểu diễn như sau: U d Ud0 CL /2 0 NL - Ud0 Hình 3. 6 Đặc tính điều chỉnh Ud = f ( ). I. 1. c Hiện tượng chuyển mạch: Trong sơ đồ chỉnh lưu ba pha hình tia - động cơ, khi phát xung nhằm để mở một van tiristor thì điện áp của pha đó phải dương hơn điện áp của pha có van đang dẫn dòng. Do đó, dòng điện của pha đang dẫn sẽ giảm về 0, còn dòng điện của van kế tiếp sẽ tăng dần lên. Do có điện cảm trong mạch mà quá trình này xảy ra từ từ, cùng một thời điểm cả hai van đều dẫn dòng và chuyển dòng cho nhau. Quá trình này được gọi là quá trình chuyển mạch giữa các van. Trong quá trình chuyển mạch vì cả hai van đều dẫn điện nên điện áp chỉnh lưu bằng trung bình cộng của hai điện áp pha: Ud = ( Ua + Ub )/2. Phương trình cân bằng điện áp cho các pha trong lúc chuyển mạch là: d i1 U a X td U d dt ( 3. 8 ) d U X i2 U b td dt d Vì i1 + i2 = Id và nếu ta coi như: d d i1 i2 dt dt
  40. Thì ta có: Trong đó: p là số xung áp đập mạch trong một chu kỳ điện áp xoay chiều. U sin d U U 2m p i 2 b a sin dt 2X td X td Thời điểm bắt đầu xảy ra hiện tượng chuyển mạch là tại thời điểm  = . Ta được biểu thức tính dòng điện chạy qua các van: 6 i1 Id ik Id U 2[cos cos( )] ( 3. 9 ) 2X td 6 i2 Quáik trìnhU chuy2[cosển mạchcos( kết thúc)] khi i = 0, i = I . Do( 3.đó, 10 ta ) có thể 2X 1 2 d rút ra quan hệ giữa góctd chuyển mạch  với các thông số trong hệ thống: I  arccos(cos d ) ( 3. 11 ) I Trong đó: mk U sin 2m p Imk X td Trong thực tế vận hành ít khi dòng điện chỉnh lưu vượt quá giá trị Id/Imk = 0,1. Do đó, có thể nói rằng trong chỉnh lưu ba pha hình tia – động cơ góc chuyển mạch  cực đại là 300. Do có sự chuyển mạch nên sức điện động chỉnh lưu bị suy giảm và giá trị trung bình của sụt áp do chuyển mạch được tính theo biểu thức sau: 2X I U td d ( 3. 12 )  2 Giá trị trung bình của điện áp chỉnh lưu ba pha hình tia – động cơ: 3 6 3X U U cos td I ( 3. 13 ) d 2 2 2 d I. 1. d Sóng hài và việc san bằng điện áp ra của sóng hài: Do tính chất của chỉnh lưu điện tử công suất là biến đổi điện áp xoay chiều thành một chiều nên dạng sóng ra của bộ biến đổi không phải là hình sin mà có chứa các thành phần sóng điều hòa bậc cao. Dạng sóng điện áp ra của chỉnh lưu có tính chất xung, có dạng nhấp nhô. Do đó, điện áp ra của chỉnh lưu gồm hai thành phần: xoay chiều và một chiều: Ud = ud + ud. Trong đó: ud là tổng các sóng hài của điện áp chỉnh lưu. Biên độ của chúng phụ thuộc vào điện cảm, điện trở của máy biến áp, tính chất của phụ tải, các van, bậc của sóng hài và sơ đồ kết nối mạch của chỉnh lưu. Trong hệ thống chỉnh lưu ba pha hình tia – động cơ, mặc dù tải mang tính chất cảm kháng ( L, R, E ) sẽ làm cho dạng sóng điện áp ra tương đối bằng phẳng nhưng do có góc kích và sự chuyển mạch điện tử nên có nhiều sóng hài hơn so với hệ thống chỉnh lưu không có điều khiển. Khi góc kích càng lớn thì biên độ của sóng hài càng lớn. Để khử sóng hài cho dạng sóng điện áp ra được bằng phẳng, ổn định người ta thường dùng đến bộ lọc.
  41. Bộ lọc là khâu trung gian, nó nối nguồn chỉnh lưu với phụ tải. Bộ lọc có chức năng chỉ cho dòng điện có tần số cố định nào đó đi qua mà không bị suy giảm nhưng lại làm suy giảm mạnh dòng điện ở các tần số khác. Để san bằng dạng sóng điện áp chỉnh lưu ta dùng bộ lọc LC. Bộ lọc này được dùng cho các thiết bị chỉnh lưu công suất lớn như sau: L + + U ( 1 )m.r C Tải U ( 1 )m.r - Hình 3. 7 Sơ đồ mạch lọc LC. Mạch lọc LC là sự kết hợp giữa cuộn dây và tụ điện. Cuộn dây L dùng để san bằng dòng điện, lọc nhiễu tần số cao. Tụ điện C dùng để duy trì điện áp trên tải cố định, không đổi. Chỉ tiêu của bộ lọc Kab là hệ số san bằng được xác định theo biểu thức như sau: Kv Kab ( 3. 14 ) K r U 2 U K (1)m.v ;K (1)m.r Trong đó: v 2 r U d.v m x 1 U d - Kv, Kr: Hệ số xung ở đầu vào và ra của bộ lọc. Giá trị của Kv phụ thuộc vào từng sơ đồ chỉnh lưu còn giá trị của Kr lớn hay nhỏ là do yêu cầu của phụ tải. - U(1)m.v: Biên độ sóng cơ bản ( sóng hài bậc 1 ) của điện áp chỉnh lưu. - Ud.v: Điện áp ra một chiều của điện áp chỉnh lưu. - Ud: Điện áp ra một chiều trên tải. - U(1)m.r: Biên độ lớn nhất của xung áp sóng cơ bản ở đầu ra của bộ lọc. - mx: Số xung áp của điện áp chỉnh lưu trong một chu kỳ của điện áp nguồn xoay chiều. Trong bộ lọc LC, khi thiết kế, các giá trị L và C được tính toán theo công thức như sau: 2U d Lmin ( 3. 15 ) [(m ) 2 1]m I x x d 10K ab C 2 ( 3. 16 ) Trong đó: L(mx ) - mx: Số pha ( mx = 3 ). - Kv = 0,25. Điện áp ra cực đại đặt lên tụ điện của bộ lọc sẽ là: U 2U ( 3. 17 ) I. 1. e Phươngc max trình2 đặc tính cơ của động cơ:
  42. Ở những phần trên, để đơn giản cho việc tìm hiểu nguyên lý hoạt động và dạng sóng của hệ thống chỉnh lưu nên ta bỏ qua các ảnh hưởng của mạch động lực đối với điện áp ra của bộ chỉnh lưu. Khi tiến hành thành lập phương trình đặc tính cơ của động cơ ta phải xét đến sự ảnh hưởng của điện kháng, điện trở của máy biến áp, sức phản điện động của động cơ và các tổn thất khác trên mạch điện. u2a u2b u2c  EĐ Rtđ R Rtđ tđ R x x x tđ tđ tđ XĐK T1 T2 T3 Hình 3. 8 Sơ đồ đẳng trị của hệ thống chỉnh lưu ba pha hình tia – động cơ. Muốn xét toàn bộ ảnh hưởng của mạch động lực lên điện áp ra của chỉnh lưu có tải là động cơ, ta sử dụng sức điện động của cuộn dây thứ cấp máy biến áp được trình bày như hình 3. 8. Tương tự như điện áp chỉnh lưu, giá trị trung bình của sức điện động chỉnh lưu được xác định theo công thức như sau: 3 6 E E cos E cos d 2 2 d 0 ( 3. 18 ) Khi chỉnh lưu có tải, điện áp đặt vào động cơ: UĐ = Ed - UCL. Sức phản điện động của động cơ: EĐ = Ed - U với U: Điện áp rơi trên toàn mạch phần ứng, U = UT + UR + UX + Uư ( 3. 19 ) Và có dạng sóng của điện áp ra chỉnh lưu khi có tải:
  43. Hình 3. 9 Dạng sóng điện áp ra và dòng điện khi bộ chỉnh lưu có tải là động cơ. Từ U = UT + UR + UX + Uư : Trong đó: - UT: Điện áp rơi trên tiristor, khoảng từ 0,5V đến 1,5V. - UR: Điện áp rơi trên điện trở máy biến áp UR = IưRtđ. - Rtđ: Điện trở tương đương của máy biến áp: W R R R ( 2 ) 2 td 2 1 ( 3. 20 ) W1 - R1, W1: Điện trở và số vòng dây trên một pha cuộn sơ cấp của máy biến áp. - R2, W2: Điện trở và số vòng dây trên một pha cuộn thứ cấp của máy biến áp. - UX: Điện áp rơi trên điện kháng của máy biến áp: UX = 0,47IưXtđ. ( 3. 21 ) - Xtđ: Điện kháng tương đương của máy biến áp: W2 2 X td X 2 X 1 ( ) ( 3. 22 ) W1 - X1, X2: Điện kháng trên cuộn sơ cấp và thứ cấp của máy biến áp. - Uư: Điện áp rơi trên hai đầu phần ứng của động cơ: Uư = IưRư. Thay các giá trị của U vào: UĐ = Ed - UCL và EĐ = Ed - U ta được: EĐ = Ud0cos - UT - ( Rtđ + 0,47Xtđ + Rư )Iư ( 3. 23 ) Chia hai vế của biểu thức cho KEĐ ta được:
  44. U cos U R 0,47X R n d 0 T td td u I u KED KED U d 0 cos U T Rtd 0,47X td Ru n 2 M ( 3. 24 ) K  K K  D Đây là phươngE D trình đặc tínhE cơM của động cơ một chiều kích từ độc lập trong hệ thống chỉnh lưu ba pha hình tia – động cơ. Từ ( 3. 24 ), khi thay đổi góc kích nghĩa là thay đổi thời điểm kích của các tiristor thì ta thay đổi được điện áp ra của chỉnh lưu. Điện áp ngõ ra của chỉnh lưu thay đổi tức là điện áp đặt lên phần ứng của động cơ sẽ thay đổi làm cho tốc độ của động cơ thay đổi. Nếu góc kích càng lớn, nghĩa là ta kích vào các tiristor càng chậm so với thời điểm chuyển mạch tự nhiên thì cos càng nhỏ sẽ làm cho điện áp chỉnh lưu ra càng bé nên đường đặc tính cơ của động cơ càng dốc, tốc độ của động cơ giảm. Thông thường được chọn: 0 n > n = 0 0 01 02 n 0 ncb thì ta giảm từ thông kích thích Đ bằng cách giảm RKĐ. I. 1. f Nhận xét: Hệ thống chỉnh lưu ba pha hình tia – động cơ, khi kích lần lượt từng tiristor lệch nhau 1200 điện thì tiristor được kích sẽ dẫn trong 1200 điện. Ở các thời điểm bình thường chỉnh lưu chỉ có một tiristor dẫn, riêng trong thời gian chuyển mạch có hai tiristor dẫn. Khi mắc động cơ vào hệ thống thì động cơ không thể làm việc với đường đặc tính tự nhiên và tốc độ của động cơ không đạt tới tốc độ cơ bản. Khi cho góc kích = 0 thì động cơ đạt tốc độ là nmax vì điện áp UCL là cực đại. Nhưng nmax luôn luôn nhỏ hơn ncb. Hệ thống này có khả năng điều chỉnh tốc độ theo hai hướng. Muốn giảm tốc độ thì ta điều chỉnh góc . Muốn tăng tốc độ lớn hơn ncb thì ta giảm từ thông Đ bằng cách giảm RKĐ. Hệ thống này có khả năng thực hiện các phản hồi âm tốc độ, phản hồi dương dòng điện kết hợp âm điện áp để tự động điều chỉnh tốc độ khi phụ tải thay đổi. Các đại lượng phản hồi sẽ được đưa trở về so sánh với Uđk làm cho bộ tạo xung sớm hơn hay muộn hơn so với thời điểm xuất hiện xung đã chỉnh định.
  45. I. 2 Hệ thống chỉnh lưu ba pha hình cầu – động cơ: I. 2. a Sơ đồ nguyên lý: Sơ đồ nguyên lý của hệ thống chỉnh lưu ba pha hình cầu – động cơ có điều khiển, sơ đồ đẳng trị mạch thứ cấp máy biến áp và phần ứng động cơ được biểu diễn như sau: U1, f1 BA u2a u2b u 2c T T4 1 T T3 6 T5 T2 C0 ĐK Đ n Uđk BKC + - CKĐ RKĐ Hình 3. 11 Sơ đồ nguyên lý của hệ thống chỉnh lưu ba pha hình cầu – động cơ. CCSX u u u 2a 2b 2c Rtđ Rtđ Rtđ xtđ xtđ xtđ I1 I3 I5 T1 T4 T3 T6 T5 T2 I4 I6 I2 + XĐK RKĐ  EĐ CKĐ
  46. Hình 3. 12 Sơ đồ đẳng trị mạch thứ cấp máy biến áp và phần ứng động cơ. Cầu chỉnh lưu có điều ba pha gồm 6 tiristor được chia làm hai nhóm: - Nhóm anốt chung ( nhóm chẳn ): T2, T4 và T6. - Nhóm katốt chung ( nhóm lẻ): T1, T3 và T5. Góc kích được tính từ giao điểm của các nửa hình sin sóng điện áp. I. 2. b Nguyên lý hoạt động và dạng sóng: Chỉnh lưu ba pha hình cầu – động cơ muốn khởi động hệ thống ta phải kích đồng thời 2 tiristor: 1 tiristor ở nhóm lẻ T1, T3, T5 và 1 tiristor ở nhóm 0 chẳn T2, T4, T6. Đầu tiên ta kích T1 cho T1 dẫn, sau 60 điện ta kích tiếp T3 nghĩa là các tiristor được kích cách nhau 1/6 chu kỳ. Ngoại trừ 1 trong 2 tiristor lần đầu tiên chỉ dẫn trong 600 điện còn tất cả các tiristor khác khi đã được kích nó phải dẫn trong 1200 điện. Ở các thời điểm bình thường có 2 tiristor dẫn: 1 ở nhóm chẳn và 1 ở nhóm lẻ, riêng trong thời gian chuyển mạch điện tử ứng với góc chuyển mạch  có 3 tiristor cùng dẫn: - 1 tiristor được kích đang dẫn dần lên. - 1 tiristor dần đang dẫn và tắt dần. - 1 tiristor sẽ dẫn tiếp. Giả sử T5 và T6 đang dẫn điện. Khi ta cho  = 1 = /6 + , kích xung điều khiển cho T1. T1 mở vì Ua > 0. T1 mở sẽ làm cho T1 bị khóa một cách tự nhiên vì Ua > Uc. Lúc này T1 và T6 cho dòng chạy qua. Điện áp trên tải Ud = Uab = Ua – Ub. Khi cho  = 2 = 3 /6 + , kích xung điều khiển cho T2, T2 mở vì khi T6 dẫn dòng, nó đặt lên anốt của T2 điện áp Ub, khi  = 2 thì Ub > Uc, T2 mở làm cho T6 bị khóa lại. Các xung điều khiển lệch nhau /3 được lần lượt đưa đến cực điều khiển của các tiristor theo thứ tự 1, 2, 3, 4, 5, 6, 1 Trong mỗi nhóm có một tiristor mở nó sẽ khóa ngay tiristor dẫn dòng trước nó theo bảng tóm tắt sau: Thời điểm Mở Khóa 1 = /6 + T1 T5 2 = 3 /6 + T2 T6 3 = 5 /6 + T3 T1 T T 4 = 7 /6 + 4 2 T5 T3 5 = 9 /6 + T6 T4 6 =11 /6 + Đồ thị điện áp ngõ ra, dòng điện cực điều khiển và dòng điện chạy qua các tiristor được trình bày như sau:
  47. Hình 3. 13 Đồ thị dạng sóng điện áp ngõ ra, dòng điện cực điều khiển và dòng điện chạy qua các tiristor.
  48. Tương tự như trong hệ thống chỉnh lưu ba pha hình tia – động cơ, để tìm hiểu nguyên lý hoạt động của hệ thống chỉnh lưu ba pha hình cầu – động cơ ta xét góc kích trong các trường hợp sau: * Khi = 0: Ta kích tại thời điểm chuyển mạch tự nhiên. m U U 3E sin ( 3. 25 ) d 0c d 0c max 2d m m: Số pha của hệ thống chỉnh lưu, trong trường hợp này thì m = 6. * Khi 0: m U U cos 3E sin cos ( 3. 26 ) d 0c d 0c max 2d m Ta xét trong các khoảng thời gian: Trong khoảng thời gian O1O2, cặp T1, T6 dẫn cho dòng điện chạy qua. Khi đó giá trị của điện áp chỉnh lưu: U (O O ) U U U 6U sin( ) d 1 2 a b ab 2 6 Trong khoảng thời gian O2O3, cặp T1, T2 dẫn cho dòng điện chạy qua nên: U (O O ) U 6U sin( ) d 2 3 ac 2 6 Tương tự, ta được: U (O O ) U 6U sin( ) d 3 4 bc 2 2 5 U (O O ) U 6U sin( ) d 4 5 ba 2 6 7 U (O O ) U 6U sin( ) d 5 6 ca 2 6 3 U (O O ) U 6U sin( ) Giá trdị trung6 7 bìnhcb của điện2 áp chỉnh2 lưu: p p +a + 6 3 6 p 3 6 ( 3. 27 ) U d = 6U 2 sin(q + ) d q = U 2 cosa 2p p 6 p + a 6 Do đó, ta thấy khi thay đổi góc kích thì ta có thể thay đổi được giá trị trung bình của điện áp đặt vào phần ứng động cơ. Khi biến đổi từ 0 đến thì giá trị điện áp trung bình Ud biến thiên từ +Udmax đến –Udmax. Điện áp ngược đặt lên T1 khi T1 ngưng dẫn được biểu diễn như sau:
  49. Hình 3. 14 Điện áp ngõ ra của chỉnh lưu và điện áp ngược đặt lên tiristor T1. Trong khoảng thời gian OO1, T5 dẫn điện nên UngT1 = Uc – Ua. Trong khoảng thời gian O3O5, T3 dẫn điện nên: UngT1 = Ub –Ua. Giá trị của điện áp ngược cực đại đặt lên mỗi tiristor là: Ung max 6U2 Để sơ đồ chỉnh lưu ba pha hình cầu có thể làm việc được, các xung điều khiển cần có độ rộng lớn hơn 600 điện mới có thể đảm bảo cho việc mở đồng thời 2 tiristor ở hai nhóm. I. 2. c Hiện tượng chuyển mạch: Đối với sơ đồ chỉnh lưu ba pha hình cầu – động cơ có điều khiển, đối xứng, quá trình chuyển mạch chỉ xảy ra giữa các tiristor trong cùng một nhóm. Đồ thị biểu diễn dạng sóng điện áp ra của chỉnh lưu, dòng điện chạy qua tiristor và điện áp ngược đặt lên mỗi tiristor như sau:
  50. Hình 3. 15 Đồ thị điện áp chỉnh lưu, dòng điện qua các tiristor và điện áp ngược đặt lên T1 khi xảy ra hiện tượng chuyển mạch. Khi hệ thống hoạt động, giả sử van T1, T2 đang mở. Tại thời điểm O1, ta kích xung để T3 mở. Lúc này sẽ bắt đầu xảy ra sự chuyển mạch của dòng điện từ T1 sang T3. T1 và T3 mở đồng thời sẽ làm ngắn mạch hai đầu cuộn thứ cấp của máy biến áp. Trong thời gian này dòng điện chạy qua T3 tăng dần từ 0 đến Id, đồng thời dòng qua T1 giảm dần từ Id xuống 0, T1 bắt đầu ngưng dẫn. Sau một khoảng thời gian chuyển mạch nào đó thì dòng iT1 mới thực sự giảm về 0 và dòng iT3 đạt đến giá trị Id. 6 iT 1 Id U 2[cos cos( )] ( 3. 28 ) 2X td 6 i U [cos cos( )] ( 3. 29 ) T 3 2X 2 Mối tươngtd quan giữa góc chuyển mạch  với các đại lượng của hệ thống: 2X cos cos(  ) td I d ( 3. 30 ) 6U 2 Nếu chọn O1 làm gốc thời gian, ta được: U 2U sin( ) a 2 6 U a 2U 2 sin( ) Giá trị trung bình của sụt áp6 do hiện tượng trùng dẫn gây nên: 3 6 U  U 2 [cos cos(  )] ( 3. 31 ) 2 Thay giá trị biểu thức ( 3. 30 ) vào ( 3. 31 ) ta được: 3X I U td d ( 3. 32 )  Xét trong khoảng thời gian O2O3: UT1 = ub – ua Trong khoảng thời gian O3O4: T2 và T4 trùng dẫn nên ta có: UT1 = ub – ua và UT1 = ub – uc nên UT1 = ub – ( ua + uc )/2. Xét trong khoảng thời gian O4O5: UT1 = ub – uc Trong khoảng thời gian O5O6: T3 và T5 trùng dẫn nên ta có: UT1 = ub – ua và UT1 = uc – ua nên UT1 = ( ub + uc )/2 – ua. Tương tự cho các khoảng còn lại. Khi kể đến sự chuyển mạch điện tử, giá trị trung bình của điện áp chỉnh lưu ba pha hình cầu:
  51. 3 6 3X td Id U d U 2 cos ( 3. 33 ) I. 2. d Sóng hài và việc san bằng điện áp ra của bộ chỉnh lưu: Do tính chất tương tự như hệ thống chỉnh lưu ba pha hình tia – động cơ, trong hệ thống chỉnh lưu ba pha hình cầu – động cơ ta vẫn sử dụng bộ lọc LC để lọc sóng hài, san bằng điện áp ra của bộ chỉnh lưu. L + U + ( 1 )m.v C Tải U ( 1 )m.r - Hình 3. 16 Sơ đồ nguyên lý của bộ lọc LC. Hệ số san bằng của bộ lọc: U 1 1 K (1)m.v 1 Z ( ) sb 1 ( 3. 34 ) U(1)m.r r Z2 Trong đó: - U(1)m.v: Biên độ sóng cơ bản ( sóng bậc 1 ) của điện áp chỉnh lưu. - U(1)m.r: Biên độ lớn nhất của xung áp sóng cơ bản ở đầu ra của bộ lọc. U (1)m.v Z1 (Z 2 r) U (1)m.r U (1)m.v ( 3. 35 ) Z1 (Z 2 r) Z 2r - Z1 = jmxL. - Z2 = 1/( jmxC). - mx: Xung áp của điện áp chỉnh lưu trong một chu kỳ điện áp nguồn xoay chiều. Đối với sơ đồ chỉnh lưu ba pha hình cầu thì mx = 6. - : Tần số gốc của nguồn xoay chiều. Thay các giá trị của Z1, Z2 vào ( 3. 35 ) và xem như 1/r 0 ta được 2 2 biểu thức tính hệ số san bằng như sau: Ksb = 1 – m x LC 10 Ksb LC 2 m x với giá trị của L được tính bằng Henry ( H ) và C tính bằng F. Để xác định L ta dựa vào các điều kiện sau: Id0 > I(1)m.v ( 3. 36 ) Ta có biểu thức tính biên độ sóng cơ bản của dòng điện chạy qua điện kháng khi coi Z1 >> Z2: U (1)m.v I(1)m.v mxL Thành phần dòng một chiều chạy qua điện kháng khi không tính đến tổn thất năng lượng là: Id0 = Udv/r. Thay các giá trị của Id0 và I(1)m.v vào biểu thức ( 3. 36 ), ta được: U U U r (1)m.v d L (1)m.v mxL r U dvmx U 2 2r Vì (1)m.v K L ( 3. 37 ) v 2 2 U dv m x 1 (m x 1)mx
  52. Biểu thức ( 3. 37 ) chính là điều kiện để xác định giá trị L của bộ lọc. I. 2. e Phương trình đặc tính cơ của động cơ: Tương tự như hệ thống chỉnh lưu ba pha hình tia – động cơ, trong hệ thống chỉnh lưu ba pha hình cầu – động cơ thì sức điện động đặt lên động cơ sẽ là: EĐ = Ud0ccos - U ( 3. 38 ) U: Tổn hao trên toàn mạch phần ứng. EĐ = Ud0ccos - UUC - UR - UXC - Uư ( 3. 39 ) Trong đó: - UUC: Tổn hao trên các van chỉnh lưu: Uucầu = 2 Uutia = ( 2 3 )V - URC: Tổn hao trên điện trở tác dụng một pha của máy biến áp: UXC = 0,955XtđIư - Uư: Tổn hao trên hai đầu phần ứng của động cơ: Uư = RưIư. Biểu thức ( 3. 38 ) được viết lại như sau: EĐ = Ud0ccos - UUC - ( 2Rtđ + 0,955Xtđ + Rư )Iư ( 3. 40 ) Chia hai vế của ( 3. 40 ) cho KEĐ ta được: U cos U 2R 0,955X R n d 0c UC td td u I u ( 3. 41 ) KED KED Đây là phương trình đặc tính cơ điện của động cơ. U cos U 2R 0,955X R n d 0c UC td td u M ( 3. 42 ) 2 K  K K  D ( 3. 42 ) là phươngE D trình đặc tínhE Mcơ của động cơ một chiều kích từ độc lập trong hệ thống chỉnh lưu ba pha hình cầu - động cơ. Hệ thống này cũng có hai hướng điều chỉnh tốc độ và phản hồi để ổn định tốc độ động cơ tương tự như hệ thống chỉnh lưu ba pha hình tia – động cơ. I. 2. f Nhận xét: So với hệ thống chỉnh lưu ba pha hình tia – động cơ thì hệ thống chỉnh lưu ba pha hình cầu có nhiều ưu điểm hơn: Giá trị điện áp ngõ ra của chỉnh lưu hình cầu lớn hơn điện áp chỉnh lưu hình tia. Độ nhấp nhô của sóng điện áp chỉnh lưu hình cầu thấp hơn hình tia nên chất lượng của chỉnh lưu ba pha hình cầu là tốt nhất. Đây là hệ thống được sử dụng phổ biến nhất trong thực tế. Ngày nay, ở các hệ thống hiện đại ta có thể điều chỉnh tốc độ lớn hay nhỏ hơn so với tốc độ cơ bản với phạm vi điều chỉnh lớn: D = ( Hàng trăm hàng ngàn )/1. Như vậy, hệ thống chỉnh lưu ba pha hình cầu là một hệ thống có: - Đặc tính cơ cứng. - Tự động ổn định được tốc độ khi phụ tải thay đổi. - Có độ nhạy cao, hiệu suất lớn. I. 3 Chế độ nghịch lưu trong hệ thống chỉnh lưu – động cơ:
  53. Khi động cơ điện do tác động của ngoại lực làm cho tốc độ đổi dấu ( quay ngược ) hoặc đảo chiều dòng điện kích thích thì sức điện động của động cơ điện đảo dấu, đồng thời điều chỉnh góc kích biến thiên trong phạm vi: /2 0 Pd = UdId < 0 Lúc này, hệ thống chỉnh lưu trở thành thiết bị nhận điện năng do động cơ làm việc ở trạng thái hãm tái sinh phát ra và biến điện năng một chiều này thành điện năng xoay chiều trả về lưới điện. Ta có phương trình đặc tính cơ của động cơ ở chế độ nghịch lưu trong hệ thống chỉnh lưu - động cơ như sau: E cos U m n d 0 max v ( X R R R )I ( 3. 43 ) K  2 td td uD DK u Và họ đặc tínhE cơD của động cơ điện ở chế độ nghịch lưu trong hệ thống chỉnh lưu – động cơ như sau: n n0 = 0 n1 n2 1 Động cơ n 2 3 0 3 M, I Hãm động năng ( = /2 ) n4 4 n5 Hãm tái sinh nmax 5 0 Hình 3. 17 Họ đặc tính cơ của động cơ khi maxlàm = vi160ệc ở chế độ nghịch lưu trong hệ thống chỉnh lưu - độngM cCơ. = Mđm Tương tự như ở chế độ chỉnh lưu, trong chế độ nghịch lưu cũng có thể xảy ra các hiện tượng chuyển mạch và gián đoạn của dòng điện. Sau khi kết thúc quá trình chuyển dòng cho van T2, van T1 chuyển từ trạng thái dẫn sang trạng thái khóa. Quá trình này phải kết thúc trước quá trình chuyển mạch tự nhiên tức là thời điểm u2a bắt đầu dương hơn u2b. Thời gian của quá trình này gọi là thời gian khóa hay thời gian để cho tiristor phục hồi chắc chắn  thì góc kích được chọn như sau: /2 < - (  +  ). Trong đó: - : Được chọn khoảng 50.
  54. - : Được chọn khoảng từ 150 đến 180. Trong thực tế, để bộ biến đổi van làm việc an toàn ở chế độ nghịch lưu thì 0 góc kích được chọn: max = 160 . Nếu điều kiện này không được đảm bảo thì nghịch lưu sẽ rơi vào trọng thái sự cố, van cần khóa sẽ vẫn dẫn dòng tiếp, không thực hiện được sự chuyển mạch giữa các van với nhau, không thể kiểm soát được điện áp, dòng điện của nghịch lưu.
  55. I. 4 Đảo chiều quay trong hệ thống chỉnh lưu - động cơ: Trong hệ thống chỉnh lưu - động cơ đã trình bày như trên, máy điện trong hệ thống chỉ làm việc ở trạng thái động cơ với một chiều quay ( n > 0 ), còn các trạng thái hãm chỉ có thể xảy ra khi có ngoại lực làm cho động cơ quay ngược ( n < 0 ). Do đó, ta thấy hệ thống chỉnh lưu – động cơ kém linh hoạt hơn hệ thống máy phát – động cơ. Nguyên nhân là do chỉnh lưu tiristor dẫn dòng theo một chiều và chỉ điều khiển được khi mở, còn khóa theo điện áp lưới. Vì vậy, để cho máy điện làm việc ở trạng thái động cơ cũng như ở trạng thái hãm tương ứng với cả hai chiều quay của trục động cơ ta phải dùng đến đảo chiều quay trong hệ thống chỉnh lưu – động cơ. Có hai nguyên tắc cơ bản để xây dựng hệ truyền động đảo chiều đó là: - Giữ nguyên chiều dòng điện phần ứng và đảo chiều dòng kích từ động cơ. - Giữ nguyên chiều dòng kích từ và đảo chiều dòng điện phần ứng động cơ. Để tiến hành đảo chiều quay trong hệ thống chỉnh lưu – động cơ ta dùng 3 phương pháp đó là: Đảo chiều dòng kích từ của động cơ điện, đảo chiều dòng phần ứng bằng tiếp điểm và đảo chiều dòng phần ứng nhờ bộ biến đổi kép. I. 4. a Phương pháp đảo chiều dòng kích từ của động cơ: * Sơ đồ nguyên lý: Phương pháp đảo chiều dòng kích từ của động cơ chỉ dùng một bộ biến đổi đơn (không đảo chiều) trong mạch phần ứng và một bộ tiếp điểm đảo chiều trong mạch kích từ động cơ. Sơ đồ nguyên lý và các sơ đồ thay thế của hệ thống thành lập theo phương pháp này được trình bày như sau: U ĐK V  Đ Rb Iư Ed IKTT Rư EĐ IKTN M nT N T  - + T N I + UKT - KTT ( a ) ( b )
  56. V V  R b Iư Ed Rb Iư Ed Rư EĐ Rư EĐ M nT M nT  + - + - IKTN IKTN Hình 3. 18 Đảo chiều quay trong hệ thống chỉnh lưu – động cơ bằng phương pháp đảo chiều dòng( kíchc ) từ: ( d ) a). Sơ đồ nguyên lý. b). Sơ đồ thay thế của hệ thống khi động cơ làm việc ở trạng thái động cơ quay thuận. c). Sơ đồ thay thế của hệ thống khi động cơ làm việc ở trạng thái hãm và quay thuận. d). Sơ đồ thay thế của hệ thống khi động cơ làm việc ở trạng thái động cơ quay ngược. * Nguyên lý hoạt động: Giả sử khi động cơ đang quay thuận ( n > 0 ) với dòng kích từ IKTT có chiều như hình 3. 18b và góc kích tiristor 90 . Lúc này, dù tốc độ động cơ vẫn theo chiều cũ nhưng sức phản điện động của động cơ EĐ đổi chiều ( EĐ < 0 ). Đồng thời sức điện động của bộ chỉnh lưu Ed cũng đổi chiều. Góc kích phải chọn sao cho:  Ed  <  EĐ . Như vậy, dòng Iư sẽ chạy dưới tác dụng của EĐ. Tuy dòng Iư không đổi chiều nhưng do từ thông kích thích đổi chiều nên moment của động cơ sẽ đổi chiều và gây tác dụng hãm. Để tiến hành đảo chiều quay của động cơ, ta cho IKT chạy theo chiều 0 ngược lại ( IKTN ) và bộ chỉnh lưu làm việc ở trạng thái chỉnh lưu với góc kích < 90 . Khi đó sơ đồ thay thế của hệ thống sẽ như hình 3. 18d. Nhận xét: Ưu điểm: Phương pháp này sử dụng những thiết bị đơn giản. Giá thành hạ, thuận tiện trong việc vận hành và bảo quản. Khuyết điểm: Do quán tính điện từ của mạch kích từ lớn nên khoảng thời gian quá độ khi đảo chiều quay động cơ trong hệ thống có thể lên tới vài giây. I. 4. b Phương pháp đảo chiều dòng phần ứng bằng tiếp điểm: * Sơ đồ nguyên lý: Phương pháp này sử dụng một bộ chỉnh lưu đơn và một bộ tiếp điểm đảo chiều trong mạch phần ứng của động cơ. Đồng thời cũng đảm bảo được các trạng thái làm việc tương tự như phương pháp đảo chiều dòng kích từ như đã trình bày ở trên. Mối tương quan giữa các đại lượng điện và cơ của hệ thống chỉnh lưu – động cơ được minh họa bởi sơ đồ nguyên lý và các sơ đồ thay thế như sau:
  57. UĐK V  T N Rb Iư Ed N T Rư E M n Đ Đ  + - V CKĐ ( a ) ( b ) Rb Ed V R b Ed EĐ Rư M Iư M  Hình 3. 19 Đảo chiều quay trong hệ thống chỉnhE lưu – động cơ bằng n Rư M Đ Iư phương pháp đảo chiều dòng (phần c ) ứng. M a). Sơ đồ nguyên lý.  b). Sơ đồ thay thế của hệ thống khi độngn cơ làm việc ở trạng thái động cơ quay thuận. ( d ) c). Sơ đồ thay thế của hệ thống khi động cơ làm việc ở trạng thái hãm và quay thuận. d). Sơ đồ thay thế của hệ thống khi động cơ làm việc ở trạng thái động cơ quay ngược. * Nguyên lý hoạt động: Giả sử khi động cơ đang quay theo chiều thuận ( n > 0 ), dòng điện phần ứng Iư có chiều như hình 3. 19b và hệ thống chỉnh lưu đang làm việc ở trạng thái chỉnh 0 lưu với góc kích 90 . Khi đó, sức điện động của bộ chỉnh lưu Ed sẽ đổi chiều còn sức phản điện động của động cơ EĐ vẫn giữ nguyên theo chiều cũ ( hình 3. 19c ). Như vậy, dòng Iư chạy dưới tác dụng của EĐ với điều kiện ta phải chọn góc kích sao cho  EĐ  <  Ed , động cơ làm việc ở trạng thái máy phát trả năng lượng lại cho lưới điện, còn hệ thống chỉnh lưu làm việc ở trạng thái nghịch lưu. Do dòng Iư đổi chiều nên moment của động cơ trở thành ngược chiều với chiều của tốc độ động cơ và gây tác dụng hãm. Để đảo chiều quay của động cơ, ta cho dòng Iư chạy theo chiều ngược so với chiều Iư ở trạng thái động cơ quay thuận ( hình 3. 19b ), còn bộ biến đổi làm việc ở trạng thái chỉnh lưu với góc kích < 900. Mối tương quan giữa các đại lượng điện và cơ của hệ thống trong trạng thái đảo chiều động cơ này được biểu diễn ở sơ đồ hình 3. 19d.
  58. Nhận xét: Ưu điểm: Phương pháp này đơn giản, dễ vận hành và bảo trì. Có thời gian đảo chiều nhanh hơn phương pháp đảo chiều dòng kích từ. Khuyết điểm: Phải dùng các tiếp điểm trong mạch lực để điều chỉnh đảo chiều. I. 4. c Phương pháp đảo chiều dòng phần ứng nhờ bộ chỉnh lưu kép: * Sơ đồ nguyên lý: Phương pháp này sử dụng bộ chỉnh lưu đảo chiều để thay đổi cực tính của điện áp đặt trên phần ứng của động cơ. Phương pháp này tuy phức tạp nhưng sẽ tránh được các nhược điểm của hai phương pháp vừa trình bày trên. Sơ đồ nguyên lý của hệ thống đảo chiều chỉnh lưu – động cơ dùng bộ biến đổi kép như sau: V1 Đ Hình 3. 20 Sơ đồ khối đảo chiều dòng phần ứng nhờ bộ chỉnh lưu kép. Trong hệ thống này, mỗi nhóm V2 van chỉnh lưu tiristor trong bộ chỉnh lưu đảo chiều có thể coi như một bộ chỉnh lưu riêng biệt, cung cấp cho phụ tải là động cơ điện một dòng điện theo chiều cố định. Do đó, để cho hai nhóm van chỉnh lưu có thể làm việc kết hợp với nhau trên cùng một phụ tải ta cần đặc biệt chú ý đến phương pháp điều khiển chúng. Mục đích của việc điều khiển phối hợp này là để đảm bảo chế độ làm việc an toàn của hệ thống, tránh sự trao đổi năng lượng trực tiếp từ nhóm chỉnh lưu này sang nhóm kia, tức là phải hạn chế dòng ký sinh trong chúng hay còn gọi là dòng cân bằng. Có hai phương pháp điều khiển kết hợp giữa hai nhóm van là điều khiển riêng và điều khiển chung. Phương pháp điều khiển riêng: Khi điều khiển riêng hai bộ biến đổi làm việc riêng lẻ nhau. Tại một thời điểm chỉ phát xung điều khiển mở các tiristor, chỉ đặt lên nhóm van làm việc mà thôi còn nhóm thứ hai không có xung mở van nên hoàn toàn được ngắt ra khỏi mạch phụ tải. Nhờ đó ta có thể loại trừ dòng cân bằng. Giả sử khi ta điều khiển cho động cơ quay 0 thuận, ta cho nhóm van V1 làm việc ở trạng thái chỉnh lưu với góc kích < 90 và loại trừ tác dụng của nhóm van V2. Lúc này chiều của sức điện động của bộ chỉnh lưu Ed1, sức phản điện động của động cơ EĐ, moment và tốc độ của động cơ được biểu diễn như sau:
  59. V1  R I b ư Ed1 Rư EĐ  Hình 3. 21 Sơ đồ thay thếM của n hệ thống khi điều khiển riêng cho động cơ quay thuận. Để cho động cơ làm việc ở trạng thái hãm tái sinh, quay thuận ta loại trừ tác dụng của nhóm van V1 và cho nhóm van V2 làm việc ở trạng thái nghịch lưu với góc kích > 900. Lúc này, chiều của các đại lượng điện và cơ của hệ thống được biểu diễn như sau:  Iư M n Rb EĐ R ư Ed2 V2 Hình 3. 22 Sơ đồ thay thế của hệ thống khi điều khiển riêng cho động cơ  làm việc ở trạng thái hãm tái sinh, quay thuận. Với cách điều khiển tương tự, để cho động cơ quay ngược ta cho nhóm 0 van V2 làm việc ở trạng thái chỉnh lưu với góc kích 90 đồng thời loại trừ tác dụng của nhóm van V1. Nhận xét: Ưu điểm: Phương pháp điều khiển riêng làm việc an toàn, không có dòng điện cân bằng chạy trong các bộ biến đổi. Nhược điểm: Hệ thống phải cần có một khoảng thời gian trễ trong đó dòng điện chạy qua động cơ bằng không. Do đó, phương pháp này đòi hỏi một hệ thống điều khiển có logic phức tạp và phải đủ độ nhạy. Đồng thời phương pháp này có đặc tính động của động cơ không tốt. Phương pháp điều khiển chung: Phương pháp này được thực hiện bằng cách: Tại một thời điểm cả hai bộ biến đổi đều nhận được xung mở, nhưng chỉ có một bộ biến đổi cấp dòng cho nghịch lưu còn bộ biến đổi kia làm việc ở chế độ đợi. Khi cần điều khiển cho động cơ quay thuận, ta cho nhóm van V1 làm việc 0 ở trạng thái chỉnh lưu với góc kích 1 90 sao cho  Ed2  >  Ed1 . Do đó, thành phần một chiều của dòng điện không thể chạy từ nơi có điện thế thấp ( nhóm van V1 ) sang nơi có điện thế cao ( nhóm van V2 ) hoặc từ động cơ chạy sang nhóm van V2. Nhóm van V2 sẽ làm việc ở trạng thái nghịch lưu đợi. Sơ đồ thay thế của hệ thống trong trường hợp này được trình bày như sau: Ed1 V1  Iư Rb1 EĐ Rư 
  60. Hình 3. 23 Sơ đồ thay thế của hệ thống đảo chiều chỉnh lưu – động cơ bằng phương pháp điều khiển chung. Nếu chọn  Ed1  =  Ed2  thì ta có phương pháp điều khiển chung tuyến tính. Vì Ed1 = Ed0cos 1, Ed2 = Ed0cos 2. Ta được mối quan hệ giữa hai góc kích: 1 + 2 = 1800. Phương pháp điều khiển chung tuyến tính được thực hiện bằng cách giữ cho tổng hai góc kích của hai nhóm van bằng 1800. Nếu tăng góc kích của nhóm van này thì đồng thời phải giảm góc kích của nhóm van kia. Nhờ đó ta sẽ giữ được tổng sức điện động trong mạch từ nhóm van V1 đến V2 là: Ed = Ed1 + Ed2 = 0. Do đó, dòng cân bằng trong bộ chỉnh lưu sẽ bằng không Icb = Ed/Rb = 0. Không có hiện tượng trao đổi năng lượng giữa các nhóm van. Nếu điều khiển sao cho Ed1  Ed1  nên các tiristor của nhóm nghịch lưu V2 bị khóa, vì vậy Icb = 0. Trong cả hai phương pháp điều khiển chung nói trên, Mặc dù ta giữ cho giá trị trung bình của sức điện động  Ed2  >  Ed1  nhưng vì giá trị tức thời của sức điện động hai nhóm van biến đổi riêng biệt theo sức điện động thứ cấp của máy biến áp nên vẫn xuất hiện những thời điểm có giá trị tức thời  ed1  >  ed2 . Lúc đó ed > 0 và tác dụng thuận chiều van, xuất hiện thành phần xoay chiều của dòng Icb. Dòng Icb có dạng là dòng chỉnh lưu bán kỳ đối với nguồn là ed. Hiện tượng này được minh họa bởi sơ đồ thay thế như sau: V 1  ed Icb Xcb R t cb V2 Icb Hình 3. 24 Sơ đồ thay thế của mạch cân bằng dưới tác dụng tức thời của giá trị sức điện động ed và dạng sóng chỉnh lưu bán kỳ của dòng Icb. Để hạn chế biên độ dòng Icb ta thường dùng các cuộn kháng cân bằng KCB. II. HỆ THỐNG BĂM – ĐỘNG CƠ: Trong công nghiệp, điện áp một chiều được sử dụng rộng rãi trong các hệ thống truyền động điện. Điện áp một chiều này được chuyển đổi ở các mức độ khác nhau tùy theo yêu cầu của hệ thống. Điện áp một chiều được thay đổi qua các phương pháp biến đổi như sau: - Phương pháp điều chỉnh bằng biến trở. - Phương pháp điều chỉnh bằng máy phát một chiều. - Phương pháp dùng bộ biến đổi có khâu trung gian xoay chiều.
  61. - Phương pháp dùng bộ băm ( Chopper ). So với các phương pháp trên thì bộ băm là một phương pháp mới. Ứng dụng của các thiết bị tiristor công suất lớn ra đời trong ngành điện tử công suất. Đã góp phần tạo ra các bộ chuyển mạch nhằm thực hiện việc chuyển đổi điện áp một chiều với hiệu quả cao, độ nhạy đạt yêu cầu kỹ thuật, điều khiển trơn, chi phí bảo trì thấp, kích thước nhỏ nên diện tích lắp đặt máy nhỏ. Bộ băm dùng để biến đổi điện áp một chiều không đổi U thành các xung một chiều có trị số trung bình biến đổi Utb. Utb có thể điều chỉnh được từ bằng 0 đến lớn nhất, bằng chính điện áp nguồn cung cấp cho bộ băm. Ứng dụng quan trọng nhất của bộ băm là điều chỉnh tốc độ của động cơ một chiều trong công nghiệp và giao thông vận tải. Bởi vì việc sử dụng bộ băm hoàn toàn thích hợp, tiết kiệm được năng lượng, kinh tế và hiệu quả cao, đồng thời đảm bảo được trạng thái hãm tái sinh của động cơ. Có ba dạng bộ băm: bộ băm nối tiếp, bộ băm song song, bộ băm đảo dòng. II. 1 Bộ băm nối tiếp: II. 1. a Nguyên lý hoạt động: Sơ đồ nguyên lý của hệ thống được biểu diễn như sau: VS1 Id + + Rd (-) C - (+) VS2 Ld D0 U DC LC Ud  E I Hình 3. 25 Sơ đồ nguyên lý của bộ băm nD0ối tiếp. - Trong đó: - VS1: Là tiristor chính. - VS2: Là tiristor phụ, dùng để ngắt bộ băm. - Lc, Dc, C: Là các phần tử chuyển mạch, tạo mạch nạp cho tụ C. - D0: Diode hoàn năng lượng, duy trì dòng qua tải khi bộ băm ngắt. Bộ băm nối tiếp là một khóa điện S bằng tiristor được điều khiển đóng mở trong hệ thống một cách chu kỳ. Khi S đóng thì điện áp ngỏ ra trên tải Ud = U còn khi S mở thì Ud = 0. Giả sử ở trạng thái ban đầu VS1 và VS2 đều bị khóa, tụ C được nạp đầy với bản cực dương ở phía trên như ghi chú trong hình ( 3. 25 ). Cho xung điều khiển kích tiristor chính VS1, VS1 mở, dòng điện từ cực dương của nguồn U chạy qua VS1 vào mạch phụ tải ( R, L, E ) rồi trở về cực âm của nguồn U. Đồng thời tụ C sẽ phóng điện theo vòng: VS1-Lc-Dc-C và tụ C được nạp điện theo chiều ngược lại. Điện áp ra trên tải Ud = U. Khi cho xung điều khiển kích tiristor phụ VS2, VS2 mở, đặt điện áp giữa hai bản cực của tụ C lên VS1 làm cho VS1 bị khóa lại. Lúc này điện áp ra trên tải Ud = 0. Thay đổi tỷ số thời gian đóng và thời gian ngắt của VS1 sẽ điều chỉnh được giá trị trung bình của điện áp ra trên tải. Gọi T là chu kỳ của bộ băm, T = Tđg + Tng. Trong đó: - Tđg = T là thời gian đóng mạch của VS1.
  62. - Tng = T - Tđg là thời gian ngắt mạch. - = Tđg/T là tỷ số đóng của chu kỳ. Giá trị trung bình của điện áp ra trên tải: 1 T T U Udt dg U U ( 3. 44 ) tb T T Khi ta thay đổi 0tỷ số đóng thì có thể điều chỉnh được Utb. Có hai cách để thay đổi : - Giữ cố định chu kỳ xung T ( tần số cố định ), thay đổi thời gian đóng mạch Tđg của bộ băm. Phương pháp này được gọi là phương pháp điều khiển độ rộng xung. - Giữ cố định thời gian đóng mạch Tđg, thay đổi chu kỳ của bộ băm T ( tần số biến thiên ). Phương pháp này được gọi là phương pháp điều tần. Khi = 0 tức là Tđg = 0 ta có Utb = 0, bộ băm thường xuyên ngắt mạch, n = 0. Khi = 1 tức là Tđg = T ta có Utb = U, bộ băm thường xuyên đóng mạch, n = nmax. Trong hệ thống, thời gian đóng mạch Tđg có thể điều chỉnh tùy theo ý muốn nhưng Tđg không thể nhỏ hơn một nữa chu kỳ của mạch dao động LC, tức là phải đảm bảo:
  63. L T dg C Ta có sơ đồ biểu diễn điện áp ra trên tải Ud như sau: Ud U Utb t 0 Tđg Tng Hình 3. 26 Sơ đồ biểu diễn đồ thị điện áp ngõ ra trên tải Ud. Xét quá trình dao độngT của dòng tải: Trong khoảng thời gian 0 < T < Tđg khóa S đóng điện. Điện áp ra trên tải Ud = U, dòng điện tải I tăng từ giá trị nhỏ nhất Imin đến giá trị lớn nhất Imax. Biểu thức I được xác định bằng cách giải phương trình của mạch điện khi S đóng: Biểu thức tổng quát của dòng điện sẽ là: R di R ( U)t EU E i K il L ( 3. 45 ) dt L1 L R Tại thời điểm t = 0 thì: U E U E i I K K I min 1 R 1 min R Thay giá trị K1 vào ( 3. 45 ) ta được: R t U E L U E i ( I min ) e ( 3. 46 ) R R Khi t = Tđg ta có trị số lớn nhất của dòng điện: R U E Tdg U E I (I )e L max min R R R R T T U E L dg L dg I max (1 e ) I min e ( 3. 47 ) Ta nhận thấy trongR giai đoạn S đóng thì dòng điện tải I tăng từ trị số Imin đến Imax theo qui luật của hàm số mũ. Lý luận tương tự, xét trong khoảng thời gian Tđg < t < T, S ngắt điện, điện áp ra trên tải Ud = 0 thì dòng điện trên tải I giảm theo hàm mũ và khi t = T thì đạt giá trị Imin.
  64. (T T ) dg E Tu E I min (I max )e R U ( 3. 48 ) T dg 1 U e Tu E I max ( T ) ( 3. 49 ) R dg R Trong đó: T = L/R. T ư e u 1 Khi S đóng liên tục Tđg = T thì: i = I = Imax = Imin = ( U - E )/R ( 3. 50 ) Nếu Tđg của khóa S giảm nhỏ đến giá trị tới hạn Tđggh thì Imin = 0. Lúc này hệ thống sẽ làm việc ở biên giới chuyển từ chế độ dòng điện liên tục sang chế độ dòng điện gián đoạn. Ta có đồ thị điện áp, dòng điện ở chế độ liên tục và gián đoạn của bộ băm như sau: U d U Tđg Tng T t 0 I Imax Imin t 0 IS I max Imin t 0 ID0 Imax HìnhImin 3. 27 Đồ thị biểu diễn điện áp và dòng điện ngõ ra ở chế độ liên tục và gián đoạn của bộ băm nối tiếp. t 0
  65. II. 1. b Cách điều chỉnh tốc độ: Khi điện áp nguồn một chiều U không đổi, tốc độ của động cơ sẽ thay đổi nhờ sự thay đổi tỷ số thời gian đóng ngắt khóa S. Ta có sơ đồ nguyên lý hệ thống điều chỉnh tốc độ động cơ sử dụng bộ băm nối tiếp như sau: L ư + Iư U D0 Eư Đ Hình 3. -28 Sơ đồ mạch đ ộng lực hệ thống điều chỉnh tốc độ động cơ sử dụng bộ băm nối tiếp. Trong chế độ dòng điện liên tục vì Tx = T nên ta có Utb = U với 0 1. Đối với tải là động cơ một chiều có dòng trung bình của phần ứng là I, sức điện động E thì ta có: E = Utb – IRư với: U RI u E K E n n (3. 51 ) Theo (3. 51 ) họ các đặc tínhK E  tốc đKộE hay đặc tính cơ điện của động cơ ở chế độ dòng điện liên tục là một họ các đường thẳng song song ứng với các trị số khác nhau của . Trong chế độ dòng điện gián đoạn, ta cần giữ cho giá trị Tđg hay cố định thì đường biên liên tục là một nửa đường elip vẽ bằng các nét đứt. Dòng trung bình liên tục Itblt có trị số nhỏ nhất là Itblt = 0 ứng với n = 0 ( khi = 0 ) và n = nmax ( khi = 1 ). n nmax max = 1 n1 1 n 2 2 n3 3 M, I Hình 3. 29 Họ đặc tính cơ điện của hệ thống băm nối tiếp động cơ một chiều. min = 0 MC Như vậy, trong hệ thống băm nối tiếp sẽ đảm bảo cho máy điện làm việc ở trạng thái động cơ. Khi S mở thì Ud = U và khi S đóng thì Ud = 0. Vậy điện áp và dòng điện trung bình qua động cơ luôn luôn dương. Hệ thống này sẽ làm việc ở góc phần tư thứ nhất của mặt phẳng tọa độ U, I. U Hình 3. 30 Đồ thị biểu diễn phạm vi điI ều chỉnh của hệ thống sử dụng bộ băm nối tiếp. II. 2 Bộ băm song song: II. 2. a Nguyên lý hoạt động: Sơ đồ nguyên lý của bộ băm song song được biểu diễn như sau: D + Id R IT
  66. Hình 3. 31 Sơ đồ nguyên lý của bộ băm song song. L: Là điện cảm của phần ứng động cơ kết hợp với điện cảm bổ sung để giữ cho dòng Id = const. Xét trong khoảng thời gian 0 < t < T thì tiristor T mở, diode D được phân cực ngược nên bị khóa để tránh làm ngắn mạch nguồn U. Lúc này: Ie = 0, Ud = 0, IT = Id. Trong khoảng thời gian T < t < T thì T khóa và D mở. Lúc này Ie = Id, Ud = U, IT = 0. Giá trị trung bình của điện áp một chiều: 1 T U Udt (1 )U ( 3. 52 ) tb Giá trị trung bìnhT củaT dòng điện trả về nguồn: 1 T I I dt (1 )I e d d ( 3. 53 ) Giá trị trungT bình T của dòng điện chạy qua tiristor: T 1 I I dt I ( 3. 54 ) tb T d d Phương trình mạch0 tải khi máy điện ở trạng thái hãm tái sinh: dI E U E RI L d U I d ( 3. 55 ) d dt d d R Ta có dạng sóng của điện áp ngõ ra Ud và của dòng Ie, IT như sau: