Giáo trình Thủy lực khí nén - Chương 1: Cơ sở lý thuyết

pdf 16 trang phuongnguyen 8450
Bạn đang xem tài liệu "Giáo trình Thủy lực khí nén - Chương 1: Cơ sở lý thuyết", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pdfgiao_trinh_thuy_luc_khi_nen_chuong_1_co_so_ly_thuyet.pdf

Nội dung text: Giáo trình Thủy lực khí nén - Chương 1: Cơ sở lý thuyết

  1. Mục lục Trang Phần 1 : hệ thống thủy lực 6 Ch−ơng 1 : cơ sở lý thuyết 6 1.1. Lịch sử phát triển và khả năng ứng dụng của HTTĐ thủy lực 6 1.2. Những −u điểm và nh−ợc điểm của hệ thống điều khiển bằng thủy lực.6 1.1.1. Ưu điểm 6 1.1.2. Nh−ợc điểm 6 1.3. Định luật của chất lỏng 6 1.2.1. áp suất thủy tỉnh 7 1.2.2. Ph−ơng trình dòng chảy 7 1.2.3. Ph−ơng trình Bernulli 7 1.4. Đơn vị đo các đại l−ợng cơ bản 8 1.3.1. áp suất (p) 8 1.3.2. Vận tốc (v) 8 1.3.3. Thể tích và l−u l−ợng 8 1.3.4. Lực (F) 9 1.3.5. Công suất (N) 9 1.5. Các dạng năng l−ợng 9 1.5.1. Sơ đồ thủy lực tạo chuyển động tịnh tiến 9 1.5.2. Sơ đồ thủy lực tạo chuyển động quay 10 1.6. Tổn thất trong hệ thống truyền động bằng thủy lực 11 1.7. Độ nhớt và yêu cầu đối với dầu thủy lực 15 Ch−ơng 2 : cơ cấu biến đổi năng l−ợng và hệ thống xử lý dầu 17 2.1. Bơm dầu và động cơ dầu 17 2.1.1. Nguyên lý chuyển đổi năng l−ợng 17 2.1.2. Các đại l−ợng đặc tr−ng 17 2.1.3. Công thức tính toán bơm và động cơ dầu 19 2.1.4. Các loại bơm 20 2.1.5. Bơm bánh răng 20 2.1.6. Bơm trục vít 22 2.1.7. Bơm cánh gạt 23 2.1.8. Bơm pittông 24 2.1.9. Tiêu chuẩn chọn bơm 27 1
  2. 2.2. Xilanh truyền động (cơ cấu chấp hành) 27 2.2.1. Nhiệm vụ 27 2.2.2. Phân loại 27 2.2.3. Cấu tạo xilanh 29 2.2.4. Một số xilanh thông dụng 30 2.2.5. Tính toán xilanh truyền lực 30 2.3. Bể dầu 32 2.3.1. Nhiệm vụ 32 2.3.2. Chọn kích th−ớc bể dầu 32 2.3.3. Kết cấu của bể dầu 32 2.4. Bộ lộc dầu 33 2.4.1. Nhiệm vụ 33 2.4.2. Phân loại theo kích th−ớc lọc 33 2.4.3. Phân loại theo kết cấu 34 2.4.4. Cách lắp bộ lọc trong hệ thống 35 2.5. Đo áp suất và l−u l−ợng 36 2.5.1. Đo áp suất 36 2.5.2. Đo l−u l−ợng 36 2.6. Bình trích chứa 37 2.6.1. Nhiệm vụ 37 2.6.2. Phân loại 37 Ch−ơng 3 : các phần tử của hệ thống điều khiển bằng thủy lực 41 3.1. Khái niệm 41 3.1.1. Hệ thống điều khiển 41 3.1.2. Sơ đồ cấu trúc hệ thống điều khiển bằng thủy lực 41 3.2. Van áp suất 42 3.2.1. Nhiệm vụ 42 3.2.2. Phân loại 42 3.2.2.1. Van tràn và van an toàn 42 3.2.2.2. Van giảm áp 44 3.2.2.3. Van cản 46 3.2.2.4. Rơle áp suất 46 3.3. Van đảo chiều 46 3.3.1. Nhiệm vụ 46 3.3.2. Các khái niệm 46 3.3.3. Nguyên lý làm việc 47 3.3.4. Các loại tín hiệu tác động 48 2
  3. 3.3.5. Các loại mép điều khiển của van đảo chiều 49 3.4. Các loại van điện thủy lực ứng dụng trong mạch điều khiển tự động 49 3.4.1. Phân loại 49 3.4.2. Công dụng 50 3.4.3. Van solenoid 50 3.4.4. Van tỷ lệ 51 3.4.3. Van servo 52 3.5. Cơ cấu chỉnh l−u l−ợng 58 3.5.1. Van tiết l−u 58 3.5.2. Bộ ổn tốc 60 3.6. Van chặn 62 3.6.1. Van một chiều 62 3.6.2. Van một chiều điều khiển đ−ợc h−ớng chặn 64 3.6.3. Van tác động khóa lẫn 64 3.7. ống dẫn, ống nối 65 3.7.1. ống dẫn 65 3.7.2. Các loại ống nối 66 3.7.3. Vòng chắn 66 Ch−ơng 4 : điều chỉnh và ổn định vận tốc 68 4.1. Điều chỉnh bằng tiết l−u 68 4.1.1. Điều chỉnh bằng tiết l−u ở đ−ờng vào 68 4.1.2. Điều chỉnh bằng tiết l−u ở đ−ờng ra 69 4.2. Điều chỉnh bằng thể tích 70 4.3. ổn định vận tốc 71 4.3.1. Bộ ổn tốc lắp trên đ−ờng vào của cơ cấu chấp hành 72 4.3.2. Bộ ổn tốc lắp trên đ−ờng ra của cơ cấu chấp hành 73 4.3.3. ổn định tốc độ khi điều chỉnh bằng thể tích kết hợp với tiết l−u 73 Ch−ơng 5 : ứng dụng và thiết kế hệ thống truyền động thủy lực 76 5.1. ứng dụng truyền động thủy lực 76 5.2. Thiết kế hệ thống truyền động thủy lực 81 Phần 2 : hệ thống khí nén 92 Ch−ơng 6 : cơ sở lý thuyết 92 3
  4. 6.1. Lịch lử phát triển và khả năng ứng dụng của HTTĐ khí nén 92 6.1.1. Lịch sử phát triển 92 6.1.2. Khả năng ứng dụng của khí nén 92 6.2. Những −u điểm và nh−ợc điểm của HTTĐ bằng khí nén 93 6.2.1. Ưu điểm 93 6.2.2. Nh−ợc điểm 93 6.3. Nguyên lý truyền động 93 6.4. Sơ đồ nguyên lý truyền động 94 6.5. Đơn vị đo các đại l−ợng cơ bản 94 Ch−ơng 7 : các phần tử khí nén và điện khí nén 96 7.1. Cơ cấu chấp hành 96 7.2. Van đảo chiều 97 7.2.1. Nguyên lý hoạt động của van đảo chiều 97 7.2.2. Ký hiệu van đảo chiều 97 7.2.3. Các tín hiệu tác động 98 7.2.4. Van đảo chiều có vị trí “0” 100 7.2.5. Van đảo chiều không có vị trí “0” 102 7.3. Van chặn 103 7.3.1. Van một chiều 104 7.3.2. Van logic 104 7.3.3. Van OR 104 7.3.4. Van AND 104 7.3.5. Van xả khí nhanh 104 7.4. Van tiết l−u 104 7.4.1. Van tiết l−u có tiết diện không thay đổi 104 7.4.2. Van tiết l−u có tiết diện thay đổi 105 7.4.3. Van tiết l−u một chiều 105 7.5. Van điều chỉnh thời gian 105 7.5.1. Rơle thời gian đóng chậm 105 7.5.2. Rơle thời gian ngắt chậm 105 7.6. Van chân không 105 7.7. Cảm biến bằng tia 106 7.7.1. Cảm biến bằng tia rẽ nhánh 106 7.7.2. Cảm biến bằng tia phản hồi 106 7.7.3. Cảm biến bằng tia qua khe hở 107 Ch−ơng 8 : hệ thống điều khiển khí nén và điện khí nén 108 4
  5. 8.1. Hệ thống điều khiển khí nén 108 8.1.1. Biểu đồ trạng thái 108 8.1.2. Các ph−ơng pháp điều khiển 108 a. Điều khiển bằng tay 108 b. Điều khiển theo thời gian 110 c. Điều khiển theo hành trình 112 d. Điều khiển theo tầng 113 e. Điều khiển theo nhịp 115 8.2. Hệ thống điều khiển điện khí nén 117 8.2.1. Các phần tử điện 117 8.2.2. Mạch điều khiển khí nén 118 a. Mạch điều khiển có tiếp điểm tự duy trì 118 b. Mạch điều khiển có rơle thời gian tác động chậm 119 c. Mạch điều khiển theo nhịp có hai xilanh khí nén 120 Tài liệu tham khảo 121 5
  6. Phần 1: hệ thống thủy lực Ch−ơng 1: cơ sỡ lý thuyết 1.1. lịch sử phát triển và khả năng ứng dụng của hệ thống truyền động thủy lực +/ 1920 đã ứng dụng trong lĩnh vực máy công cụ. +/ 1925 ứng dụng trong nhiều lĩnh vực công nghiệp khác nh−: nông nghiệp, máy khai thác mỏ, máy hóa chất, giao thông vận tải, hàng không, +/ 1960 đến nay ứng dụng trong tự động hóa thiết bị và dây chuyền thiết bị với trình độ cao, có khả năng điều khiển bằng máy tính hệ thống truyền động thủy lực với công suất lớn. 1.2. những −u điểm và nh−ợc điểm của hệ thống truyền động bằng thủy lực 1.1.1. Ưu điểm +/ Truyền động đ−ợc công suất cao và lực lớn, (nhờ các cơ cấu t−ơng đối đơn giản, hoạt động với độ tin cậy cao nh−ng đòi hỏi ít về chăm sóc, bảo d−ỡng). +/ Điều chỉnh đ−ợc vận tốc làm việc tinh và vô cấp, (dễ thực hiện tự động hoá theo điều kiện làm việc hay theo ch−ơng trình có sẵn). +/ Kết cấu gọn nhẹ, vị trí của các phần tử dẫn và bị dẫn không lệ thuộc nhau. +/ Có khả năng giảm khối l−ợng và kích th−ớc nhờ chọn áp suất thủy lực cao. +/ Nhờ quán tính nhỏ của bơm và động cơ thủy lực, nhờ tính chịu nén của dầu nên có thể sử dụng ở vận tốc cao mà không sợ bị va đập mạnh (nh− trong cơ khí và điện). +/ Dễ biến đổi chuyển động quay của động cơ thành chuyển động tịnh tiến của cơ cấu chấp hành. +/ Dễ đề phòng quá tải nhờ van an toàn. +/ Dễ theo dõi và quan sát bằng áp kế, kể cả các hệ phức tạp, nhiều mạch. +/ Tự động hoá đơn giản, kể cả các thiết bị phức tạp, bằng cách dùng các phần tử tiêu chuẩn hoá. 1.1.2. Nh−ợc điểm +/ Mất mát trong đ−ờng ống dẫn và rò rỉ bên trong các phần tử, làm giảm hiệu suất và hạn chế phạm vi sử dụng. +/ Khó giữ đ−ợc vận tốc không đổi khi phụ tải thay đổi do tính nén đ−ợc của chất lỏng và tính đàn hồi của đ−ờng ống dẫn. +/ Khi mới khởi động, nhiệt độ của hệ thống ch−a ổn định, vận tốc làm việc thay đổi do độ nhớt của chất lỏng thay đổi. 1.3. định luật của chất lỏng 6
  7. 1.2.1. áp suất thủy tĩnh Trong chất lỏng, áp suất (do trọng l−ợng và ngoại lực) tác dụng lên mỗi phần tử chất lỏng không phụ thuộc vào hình dạng thùng chứa. A p b F F1 a L c A1 l1 h pF p pF s l2 F2 A2 Hình 1.1. áp suất thủy tĩnh Ta có: Hình a: pS = h.g.ρ + pL (1.1) F Hình b: p = (1.2) F A F1 F2 l2 A2 F1 Hình c: = pF = và = = (1.3) A1 A2 l1 A1 F2 Trong đó: ρ- khối l−ợng riêng của chất lỏng; h- chiều cao của cột n−ớc; g- gia tốc trọng tr−ờng; pS- áp suất do lực trọng tr−ờng; pL- áp suất khí quyển; pF- áp suất của tải trọng ngoài; A, A1, A2- diện tích bề mặt tiếp xúc; F- tải trọng ngoài. 1.2.2. Ph−ơng trình dòng chảy liên tục L−u l−ợng (Q) chảy trong đ−ờng ống từ vị trí (1) đến vị trí (2) là không đổi (const). L−u l−ợng Q của chất lỏng qua mặt cắt A của ống bằng nhau trong toàn ống (điều kiện liên tục). A2 Ta có ph−ơng trình dòng chảy nh− sau: Q = A.v = hằng số (const) (1.4) Với v là vận tốc chảy trung bình qua mặt cắt A. Nếu tiết diện chảy là hình tròn, ta có: A1 v 1 v Q1 = Q2 hay v1.A1 = v2.A2 (1.5) 2 d 2 .π d 2 ⇔ v . 1 = v . 2 1 4 2 4 Vận tốc chảy tại vị trí 2: 2 1 2 d1 Hình 1.2. Dòng chảy liên tục v 2 = v1. 2 (1.6) d2 7
  8. Trong đó: 3 2 Q1[m /s], v1[m/s], A1[m ], d1[m] lần l−ợt là l−u l−ợng dòng chảy, vận tốc dòng chảy, tiết diện dòng chảy và đ−ờng kính ống tại vị trí 1; 3 2 Q2[m /s], v2[m/s], A2[m ], d2[m] lần l−ợt là l−u l−ợng dòng chảy, vận tốc dòng chảy, tiết diện dòng chảy và đ−ờng kính ống tại vị trí 2. 1.2.3. Ph−ơng trình Bernulli Theo hình 1.3 ta có áp suất tại một điểm chất lỏng đang chảy: ρ.v 2 ρ.v 2 p + ρ.g.h + 1 = p + ρ.g.h + 2 = const (1.7) 1 1 2 2 2 2 Trong đó: p1 p1 + ρ.g.h1 ⎫ ⎬ áp suất thủy tỉnh; v1 p + ρ.g.h 2 2 ⎭ p h 2 2 2 1 ρ.v1 ρ.v 2 , : áp suất thủy động; v2 2 2 h2 γ = ρ.g : trọng l−ợng riêng. Hình 1.3. Ph−ơng trình Bernulli 1.4. Đơn vị đo các đại l−ợng cơ bản (Hệ mét) 1.3.1. áp suất (p) Theo đơn vị đo l−ờng SI là Pascal (pa) 2 -1 -2 2 1pa = 1N/m = 1m kgs = 1kg/ms Đơn vị này khá nhỏ, nên ng−ời ta th−ờng dùng đơn vị: N/mm2, N/cm2 và so với đơn vị áp suất củ là kg/cm2 thì nó có mối liên hệ nh− sau: 1kg/cm2 ≈ 0.1N/mm2 = 10N/cm2 = 105N/m2 (Trị số chính xác: 1kg/cm2 = 9,8N/cm2; nh−ng để dàng tính toán, ta lấy 1kg/cm2 = 10N/cm2). Ngoài ra ta còn dùng: 1bar = 105N/m2 = 1kg/cm2 1at = 9,81.104N/m2 ≈ 105N/m2 = 1bar. (Theo DIN- tiêu chuẩn Cộng hòa Liên bang Đức thì 1kp/cm2 = 0,980665bar ≈ 0,981bar; 1bar ≈ 1,02kp/cm2. Đơn vị kG/cm2 t−ơng đ−ơng kp/cm2). 1.3.2. Vận tốc (v) Đơn vị vận tốc là m/s (cm/s). 1.3.2. Thể tích và l−u l−ợng a. Thể tích (V): m3 hoặc lít(l) b. L−u l−ợng (Q): m3/phút hoặc l/phút. Trong cơ cấu biến đổi năng l−ợng dầu ép (bơm dầu, động cơ dầu) cũng có thể dùng đơn vị là m3/vòng hoặc l/vòng. 8
  9. 1.3.4. Lực (F) Đơn vị lực là Newton (N) 1N = 1kg.m/s2. 1.3.5. Công suất (N) Đơn vị công suất là Watt (W) 1W = 1Nm/s = 1m2.kg/s3. 1.5. Các dạng năng l−ợng +/ Mang năng l−ợng: dầu. +/ Truyền năng l−ợng: ống dẫn, đầu nối. +/ Tạo ra năng l−ợng hoặc chuyển đổi thành năng l−ợng khác: bơm, động cơ dầu(mô tơ thủy lực), xilanh truyền lực. 1.5.1. Sơ đồ thủy lực tạo chuyển động tịnh tiến A1 Fs A2 x1, v1 tải 5 d m D F Q Q t p 1 2 p 1 2 F c 4 3 pT p 2 0 6 Qb 1 Hình 1.4. Sơ đồ mạch thủy lực chuyển động tịnh tiến Tính toán: +/ Thông số của cơ cấu chấp hành: Ft và v(v1, v2) Chuyển động tịnh tiến (hành trình làm việc) A1 A2 x1, v1 d m D Ft Q1, p1 Q2, p2≈0 +/ Các ph−ơng trình: L−u l−ợng: Q1 = A1.v1 (1.8) Q2 = A2.v1 Lực: Ft = p1.A1 (1.9) 9
  10. F .v 1 Công suất của cơ cấu chấp hành: N = t []kW (1.10) 60.103 p .Q Công suất thủy lực: N = 1 1 []kW (1.11) 60.103 Nếu bỏ qua tổn thất từ bơm đến cơ cấu chấp hành thì N ≈ Nbơm Nếu tính đến tổn thất thì N N = N = (η = 0,6 ữ 0,8) (1.12) đcơ điện η Chuyển động lùi về (hành trình chạy không) A1 A2 x , v 2 2 d m D F ' ' c Q2 , p2 ≈ 0 Q1, p2 Nếu tải Ft = 0 ⇒ p2 chỉ thắng ma sát p2.A2 ≥ Fc L−u l−ợng: Q1 = A2.v2 (1.13) ' Q2 = A1.v2 ≠ Q2 Do A1 > A2 ⇒ v2 > v1 1.5.2. Sơ đồ thủy lực tạo chuyển động quay Mx Ω tải J θ Q Q nđ, Dm p p p T p Q b Hình 1.5. Sơ đồ mạch thủy lực chuyển động quay 10
  11. M .Ω Công suất của cơ cấu chấp hành: N = x (M = p.D ) (1.14) 102 x m M .2π.n M .n hoặc N = x = x [kW] 102.60 975 p .Q Công suất thủy lực: N = 1 [kW] (Q = D .Ω) (1.15) 60.103 m 1.6. Tổn thất trong hệ thống truyền động bằng thủy lực Trong hệ thống thủy lực có các loại tổn thất sau: 1.6.1. Tổn thất thể tích Loại tổn thất này do dầu thủy lực chảy qua các khe hở trong các phần tử của hệ thống gây nên. Nếu áp suất càng lớn, vận tốc càng nhỏ và độ nhớt càng nhỏ thì tổn thất thể tích càng lớn. Tổn thất thể tích đáng kể nhất là ở các cơ cấu biến đổi năng l−ợng (bơm dầu, động cơ dầu, xilanh truyền lực) Đối với bơm dầu: tổn thất thể tích đ−ợc thể hiện bằng hiệu suất sau: ηtb = Q/Q0 (1.16) Q- L−u l−ợng thực tế của bơm dầu; Q0- L−u l−ợng danh nghĩa của bơm. Nếu l−u l−ợng chảy qua động cơ dầu là Q0đ và l−u l−ợng thực tế Qđ = qđ.ηđ thì hiệu suất của đông cơ dầu là: ηtđ = Q0đ/Qđ (1.17) Nếu nh− không kể đến l−ợng dầu dò ở các mối nối, ở các van thì tổn thất trong hệ thống dầu ép có bơm dầu và động cơ dầu là: ηt = ηtb. ηtđ (1.18) 1.6.2. Tổn thất cơ khí Tổn thất cơ khí là do ma sát giữa các chi tiết có chuyển động t−ơng đối ở trong bơm dầu và động cơ dầu gây nên. Tổn thất cơ khí của bơm đ−ợc biểu thị bằng hiệu suất cơ khí: ηcb = N0/N (1.19) N0- Công suất cần thiết để quay bơm (công suất danh nghĩa), tức là công suất cần thiết để đảm bảo l−u l−ợng Q và áp suất p của dầu, do đó: p.Q N0 = (kW) (1.20) 6.104 N- Công suất thực tế đo đ−ợc trên trục của bơm (do mômen xoắn trên trục). 4 Đối với dầu: N0đ = (p.Qđ)/6.10 (1.21) Do đó: ηcđ = Nđ/N0đ (1.22) 11
  12. Từ đó, tổn thất cơ khí của hệ thống thủy lực là: ηc = ηcb. ηcđ (1.23) 1.6.3. Tổn thất áp suất Tổn thất áp suất là sự giảm áp suất do lực cản trên đ−ờng chuyển động của dầu từ bơm đến cơ cấu chấp hành (động cơ đầu, xilanh truyền lực). Tổn thất này phụ thuộc vào các yếu tố sau: +/ Chiều dài ống dẫn +/ Độ nhẵn thành ống +/ Độ lớn tiết diện ống dẫn +/ Tốc độ chảy +/ Sự thay đổi tiết diện +/ Sự thay đổi h−ớng chuyển động +/ Trọng l−ợng riêng, độ nhớt. Nếu p0 là áp suất của hệ thống, p1 là áp suất ra, thì tổn thất đ−ợc biểu thị bằng hiệu suất: p0 − p1 ∆p ηa = = (1.24) p0 p0 Hiệu áp ∆p là trị số tổn thất áp suất. Tổn thất áp suất do lực cản cục bộ gây nên đ−ợc tính theo công thức sau: ρ l ⎡ N ⎤ ρ l ∆p = 10.ξ. .v 2 . = 10−4.ξ. .v 2 . bar (1.25) ⎢ 2 ⎥ [] 2g d ⎣m ⎦ 2g d Trong đó: ρ- khối l−ợng riêng của dầu (914kg/m3); g- gia tốc trọng tr−ờng (9,81m/s2); v- vận tốc trung bình của dầu (m/s); ξ- hệ số tổn thất cục bộ; l- chiều dài ống dẫn; d- đ−ờng kính ống. 1.6.4. ảnh h−ởng các thông số hình học đến tổn thất áp suất a. Tiết diện dạng tròn Nếu ta gọi: ∆p- Tổn thất áp suất; l l- Chiều dài ống dẫn; ρ- Khối l−ợng riêng của chất lỏng; Q D Q- L−u l−ợng; D- Đ−ờng kính; ν- Độ nhớt động học; Hình 1.6. Dạng tiết diện tròn λ- Hệ số ma sát của ống; 12
  13. λLAM- Hệ số ma sát đối với chảy tầng; λTURB- Hệ số ma sát đối với chảy rối. Chảy tầng Chảy rối 8 l.ρ.Q2 ⇒ Tổn thất: ∆p = .λ. π2 D5 256 D.ν λ = λ - . LAM π Q 0,316 λ = λTURB. Chảy rối 4 Q 4 . π D.ν Chảy tầng 4 Q Số Reynold: . > 3000. Hình 1.7. Chảy tầng và chảy rối π D.ν trong ống dẫn b. Tiết diện thay đổi lớn đột ngột 2 ⎛ D2 ⎞ 8 ρ.Q2 Tổn thất: ∆p = ⎜1− 1 ⎟ . . ⎜ 2 ⎟ 2 4 D1 Q D2 ⎝ D2 ⎠ π D1 Trong đó: D1- đ−ờng kính ống dẫn vào; Hình 1.8. Tiết diện thay đổi lớn đột ngột D2- đ−ờng kính ống dẫn ra. c. Tiết diện nhỏ đột ngột ⎛ D 2 ⎞ 8 ρ.Q 2 Tổn thất: ∆p = 0,5.⎜1− 2 ⎟. . ⎜ 2 ⎟ 2 4 Q ⎝ D1 ⎠ π D1 D1 D2 D1- Đ−ờng kính ống dẫn ra; D2- Đ−ờng kính ống dẫn vào. Hình 1.9. Tiết diện nhỏ đột ngột d. Tiết diện thay đổi lớn từ từ ⎛ D 4 ⎞ 8 ρ.Q2 Tổn thất: ∆p = 0,12 ữ 0,2 ⎜1− 1 ⎟. . []⎜ 4 ⎟ 2 4 ⎝ D 2 ⎠ π D1 0 Q α < 8 D D1 2 Hình 1.10. Tiết diện thay đổi lớn từ từ d. Tiết diện nhỏ từ từ Tổn thất: ∆p = 0 Q 0 α < 8 Hình 1.11. Tiết diện nhỏ từ từ 13
  14. f. Vào ống dẫn Tổn thất áp suất đ−ợc tính theo công thức sau: 8 ρ.Q 2 ∆p = ξ . . E π2 D 4 Trong đó hệ số thất thoát ξE đ−ợc chia thành hai tr−ờng hợp nh− ở bảng sau: Cạnh Hệ số thất thoát ξE Sắc 0,5 a Gãy khúc 0,25 Tròn 0,06 b Có tr−ớc 3000 π D.ν h. ống dẫn gãy khúc D Q R ≈ 4 α D 8 ρ.Q2 ∆p = ξ . . U π2 D 4 Góc α, β Hệ số thất thoát ξU Q α = 20 0,06 D α = 40 0,2 β α = 60 0,47 R Hình 1.14. ống dẫn gãy khúc 14
  15. β = 20 0,04 β = 40 0,07 β = 60 0,1 0,11 β = 80 0,11 β = 90 i. Tổn thất áp suất ở van k. Tổn thất trong hệ thống thủy lực 1.7. độ nhớt và yêu cầu đối với dầu thủy lực 1.7.1. Độ nhớt Độ nhớt là một trong những tính chất quan trọng nhất của chất lỏng. Độ nhớt xác định ma sát trong bản thân chất lỏng và thể hiện khả năng chống biến dạng tr−ợt hoặc biến dạng cắt của chất lỏng. Có hai loại độ nhớt: a. Độ nhớt động lực Độ nhớt động lực η là lực ma sát tính bằng 1N tác động trên một đơn vị diện tích bề mặt 1m2 của hai lớp phẳng song song với dòng chảy của chất lỏng, cách nhau 1m và có vận tốc 1m/s. Độ nhớt động lực η đ−ợc tính bằng [Pa.s]. Ngoài ra, ng−ời ta còn dùng đơn vị poazơ (Poiseuille), viết tắt là P. 1P = 0,1N.s/m2 = 0,010193kG.s/m2 1P = 100cP (centipoiseuilles) Trong tính toán kỹ thuật th−ờng số quy tròn: 1P = 0,0102kG.s/m2 b. Độ nhớt động Độ nhớt động là tỷ số giữa hệ số nhớt động lực η với khối l−ợng riêng ρ của chất lỏng: η ν = (1.26) ρ Đơn vị độ nhớt động là [m2/s]. Ngoài ra, ng−ời ta còn dùng đơn vị stốc ( Stoke), viết tắt là St hoặc centistokes, viết tắt là cSt. 1St = 1cm2/s = 10-4m2/s 1cSt = 10-2St = 1mm2/s. c. Độ nhớt Engler (E0) Độ nhớt Engler (E0) là một tỷ số quy −ớc dùng để so sánh thời gian chảy 200cm3 dầu qua ống dẫn có đ−ờng kính 2,8mm với thời gian chảy của 200cm3 n−ớc cất ở nhiệt 0 0 độ 20 C qua ống dẫn có cùng đ−ờng kính, ký hiệu: E = t/tn Độ nhớt Engler th−ờng đ−ợc đo khi đầu ở nhiệt độ 20, 50, 1000C và ký hiệu t−ơng 0 0 0 ứng với nó: E 20, E 50, E 100. 15
  16. 1.7.2. Yêu cầu đối với dầu thủy lực Những chỉ tiêu cơ bản để đánh giá chất l−ợng chất lỏng làm việc là độ nhớt, khả năng chịu nhiệt, độ ổn định tính chất hoá học và tính chất vật lý, tính chống rỉ, tính ăn mòn các chi tiết cao su, khả năng bôi trơn, tính sủi bọt, nhiệt độ bắt lữa, nhiệt độ đông đặc. Chất lỏng làm việc phải đảm bảo các yêu cầu sau: +/ Có khả năng bôi trơn tốt trong khoảng thay đổi lớn nhiệt độ và áp suất; +/ Độ nhớt ít phụ thuộc vào nhiệt độ; +/ Có tính trung hoà (tính trơ) với các bề mặt kim loại, hạn chế đ−ợc khả năng xâm nhập của khí, nh−ng dễ dàng tách khí ra; +/ Phải có độ nhớt thích ứng với điều kiện chắn khít và khe hở của các chi tiết di tr−ợt, nhằm đảm bảo độ rò dầu bé nhất, cũng nh− tổn thất ma sát ít nhất; +/ Dầu phải ít sủi bọt, ít bốc hơi khi làm việc, ít hoà tan trong n−ớc và không khí, dẫn nhiệt tốt, có môđun đàn hồi, hệ số nở nhiệt và khối l−ợng riêng nhỏ. Trong những yêu cầu trên, dầu khoáng chất thoả mãn đ−ợc đầy đủ nhất. 16