Bài giảng Vật liệu xây dựng (Phần 2)

pdf 51 trang phuongnguyen 5190
Bạn đang xem 20 trang mẫu của tài liệu "Bài giảng Vật liệu xây dựng (Phần 2)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pdfbai_giang_vat_lieu_xay_dung_phan_2.pdf

Nội dung text: Bài giảng Vật liệu xây dựng (Phần 2)

  1. CHƯƠNG III VẬT LIỆU GỐM XÂY DỰNG 3.1. Khái niệm và phân loại 3.1.1. Khái niệm Vật liệu nung hay gốm xây dựng là loại vật liệu được sản xuất từ nguyên liệu chính là đất sét bằng cách tạo hình và nung ở nhiệt độ cao. Do quá trình thay đổi lý, hóa trong khi nung nên vật liệu gốm xây dựng có tính chất khác hẳn so với nguyên liệu ban đầu. Trong xây dựng vật liệu gốm được dùng trong nhiều chi tiết kết cấu của công trình từ khối xây, lát nền, ốp tường đến cốt liệu rỗng (keramzit) cho loại bê tông nhẹ. Ngoài ra các sản phẩm sứ vệ sinh là những vật liệu không thể thiếu được trong xây dựng. Các sản phẩm gốm bền axít, bền nhiệt được dùng nhiều trong công nghiệp hóa học, luyện kim và các ngành công nghiệp khác. Ưu điểm chính của vật liệu gốm là có độ bền và tuổi thọ cao, từ nguyên liệu địa phương có thể sản xuất ra các sản phẩm khác nhau thích hợp với các yêu cầu sử dụng, công nghệ sản xuất tương đối đơn giản, giá thành hạ. Song vật liệu gốm vẫn còn những hạn chế là giòn, dễ vỡ, tương đối nặng, khó cơ giới hóa trong xây dựng đặc biệt là với gạch xây và ngói lợp. 3.1.2. Phân loại Sản phẩm gốm xây dựng rất đa dạng về chủng loại và tính chất. Để phân loại chúng người ta dựa vào những cơ sở sau : Theo công dụng vật liệu gốm được chia ra : Vật liệu xây : Các loại gạch đặc, gạch 2 lỗ, gạch 4 lỗ. Vật liệu lợp : Các loại ngói. Vật liệu lát : Tấm lát nền . lát đường, lát vỉa hè. Vật liệu ốp : Ốp tường nhà, ốp cầu thang, ốp trang trí. Sản phẩm kỹ thuật vệ sinh : Chậu rửa, bồn tắm, bệ xí. Sản phẩm cách nhiệt, cách âm : Các loại gốm xốp. Sản phẩm chịu lửa : Gạch samốt, gạch đi nát. Theo cấu tạo vật liệu gốm được chia ra : Gốm đặc : Có độ rỗng r ≤ 5% như gạch ốp, lát, ống thoát nước. Gốm rỗng : Có độ rỗng r > 5% như gạch xây các loại, gạch lá nem. Theo phương pháp sản xuất vật liệu gốm được chia ra: Gốm tinh: thường có cấu trúc hạt mịn, sản xuất phức tạp như gạch trang trí, sứ vệ sinh. Gốm thô: thường có cấu trúc hạt lớn, sản xuất đơn giản như gạch ngói, tấm lát, ống nước. 3.2. Nguyên liệu và sơ lược quá trình chế tạo 3.2.1. Nguyên vật liệu 31
  2. Nguyên liệu chính để sản xuất vật liêu nung là đất sét. Ngoài ra tùy thuộc vào yêu cầu của sản phẩm và tính chất của đất sét mà có thể dùng thêm các loại phụ gia cho phù hợp. Đất sét Thành phần chính của đất sét là các khoáng alumôsilicát ngậm nước (nAl2O3.mSiO2.pH2O) chúng được tạo thành do fenspát bị phong hóa. Tùy theo điều kiện của từng môi trường mà các khoáng tạo ra có thành phần khác nhau, khoáng caolinit 2SiO2.Al2O3.2H2O và khoáng montmôrilonit 4SiO2.Al2O3.nH2O là hai khoáng quyết định những tính chất quan trọng của đất sét như độ dẻo, độ co, độ phân tán, khả năng chịu lửa v.v Ngoài ra trong đất sét còn chứa các tạp chất vô cơ và hữu cơ như thạch anh (SiO2), cacbonat (CaCO3, MgCO3), các hợp chất sắt Fe(OH)3, FeS2, tạp chất hữu cơ ở dạng than bùn, bi tum v.v các tạp chất đều ảnh hưởng đến tính chất của đất sét. Màu sắc của đất sét là do tạp chất vô cơ và hữu cơ quyết định. Màu của đất sét chứa ít tạp chất thường là trắng, chứa nhiều tạp chất thì đất sét có màu xám xanh, nâu, xám đen. Tính chất chủ yếu của đất sét bao gồm tính dẻo khi nhào trộn với nước, sự co thể tích dưới tác dụng của nhiệt và sự biến đổi lý hóa khi nung. Chính nhờ có sự thay đổi thành phần khoáng vật trong quá trình nung mà sản phẩm gốm có tính chất khác hẳn tính chất của nguyên liệu ban đầu. Sau khi nung, thành phần khoáng cơ bản của vật liệu gốm là mulit 3Al2O3.2SiO2 (A3S2) đây là khoáng làm cho sản phẩm có cường độ cao và bền nhiệt. Các vật liệu phụ Để cải thiện tính chất của đất sét cũng như tính chất của sản phẩm, trong quá trình sản xuất ta có thể sử dụng một số loại vật liệu phụ sau: Vật liệu gầy pha vào đất sét nhằm giảm độ dẻo, giảm độ co khi sấy và nung, thường dùng là bột samốt, đất sét nung non, cát, tro nhiệt điện, xỉ hạt hóa. Phụ gia cháy như mùn cưa, tro nhiệt diện, bã giấy. Các thành phần này có tác dụng làm tăng độ rỗng của sản phẩm gạch và giúp cho quá trình gia nhiệt đồng đều hơn. Phụ gia tăng dẻo như các loại đất sét có độ dẻo cao như cao lanh đóng vai trò là chất tăng dẻo cho đất sét. Phụ gia hạ nhiệt độ nung có tác dụng hạ thấp nhiệt độ kết khối làm tăng nhiệt độ và độ đặc của sản phẩm, phụ gia hạ nhiệt độ nung thường dùng là fenspát, pecmatit, canxit đôlomit. Men là lớp thủy tinh lỏng phủ lên bề mặt của sản phẩm, bảo vệ sản phẩm, chống lại tác dụng của môi trường. Men dùng để sản xuất vật liệu gốm rất đa dạng, có màu và không màu, trắng và đục, bóng và không bóng, có loại dùng cho đồ sứ (men sứ) có loại dùng sản phẩm sành (men sành) và có loại men trang trí v.v Vì vậy việc chế tạo men là rất phức tạp. 3.2.2. Sơ lược quá trình sản xuất một số loại sản phẩm thông dụng Sản xuất gạch 32
  3. Gạch xây là loại vật liệu gốm phổ biến thông dụng nhất, có công nghệ sản xuất đơn giản. Công nghệ sản xuất gạch bao gồm 5 giai đoạn: Khai thác nguyên liệu, nhào trộn, tạo hình, phơi sấy, nung và làm nguội ra lò. Khai thác nguyên liệu Trước khi khai thác cần phải loại bỏ 0,3 - 0,4 m lớp đất trồng trọt ở bên trên. Việc khai thác có thể bằng thủ công hoặc dùng máy ủi, máy đào, máy cạp. Đất sét sau khi khai thác được ngâm ủ trong kho nhằm tăng tính dẻo và độ đồng đều của đất sét. Nhào trộn đất sét Quá trình nhào trộn sẽ làm tăng tính dẻo và độ đồng đều cho đất sét giúp cho việc tạo hình được dễ dàng. Thường dùng các loại máy cán thô, cán mịn, máy nhào trộn, máy một trục, 2 trục để nghiền đất. Tạo hình Để tạo hình gạch người ta thường dùng máy đùn ruột gà. Trong quá trình tạo hình còn dùng thiết bị có hút chân không để tăng độ đặc và cường độ của sản phẩm. Phơi sấy Khi mới được tạo hình gạch mộc có độ ẩm rất lớn, nếu đem nung ngay gạch sẽ bị nứt tách do mất nước đột ngột. Vì vậy phải phơi sấy để giảm độ ẩm, giúp cho sản phẩm mộc có độ cứng cần thiết, tránh biến dạng khi xếp vào lò nung. Nếu phơi gạch tự nhiên trong nhà giàn hay ngoài sân thì thời gian phơi từ 8 đến 15 ngày. Nếu sấy gạch bằng lò sấy tuy nen thì thời gian sấy từ 18 đến 24 giờ. Việc sấy gạch bằng lò sấy giúp cho quá trình sản xuất được chủ động không phụ thuộc vào thời tiết, năng suất cao, chất lượng sản phẩm tốt, điều kiện làm việc của công nhân được cải thiện, nhưng đòi hỏi phải có vốn đầu tư lớn, tốn nhiên liệu. Nung Đây là công đoạn quan trọng nhất quyết định chất lượng của gạch. Quá trình nung gồm có ba giai đoạn. 1.Đốt nóng : Nhiệt độ đến 4500C, gạch bị mất nước, tạp chất hữu cơ cháy. 2.Nung : Nhiệt độ đến 1000 - 10500C, đây là quá trình biến đổi của các thành phần khoáng tạo ra sản phẩm có cường độ cao, màu sắc đỏ hồng. 3.Làm nguội : Quá trình làm nguội phải từ từ tránh đột ngột để tránh nứt tách sản phẩm, khi ra lò nhiệt độ của gạch khoảng 50 - 550C. Theo nguyên tắc hoạt động, lò nung gạch có hai loại: Lò gián đoạn và lò liên tục. Trong lò nung gián đoạn gạch được nung thành mẻ, loại này có công suất nhỏ, chất lượng sản phẩm thấp. Trong lò liên tục gạch được xếp vào, nung và ra lò liên tục trong cùng một thời gian, do đó năng suất cao mặt khác chế độ nhiệt ổn định nên chất lượng sản phẩm cao. Hai loại lò liên tục được dùng nhiều là lò vòng (lò hopman) và lò tuy nen. 33
  4. Sản xuất ngói Kỹ thuật sản xuất ngói cũng gần giống như sản xuất gạch. Nhưng do ngói có hình dạng phức tạp, mỏng, yêu cầu chất lượng cao, không sứt mẻ, nứt vỡ, ít thấm ), nên kỹ thuật sản xuất ngói có một số yêu cầu khác gạch. Nguyên liệu dùng loại đất sét có độ dẻo cao, dễ chảy. Đất không chứa tạp chất cacbonat. Trong sản xuất ngói có thể dùng 15 - 25% phụ gia cát, 10 - 20% phụ gia samốt. Gia công nguyên liệu và chuẩn bị phối liệu được thực hiện chủ yếu theo phương pháp dẻo và cũng có thể theo phương pháp bán khô và cả phương pháp ướt (khi trong nguyên liệu có lẫn tạp chất). Gia công và chuẩn bị phối liệu kỹ hơn nhằm làm cho độ ẩm đồng đều hơn và phá vỡ tối đa cấu trúc của nguyên liệu đất sét bằng cách ngâm ủ dài ngày hơn. Trước khi tạo hình phải tạo ra những viên galet trên máy ép lentô, rồi ủ để độ ẩm đồng đều sau đó mới tạo hình ngói từ những viên gạch galét. Ngói được sấy trong các nhà sấy tự nhiên (các nhà kho sấy có giá phơi) hay sấy nhân tạo (trong các thiết bị sấy phòng, sấy tunen, sấy băng chuyền giá treo). Để tránh nứt nẻ cho sản phẩm, ngói được sấy theo chế độ sấy dịu. Khi nung ngói, nhiệt được nâng lên từ từ, nung lâu hơn, làm nguội chậm hơn. Sản xuất gạch gốm ốp lát Nguyên liệu chủ yếu trong sản xuất gạch gốm ốp lát là loại đất sét chất lượng cao, có nhiệt độ kết khối thấp, khả năng liên kết cao và có khoảng kết khối rộng (không nhỏ hơn 80-100oC, có thể đến 200oC). Về thành phần khoáng, đất sét tốt nhất là caolinit-thuỷ mica (hàm lượng mi ca lớn, thạch anh thấp), các loại đất sét caolinit-montmôrilonit (hàm lượng montmôrilonit tới 20%, hàm lượng thạch anh thấp không đáng kể) cũng là nguyên liệu để sản xuất sản phẩm sứ vệ sinh cao cấp và gạch gốm ốp lát (quy định trong tiêu chuẩn Việt Nam TCVN 6300 : 1997). Ngoài đất sét, trường thạch cũng là nguyên liệu thiết yếu đóng vai trò là chất chảy. Khi nóng chảy trường thạch tạo ra pha thuỷ tinh hoà tan một phần thạch anh, bao bọc và gắn các tinh thể tạo nên độ bền cần thiết cho vật liệu. Khi làm nguội từ pha lỏng này, mulit thứ sinh hình kim sẽ kết dính tạo nên cốt cho vật liệu. Theo TCVN 6598 : 2000 trường thạch làm xương cần phải đảm bảo một số chỉ tiêu về hàm lượng silic đioxit, nhôm oxyt, kiềm oxyt và sắt oxyt. Thạch anh là phụ gia gầy, có tác dụng làm giảm độ co sấy, co nung, làm tăng các mao mạch thúc đẩy quá trình sấy bán thành phẩm. Nó là thành phần tạo nên kết cấu của xương. Tal là phụ gia trong xương gốm (hàm lượng nhỏ) có tác dụng hoá học với phối liệu chính trong quá trình nung và thúc đẩy quá trình tạo thành mulit, tăng độ bền uốn và độ bền va đập. Ở nước ta, cho đến năm 2002, cả nước đã có trên 40 cơ sở sản xuất ceramic với tổng công suất hơn 80 tr.m2/năm đều sử dụng đất sét trong nước như Hải Dương, Quảng Ninh, Hà Bắc, Phú Thọ, Lào Cai, Hà Tây, Thanh Hoá, Đồng Nai, Sông Bé để sản suất gạch ốp lát nền bằng công nghệ tiên tiến (nung nhanh 1 lần) của Tây Ban Nha, Italia, CHLB Đức Đặc điểm của công nghệ 34
  5. này là tất cả các công đoạn đều được điều khiển tự động bằng điện tử hoặc Computer cho phép kiểm tra chính xác, linh hoạt các thông số công nghệ cài đặt. Các công đoạn chính của quá trình công nghệ bao gồm: nghiền ướt, sấy phun, ép tạo hình, sấy, tráng men - in hoa, nung nhanh. Phối liệu được chuẩn bị bằng phương pháp nghiền ướt trong máy nghiền bi. Công đoạn này đảm bảo tạo độ mịn cần thiết và sự đồng nhất phối liệu. Độ mịn sau khi nghiền cần đạt lượng lọt sàng 10.000 lỗ/cm2 là /94%. Hồ xương có độ ẩm 33-34%. Trong sấy phun, hồ được loại bỏ nước, độ ẩm của xương còn 5-6% và tạo bột ép với cỡ hạt thích hợp. Gạch ốp lát được tạo hình theo phương pháp ép bán khô bằng máy ép thuỷ lực với cường độ ép 250-300 kG/cm2. Viên gạch sau tạo hình có cường độ mộc 12-15 kG/cm2. Công đoạn sấy được thực hiện ngay sau khi tạo hình nhằm giảm độ ẩm của gạch mộc và tạo cho viên gạch có độ ẩm cần thiết để thực hiện các công đoạn tiếp theo. Quá trình này thường do máy sấy đứng, sấy băng chuyền, sấy bằng tuynen đảm nhiệm. Trong công nghệ nung nhanh một lần, việc tráng men và in hoa trang trí được thực hiện bằng nhiều phương pháp khác nhau. Để thực hiện công đoạn này viên gạch mộc cần có đủ độ bền để chịu được các quá trình lặp đi lặp lại nhiều lần, men được tưới phun, in hay biến thành dạng bụi khô phủ lên bề mặt tấm lát đã sấy. Nung nhanh là công đoạn chính trong sản xuất gạch ốp lát nền. Xương và men được nung nhanh đồng thời trong một khoảng thời gian ngắn (45-55 ph). Tại công đoạn này xảy ra các biến đổi hoá lý phức tạp, hình thành nên cấu trúc của sản phẩm. Các biến đổi hoá lý đó là: biến đổi thể tích kèm theo sự mất nước lý học, biến đổi thành phần khoáng, tạo các pha mới, kết khối. 3.3. Các loại sản phẩm gốm xây dựng 3.3.1. Các loại gạch xây Gạch chỉ (gạch đặc tiêu chuẩn) Có kích thước 220 x 105 x 60 mm . Theo tiêu chuẩn Việt Nam TCVN 1451-1998 gạch đặc phải đạt những yêu cầu sau: Hình dáng vuông vắn, sai lệch về kích thước không lớn quá qui định, về chiều dài ±7mm về chiều rộng ± 5 mm, về chiều dày ±3 mm, gạch không sứt mẻ, cong vênh. Độ cong ở mặt đáy không quá 4 mm, ở mặt bên không quá 5 mm, trên mặt gạch không quá 5 đường nứt, mỗi đường dài không quá 15 mm và sâu không quá 1mm. Tiếng gõ phải trong thanh, màu nâu tươi đồng đều, bề mặt mịn không bám phấn. Khối lượng thể tích 1700 - 1900 kg/m3, khối lượng riêng 2500-2700 kg/m3, hệ số dẫn nhiệt λ = 0,5 - 0,8 KCal /m.0C.h, độ hút nước theo khối lượng 8-18%, Giới hạn bền khi nén và uốn của 5 mác gạch đặc trên nêu trong bảng 3 - 1. Ngoài ra còn có gạch đặc kích thước 190 x 90 x 45 mm và một số loại gạch không qui cách khác. 35
  6. Bảng 3 - 1 Giới hạn bền ( kG/cm2 ) không nhỏ hơn Mác Khi nén Khi uốn gạch đặc Trung bình của Nhỏ nhất cho Trung bình của Nhỏ nhất cho 5 mẫu 1 mẫu 5 mẫu 1 mẫu 200 200 150 34 17 150 150 125 28 14 125 125 100 25 12 100 100 75 22 11 75 75 50 18 9 50 50 35 16 8 Ký hiệu quy ước của các loại gạch đặc đất sét nung như sau: Ký hiệu kiểu gạch, chiều dày, mác gạch, ký hiệu và số hiệu tiêu chuẩn. Ví dụ : Gạch đặc chiều dày 60, mác 100 theo TCVN 1451:1998 được ký hiệu như sau : GĐ 60 - 100. TCVN 1451:1998 Gạch chỉ được sử dụng rộng rãi để xây tường, cột, móng, ống khói, lát nền. Gạch có lỗ rỗng tạo hình Các loại gạch này có khối lượng thể tích nhỏ hơn 1600 kg/m3. Theo yêu cầu sử dụng, khi sản xuất có thể tạo 2, 4, 6, lỗ. Loại gạch này thường được dùng để xây tường ngăn, tường nhà khung chịu lực, sản xuất các tấm tường đúc sẵn. Tiêu chuẩn TCVN 1450 : 1998 quy định kích thước cơ bản của gạch rỗng đất sét nung như sau (bảng 3-2). Bảng 3-2 Tên kiểu gạch Dài Rộng Dày Gạch rỗng 60 220 105 60 Gạch rỗng 90 190 90 90 Gạch rỗng105 220 105 105 Ngoài các loại kích thước cơ bản trên còn 1 số loại gạch có kích thước khác như 220 x 105 x 90, 220 x 105 x 200. Gạch rỗng đất sét nung phải có hình hộp chữ nhật với các mặt bằng phẳng. Trên các mặt của gạch có thể có rãnh hoặc gợn khía. Sai số cho phép kích thước viên gạch rỗng đất sét nung không được vượt quá qui định như sau: Theo chiều dài ± 7 mm; theo chiều rộng ± 5 mm; theo chiều dày ± 3 mm . Độ hút nước theo khối lượng HP = 8 - 18% . Theo TCVN 1450 :1998 gạch rỗng có các loại mác 35; 50; 75; 100; 125. Độ bền nén và uốn của gạch rỗng đất sét nung quy định trong bảng 3 - 3. Ký hiệu quy ước các loại gạch rỗng theo thứ tự sau : Tên kiểu gạch, chiều dày, số lỗ rỗng, đặc điểm lỗ, độ rỗng, mác gạch, ký hiệu và số hiệu của tiêu chuẩn. 36
  7. Ví dụ : Ký hiệu quy ước của gạch rỗng dày 90, bốn lỗ vuông, độ rỗng 47%, mác 50 là : GR 90 - 4V 47 - M 50 . TCVN 1450 :1998. Bảng 3 - 3 Giới hạn bền ( kG/cm2 ) Mác Khi nén Khi uốn gạch rỗng Trung bình của 5 Nhỏ nhất cho 1 Trung bình của 5 Nhỏ nhất cho 1 mẫu mẫu mẫu mẫu 125 125 100 18 9 100 100 75 16 8 75 75 50 14 7 50 50 35 12 6 Gạch nhẹ Gạch nhẹ là tên gọi chung cho các loại gạch có khối lượng thể tích thấp hơn gạch chỉ và gạch có lỗ rỗng tạo hình. Loại gạch này được chế tạo bằng cách thêm vào đất sét một số phụ gia dễ cháy như : mùn cưa, than bùn, than cám. Khi nung ở nhiệt độ cao, các chất hữu cơ này bị cháy để lại nhiều lỗ rỗng nhỏ trong viên gạch. Khối lượng thể tích của loại gạch này khoảng 1200-1300 kg/m3, hệ số dẫn nhiệt λ 0,3- 0,4 kCal/m0C.h. Loại gạch này có cường độ chịu lực thấp nên chỉ được sử dụng để xây tường ngăn, tường cách nhiệt, lớp chống nóng cho mái bê tông cốt thép. Gạch chịu lửa Gạch chịu lửa là loại sản phẩm gốm chịu được tác dụng lâu dài của các tác nhân cơ học và hóa lý ở nhiệt độ cao. Theo TCVN 5441-1991 vật liệu chịu lửa chia ra làm 3 loại: - Chịu lửa trung bình: có độ chịu lửa từ 1580 - 1770oC. - Chịu lửa cao: có độ chịu lửa từ 1770 - 2000oC. - Chịu lửa rất cao: có độ chịu lửa lớn hơn 2000oC. Bảng 3 - 4 Kích thước, mm Kiểu gạch a b c c1 230 113 20 Gạch chữ nhật 230 113 30 230 113 40 230 113 65 230 113 65 45 230 113 65 55 Gạch vát dọc 230 113 75 55 230 113 75 65 113 230 65 45 113 230 65 50 Gạch vát ngang 113 230 65 55 113 230 75 35 113 230 75 65 37
  8. Gạch chịu lửa sản xuất từ đất sét phổ biến nhất là gạch samốt, loại gạch này thường có kiểu và kích thước cơ bản được qui định theo TCVN 4710 - 1989 như bảng 3-4 và hình 3-1, 3-2 và 3-3. Gạch chịu lửa có nhiều loại và được sản xuất từ nhiều loại nguyên liệu khác nhau. Hình 3-1: Gạch chữ nhật Hình 3-2: Gạch vát dọc Hình 3-3: Gạch vát ngang 3.3.2. Gạch ốp lát Phân loại Gạch ốp lát bao gồm nhiều loại với các công dụng khác nhau có thể có men hoặc không có men. Theo TCVN 7132:2002, gạch gốm ốp lát được phân thành các nhóm dựa theo phương pháp tạo hình và theo độ hút nước. Theo phương pháp tạo hình có 3 nhóm gạch: Nhóm A: Gạch tạo hình dẻo, là loại gạch được tạo hình bằng phương pháp dẻo qua máy đùn và được cắt theo kích thước nhất định. Nhóm B: Gạch tạo hình ép bán khô, là gạch được tạo hình từ hỗn hợp bột mịn ép bán khô trong khuôn ở áp lực cao. Nhóm C: gạch tạo hình bằng các phương pháp khác, là gạch được tạo hình không phải bằng phương pháp dẻo hoặc phương pháp ép bán khô. Theo độ hút nước :( E hoặc HP ) : có 3 nhóm gạch: Nhóm I: gạch có độ hút nước thấp. Với E ≤ 3 %. Đối với gạch ép bán khô, nhóm 1 được chia thành 2 nhóm nhỏ là BIa có E≤0,5% và BIb có 0,5% 10%. Dưới đây giới thiệu một số loại gạch thường dùng để lát hoặc ốp trong công trình xây dựng hiện nay. Gạch lá dừa (hình 3-4) : Là loại gạch được sản xuất từ đất sét có phụ gia hoặc không có phụ gia, tạo hình bằng phương pháp dẻo.Theo TCXD 85:1981 38
  9. gạch có kích thước 200 x 100 x 35mm, sai lệch cho phép của kích thước không được vượt quá: -Theo chiều dài: ± 4mm -Theo chiều rộng: ± 3mm -Theo chiều dày: ± 2mm Gạch phải được nung chín đều, không phân lớp, không phồng rộp, màu sắc viên gạch trong cùng một lô phải đồng đều, không được có vết hoen ố ở mặt có rãnh, khi dùng búa gõ nhẹ, gạch phải có tiếng kêu trong và chắc. Gạch lá dừa được chia ra 3 loại Hình 3-4: Gạch lá dừa (bảng 3-5). Bảng 3 -5 Chỉ tiêu Loại I Loại II Loại III Độ hút nước ,% , không lớn hơn 1 7 10 Độ mài mòn, không lớn hơn, g/cm2 0,1 0,2 0,4 Gạch lá dừa thường dùng để lát vỉa hè, lối đi các vườn hoa, lối ra vào sân bãi trong các công trình dân dụng. Gạch ốp lát có độ hút nước thấp Loại gạch này ký hiệu là BIb được sản xuất bằng phương pháp ép bán khô có độ hút nước thấp (nhóm I), theo tiêu chuẩn TCVN 6884 : 2001 loại gạch này phải đạt các yêu cầu theo bảng 3-6 và 3-7. Mức sai lệch giới hạn về kích thước, hình dạng và chất lượng bề mặt của gạch ốp lát có ký hiệu BIb được qui định như sau: Bảng 3-6 Diện tích bề mặt của sản phẩm, S, cm2 Tên chỉ tiêu 90 410 Sai lệch kích thước, hình dáng so với kích thước danh nghĩa tương ứng,%, không lớn hơn 1. Kích thước cạnh bên (a, b) ± 1,00 ± 0,75 ± 0,60 2. Chiều dày (d): ± 10 ± 5 ± 5 3. Độ vuông góc: ± 0,6 ± 0,6 ± 0,6 Chất lượng bề mặt: Được tính bằng phần diện tích bề 95 mặt quan sát không có khuyết tật trông thấy, %, không nhỏ hơn 39
  10. Các chỉ tiêu cơ lý của gạch ốp lát có ký hiệu BIb Bảng 3-7 Tên chỉ tiêu Mức 1. Độ hút nước, %, không lớn hơn - Trung bình 0,5 410 Sai lệch kích thước, hình dáng so với kích thước danh nghĩa tương ứng,%, không lớn hơn 1. Kích thước cạnh bên (a, b): ± 1,00 ± 0,75 ± 0,60 2. Chiều dày (d) ± 10 ± 5 ± 5 3. Độ vuông góc ± 0,6 ± 0,6 ± 0,6 Chất lượng bề mặt: Được tính bằng phần diện tích bề 95 mặt quan sát không có khuyết tật trông thấy, %, không nhỏ hơn Các chỉ tiêu cơ lý của gạch ốp lát có ký hiệu BIIb Bảng 3-9 Tên chỉ tiêu Mức 1.Độ hút nước, %, không lớn hơn - Trung bình 6 < E ≤ 10 - Của mẫu cao nhất 11 2. Độ bền uốn, N/mm2, không nhỏ hơn - Trung bình 18 - Của mẫu thấp nhất 16 3. Độ cứng vạch bề mặt men, tính theo thang Morh, 3 không nhỏ hơn Gạch gốm granit 40
  11. Nguyên liệu chủ yếu để sản xuất gốm granite bao gồm đất sét, cao lanh, fenfpat, quarz (thạch anh). Hỗn hợp trên được nghiền kỹ dưới dạng hồ lỏng cho thật nhuyễn, tiếp theo hỗn hợp được sấy khô và dùng máy ép áp lực lớn (400kG/cm2) để tạo hình sản phẩm. Sản phẩm được nung ở nhiệt độ 1220 - 12800C với thời gian của mỗi chu kỳ nung từ 60 - 70 phút. Granite là loại gạch đồng chất (từ đáy đến bề mặt viên gạch cùng chất liệu), độ bóng của gạch là do mài chứ không phải tráng men như gạch gốm sứ tráng men, vì vậy gạch rất bóng nhưng không trơn, kích thước chính xác giúp cho việc ốp lát được dễ dàng. Theo tiêu chuẩn TCVN 6883 : 2001 loại gạch này phải đạt các yêu cầu theo bảng 3-10 và 3-11. Mức sai lệch giới hạn về kích thước, hình dạng và chất lượng bề mặt của gạch ốp lát granit: Bảng 3-10 Diện tích bề mặt của sản phẩm , S, Tên chỉ tiêu cm2 90 410 Sai lệch kích thước, hình dáng : 1. Kích thước cạnh bên (a, b): Sai lệch kích thước trung bình của mỗi viên mẫu ± ± 1,00 ± 0,75 so với kích thước danh nghĩa tương ứng, 0,60 %, không lớn hơn 2. Chiều dày (d): Sai lệch chiều dày trung bình của mỗi viên mẫu so với chiều dày ± 10 ± 5 ± 5 danh nghĩa, %, không lớn hơn 3. Độ vuông góc: Sai lệch lớn nhất của độ vuông góc so với kích thước làm việc ± 0,6 ± 0,6 ± 0,6 tương ứng, (%), không lớn hơn Chất lượng bề mặt: Được tính bằng phần diện tích bề mặt 95 quan sát không có khuyết tật trông thấy, %, không nhỏ hơn Các chỉ tiêu cơ lý của gạch ốp lát granit Bảng 3-11 Tên chỉ tiêu Mức 1. Độ hút nước, %, không lớn hơn - Trung bình 0,5 - Của mẫu cao nhất 0,6 2. Độ bền uốn, N/mm2, không nhỏ hơn - Trung bình 35 - Của mẫu thấp nhất 32 3. Độ cứng vạch bề mặt, tính theo thang Morh - Loại không phủ men, không nhỏ hơn 7 - Loại có phủ men, lớn hơn 5 41
  12. Gạch lát đất sét nung Gạch lát đất sét nung cũng là loại gạch được sản xuất từ đất sét, tạo hình bằng phương pháp dẻo, không có phụ gia và được nung chín. Gạch này còn được gọi là gạch lá nem, thường dùng lát lớp trên của mái bê tông cốt thép hoặc lát nền nhà. Theo TCXD 90 : 1982 gạch có kích thước 200 x 200 x 15mm, sai lệch cho phép của kích thước không được vượt quá: -Theo chiều dài: ± 5 mm -Theo chiều rộng: ± 5mm -Theo chiều dày: ± 2mm Gạch phải được nung chín đều, không phồng rộp, màu sắc, âm thanh của các viên gạch trong cùng một lô phải đồng đều, không được có vết hoen ố ở mặt. Tùy theo các chỉ tiêu về độ hút nước và độ mài mòn khối lượng do ma sát, gạch lát được chia ra hai loại theo bảng 3 -12. Bảng 3 -12 Chỉ tiêu Loại I Loại II Độ hút nước,% , không lớn hơn 3 12 Độ mài mòn khối lượng do ma sát, 0,2 0,4 không lớn hơn, g/cm2 3.3.3. Ngói đất sét Phân loại Ngói đất sét là loại vật liệu lợp phổ biến trong các công trình xây dựng. Thường có các loại ngói vẩy cá, ngói có gờ và ngói bò. Ngói vẩy cá : Có kích thước nhỏ, khi lợp viên nọ chồng lên viên kia 40 - 50 % diện tích bề mặt do đó khả năng cách nhiệt tốt nhưng mái sẽ nặng và tốn tre, gỗ. Ngói gờ và ngói úp : Loại ngói phổ biến hiện nay là ngói có gờ và ngói úp. Loại ngói gờ thường có 3 loại: 13 v/m2 (420x260); 16 v/m2 (420 x 205) và 22 v/m2. Kiểu và kích thước cơ bản của ngói 22v/m2 và ngói úp nóc được quy định theo TCVN 1452:1995 ( hình 3 - 5 và bảng 3 -13 ). Bảng 3 -13 Kích thước đủ , Kiểu Kích thước có ích , mm mm ngói Chiều dài l Chiều rộng b Chiều dài L Chiều rộng B 340 205 250 180 Ngói lợp 335 210 260 170 360 - 333 150 Ngói úp 450 - 425 200 42
  13. Sai số về kích thước quy định của viên ngói không lớn hơn ± 2%. Ngói phải có lỗ xâu dây thép ở vị trí (T) với đường kính 1,5 ÷ 2,0 mm. Chiều cao mấu đỏ (C) không nhỏ hơn 10 mm. Chiều sâu các rãnh nối khớp (d) không nhỏ hơn 5 mm. Hình 3-5: Hình dạng và kích thước cơ bản của ngói Yêu cầu kỹ thuật Ngói trong cùng một lô phải có màu sắc đồng đều, khi dùng búa kim loại gõ nhẹ có tiếng kêu trong và chắc. Các chỉ tiêu cơ lý của ngói phải phù hợp với quy định sau : -Tải trọng uốn gãy theo chiều rộng viên ngói (hình 3-6) không nhỏ hơn 35N/cm. - Độ hút nước không lớn hơn 16%. - Thời gian xuyên nước, có vết ẩm nhưng không hình thành giọt nước ở dưới viên ngói không nhỏ hơn 2 giờ. - Khối lượng 1m2 ngói ở trạng thái bão hòa nước không Hình 3-6: Mãu ngói xác định tải trọng uốn gãy lớn hơn 55kg. Các chỉ tiêu cơ lý của ngói được xác định theo TCVN 4313:1995 Khi lưu kho ngói phải được xếp ngay ngắn và nghiêng theo chiều dài thành từng chồng. Mỗi chồng ngói không được xếp quá 10 hàng. Khi vận chuyển ngói được xếp ngay ngắn sát vào nhau và được lèn chặt bằng vật liệu mềm . 3.3.4. Các loại sản phẩm khác Ngoài những loại sản phẩm đã nêu ở trên, vật liệu nung còn nhiều loại sản phẩm khác được sử dụng trong xây dựng. 43
  14. Sản phẩm sành dạng đá Đây là sản phẩm có cường độ cao, độ đặc lớn cấu trúc hạt bé, chống mài mòn tốt, chịu được tác dụng của axít, chúng được dùng khá rộng rãi trong xây dựng công nghiệp, hóa học và các công trình khác. Gạch clinke: Có nhiều loại, loại vuông 50 x 50 x 10 mm; 100 x 100 x 10mm và 150x15 x13mm, loại chữ nhật 100 x 50 x 10 mm, 150 x 75 x 13 mm, loại lục giác và bát giác. Gạch này có khối lượng thể tích lớn hơn gạch thường (1900kg/m3). Gạch clinke được dùng để lát đường, làm móng, cuốn vòm và tường chịu lực. Gạch chịu axít: Được sản xuất theo 2 dạng: gạch khối và gạch tấm lát. Kích thước của gạch được qui định như sau: Gạch khối: 230 x113 x 65 mm Gạch tấm lát: 100 x100 x11 mm và 450 x 150 x11 mm Gạch chịu axít được chia làm 3 loại: loại A dùng cho các công trình lâu dài, khó sửa chữa và luôn luôn tiếp xúc với hoá chất, loại B và C dùng cho các công trình dễ sửa chữa, làm việc có tính chất không liên tục. Theo TCXD 86 : 1981 gạch chịu axít phải đạt các chỉ tiêu cơ lý sau (bảng 3-14). Bảng 3-14 Mức Chỉ tiêu A B C Độ chịu axít,%, không nhỏ hơn - Gạch khối 96 94 92 - Gạch tấm lát 96 94 92 Độ hút nước,%, không lớn hơn - Gạch khối 7 9 12 - Gạch tấm lát 6 8 12 Độ bền nén (daN/cm2), không nhỏ hơn - Gạch khối 400 300 300 - Gạch tấm lát 400 300 300 Keramzit Keramzit gồm những hạt tròn hay bầu dục được sản xuất bằng cách nung phồng đất sét dễ chảy đồng nhất về thành phần và tính chất, có độ phân tán cao, có thành phần hoá học:Al2O3: 15-22%; SiO2: 50-60%; Fe2O3:6- 12%; MgO+CaO:3-6%. Keramzit được dùng làm cốt liệu nhẹ cho bê tông nhẹ. Chúng có 2 loại: cát (cỡ hạt nhỏ hơn 5mm) và sỏi keramzit (các cỡ hạt 5÷10; 10÷20; 20÷30; 30÷40mm) Mác của keramzit xác định theo khối lượng thể tích (kg/m3) giới thiệu ở bảng 3-15 Đặc điểm cơ bản của keramzit là lỗ rỗng dạng kín. Mặc dù độ rỗng lớn (ρv = 150-1200 kg/m3) nhưng nó vẫn có cường độ cao, độ hút nước nhỏ và lượng nước nhào trộn bê tông keramzit tăng không đáng kể so với bê tông thường. 44
  15. Gạch trang trí được dùng để xây các mảng tường có tính chất vách ngăn, thông gió, trang trí, không có tính chất chịu lực. Gạch trang trí được bảo quản trong kho có mái che, nền nhà khô ráo. Bảng 3-15 Cường độ nén, kG/cm2 Mác Độ hút nước, % Loại A Loại B 50 4 3 - 200 5 4 25 250 8 6 25 300 10 8 25 350 14 10 25 400 17 14 25 450 20 17 20 500 25 20 20 550 30 25 20 600 35 30 20 650 40 35 15 700 45 40 15 Gạch trang trí đất sét nung Là loại gạch được sản xuất từ đất sét có phụ gia hay không có phụ gia, tạo hình bằng phương pháp dẻo hay phương pháp bán khô và được nung chín. Theo TCXD 111:1983, gạch phải đảm bảo các yêu cầu sau : Mầu sắc của gạch trong cùng một lô phải đồng đều, bề mặt không được có vết bẩn hoặc hoen ố. Chiều dày thành ngoài của viên gạch không được nhỏ hơn 15mm. Chiều dày thành trong của viên gạch không được nhỏ hơn 10mm. Độ hút nước của gạch trang trí không lớn hơn 15%. Cường độ chịu nén của mỗi kiểu gạch trang trí được ghi theo hình 3-7. Khi vận chuyển và bốc dỡ gạch trang trí phải nhẹ tay, cẩn thận tránh gây sứt, mẻ, đổ vỡ, giữa hai chồng gạch xếp cạnh nhau nên có lớp đệm lót. Sản phẩm sứ vệ sinh Theo chức năng sử dụng, sản phẩm sứ vệ sinh có 2 loại chính: Bệ xí: gồm xí bệt có két nước liền hoặc không có két nước liền và xí xổm xi phông liền hoặc không có chân đỡ Chậu rửa có chân đỡ hoặc không có chân đỡ. Ngoài các loại sản phẩm trên còn có nhiều loại sản phẩm khác như bồn tắm, âu tiểu, v.v Các sản phẩm sứ vệ sinh có men phải phủ đều khắp trên bề mặt chính, bề mặt làm việc của sản phẩm, men láng bóng, có màu trắng hoặc màu theo mẫu. Những chỗ không phủ men theo bề mặt kín hoặc bề mặt lắp ráp quy định riêng theo từng dạng sản phẩm. Kiểu, kích thước cơ bản và các yêu cầu kỹ thuật chủ yếu của sản phẩm sứ vệ sinh được quy định theo TCVN 6073:1995. 45
  16. GẠCH HẠ UY DI GẠCH HOA THỊ GẠCH 8 GÓC LỖ TRÒN ký hiệu 01 ký hiệu 02 ký hiệu 03 Kích thước L = B = 200mm Kích thước L = B = 200mm Kích thước L = B = 200mm H = 60mm H = 60mm H = 60mm Độ chịu nén /120daN/v Độ chịu nén /120daN/v Độ chịu nén /105daN/v 2 2 Tiêu thụ cho 1m2 = 25v Tiêu thụ cho 1m = 25v Tiêu thụ cho 1m = 36v GẠCH HOA ĐÀO GẠCH HOA MAI GẠCH TAM GIÁC ký hiệu 04 ký hiệu 05 ký hiệu 06 Kích thước L = B = 225mm Kích thước L = B = 195mm Kích thước L = B = 200mm H = 60mm H = 60mm H = 60mm Độ chịu nén /40daN/v Độ chịu nén /120daN/v Độ chịu nén /60daN/v 2 2 2 Tiêu thụ cho 1m = 34v Tiêu thụ cho 1m = 26v Tiêu thụ cho 1m = 25v GẠCH BÔNG VUÔNG GẠCH TỨ KIẾT GẠCH LỤC GIÁC ký hiệu 07 ký hiệu 08 ký hiệu 09 Kích thước L = B = 90mm Kích thước L = B = 200mm Kích thước L = B = 180mm H = 60mm H = 60mm H = 60mm Độ chịu nén /200daN/v Độ chịu nén /105daN/v Độ chịu nén /120daN/v 2 2 Tiêu thụ cho 1m = 50v Tiêu thụ cho 1m2 = 30v Tiêu thụ cho 1m = 25v Hình 3-7: Một số loại gạch trang trí từ đất sét nung 46
  17. CHƯƠNG IV CHẤT KẾT DÍNH VÔ CƠ 4.1. Khái niệm và phân loại 4.1.1. Khái niệm Chất kết dính vô cơ là loại vật liệu thường ở dạng bột, khi nhào trộn với nước hoặc các dung môi khác thì tạo thành loại hồ dẻo, dưới tác dụng của quá trình hóa lý tự nó có thể rắn chắc và chuyển sang trạng thái đá. Do khả năng này của chất kết dính vô cơ mà người ta sử dụng chúng để gắn các loại vật liệu rời rạc (cát, đá, sỏi) thành một khối đồng nhất trong công nghệ chế tạo bê tông, vữa xây dựng, gạch silicat, các vật liệu đá nhân tạo không nung và các sản phẩm xi măng amiăng. Có loại chất kết dính vô cơ không tồn tại ở dạng bột như vôi cục, thủy tinh lỏng. Có loại khi nhào trộn với nước thì quá trình rắn chắc xảy ra rất chậm như chất kết dính magie, nhưng nếu trộn với dung dịch MgCl2 hoặc MgSO4 thì quá trình rắn chắc xảy ra nhanh, cường độ chịu lực cao. 4.1.2. Phân loại Căn cứ vào môi trường rắn chắc, chất kết dính vô cơ được chia làm 3 loại: chất kết dính rắn trong không khí, chất kết dính rắn trong nước và chất kết dính rắn trong Ôtôcla. Chất kết dính vô cơ rắn trong không khí Chất kết dính vô cơ rắn trong không khí là loại chất kết dính chỉ có thể rắn chắc và giữ được cường độ lâu dài trong môi trường không khí. Ví dụ: Vôi không khí, thạch cao, thủy tinh lỏng, chất kết dính magie. Theo thành phần hoá học chúng được chia thành 4 nhóm: (1) Vôi rắn trong không khí (thành phần chủ yếu là CaO); (2) Chất kết dính magie (thành phần chủ yếu là MgO); (3) Chất kết dính thạch cao (thành phần chủ yếu là CaSO4) (4) Thuỷ tinh lỏng là các silicat natri hoặc kali (Na2O.nSiO2 hoặc K2O.mSiO2) ở dạng lỏng; Chất kết dính vô cơ rắn trong nước Chất kết dính vô cơ rắn trong nước là loại chất kết dính không những có khả năng rắn chắc và giữ được cường độ lâu dài trong môi trường không khí mà còn có khả năng rắn chắc và giữ được cường độ lâu dài trong môi trường nước. Ví dụ: Vôi thủy, các loại xi măng. Về thành phần hoá học chất kết dính rắn trong nước là một hệ thống phức tạp bao gồm chủ yếu là liên kết của 4 oxyt CaO-SiO2-Al2O3-Fe2O3. Các liên kết đó hình thành ra 3 nhóm chất kết dính chủ yếu sau : (1) Xi măng Silicat : các khoáng chủ yếu là Silicat canxi (đến 75%). Trong nhóm này gồm có xi măng pooc lăng và các chủng loại của nó (nhóm chất kết dính chủ yếu trong xây dựng) (2) Xi măng alumin: Aluminat canxi là các khoáng chủ yếu của nó. (3) Vôi thuỷ và xi măng La mã. 47
  18. Chất kết dính rắn trong Ôtôcla Bao gồm những chất có khả năng trong môi trường hơi nước bão hoà có nhiệt độ 175÷200oC và áp suất 8÷12 atm để hình thành ra “đá xi măng“. Chất kết dính này có 2 thành phần chủ yếu là CaO và SiO2. Ở điều kiện thường chỉ có CaO đóng vai trò kết dính nhưng trong điều kiện ôtôcla thì CaO tác dụng với SiO2 tạo thành các khoáng mới có độ bền nước và khả năng chịu lực cao. Các chất kết dính thường gặp trong nhóm này là: chất kết dính vôi silic; vôi tro; vôi xỉ, 4.2. Vôi rắn trong không khí 4.2.1. Khái niệm Vôi rắn trong không khí (gọi tắt là vôi) là chất kết dính vô cơ rắn trong không khí, dễ sử dụng, giá thành hạ, quá trình sản xuất đơn giản. Nguyên liệu để sản xuất vôi là các loại đá giàu khoáng canxit cacbonat CaCO3 như đá san hô, đá vôi, đá đôlômit với hàm lượng sét không lớn hơn 6%. Trong đó hay dùng nhất là đá vôi đặc. Để nung vôi trước hết phải đập đá thành cục 10-20 cm, sau đó nung ở nhiệt độ 900 - 11000C, thực chất của quá trình nung vôi là thực hiện phản ứng: CaCO3 ' CaO + CO2 ↑ - Q . Phản ứng trên là phản ứng thuận nghịch vì vậy khi nung vôi phải thông thoáng lò để khí cacbonic bay ra, phản ứng theo chiều thuận sẽ mạnh hơn và chất lượng vôi sẽ tốt hơn. Phản ứng nung vôi là phản ứng xảy ra từ ngoài vào trong nên các cục đá vôi đem nung phải đều nhau để đảm bảo chất lượng vôi, hạn chế hiện tượng vôi non lửa (vôi sống) và vôi già lửa (vôi cháy). Khi vôi non lửa thì bên trong các cục vôi sẽ còn một phần đá vôi (CaCO3 ) chưa chuyển hóa thành vôi do đó sau này sẽ kém dẻo, nhiều hạn sạn đá. Nếu kích thước cục đá quá nhỏ hoặc nhiệt độ nung quá cao thì CaO sau khi sinh ra sẽ tác dụng với tạp chất sét tạo thành màng keo silicat canxi và aluminat canxi cứng bao bọc lấy hạt vôi làm vôi khó thủy hóa khi tôi, khi dùng trong kết cấu hạt vôi sẽ hút ẩm tăng thể tích làm kết cấu bị rỗ, nứt, các hạt vôi đó gọi là hạt già lửa. 4.2.2. Các hình thức sử dụng vôi trong xây dựng Vôi được sử dụng ở hai dạng vôi chín và bột vôi sống. Vôi chín Là vôi được tôi trước khi dùng, khi cho vôi vào nước quá trình tôi sẽ xảy ra theo phản ứng : CaO + H2O = Ca(OH)2 + Q . Tùy thuộc vào lượng nước cho tác dụng với vôi sẽ có 3 dạng vôi chín thường gặp: Bột vôi chín: Được tạo thành khi lượng nước vừa đủ để phản ứng với vôi. Tính theo phương trình phản ứng thì lượng nước đó là 32,14% so với lượng vôi, nhưng vì phản ứng tôi vôi là tỏa nhiệt nên nước bị bốc hơi do đó thực tế lượng nước này khoảng 70%. Vôi bột có khối lượng thể tích 400 - 450 kg/m3. 48
  19. Vôi nhuyễn: Được tạo thành khi lượng nước tác dụng cho vào nhiều hơn đến mức sinh ra một loại vữa sệt chứa khoảng 50% là Ca(OH)2 và 50% là nước tự do. Vôi nhuyễn có khối lượng thể tích 1200 - 1400 kg/m3. Vôi sữa : Được tạo thành khi lượng nước nhiều hơn so với vôi nhuyễn, có khoảng ít hơn 50% Ca(OH)2 và hơn 50% là nước. Trong xây dựng thường dùng chủ yếu là vôi nhuyễn và vôi sữa còn bột vôi chín hay dùng trong y học hay nông nghiệp. Sử dụng vôi chín trong xây dựng có ưu điểm là sử dụng và bảo quản đơn giản nhưng cường độ chịu lực thấp và khó hạn chế được tác hại của hạt sạn già lửa, khi sử dụng phải lọc kỹ các hạt sạn. Bột vôi sống Bột vôi sống được tạo thành khi đem vôi cục nghiền nhỏ, độ mịn của bột vôi sống khá cao biểu thị bằng lượng lọt qua sàng 4900 lỗ/cm2 không nhỏ hơn 90%. Sau khi nghiền bột vôi sống được đóng thành từng bao bảo quản và sử dụng như xi măng. Sử dụng bột vôi sống trong xây dựng có ưu điểm là rắn chắc nhanh và cho cường độ cao hơn vôi chín do tận dụng được lượng nhiệt tỏa ra khi tôi vôi để tạo ra phản ứng silicat, không bị ảnh hưởng của hạt sạn, không tốn thời gian tôi nhưng loại vôi này khó bảo quản vì dễ hút ẩm giảm chất lượng, mặt khác tốn thiết bị nghiền, khi sản xuất và sử dụng bụi vôi đều ảnh hưởng đến sức khỏe công nhân. 4.2.3. Các chỉ tiêu đánh giá chất lượng vôi Chất lượng vôi càng tốt khi hàm lượng CaO càng cao và cấu trúc của nó càng tốt (dễ tác dụng với nước). Do đó để đánh giá chất lượng của vôi người ta dụng các chỉ tiêu sau : Độ hoạt tính của vôi Độ hoạt tính của vôi được đánh giá bằng chỉ tiêu tổng hàm lượng CaO và MgO, khi hàm lượng CaO và MgO càng lớn thì sản lượng vôi vữa càng nhiều và ngược lại. Nhiệt độ tôi và tốc độ tôi Khi vôi tác dụng với nước (tôi vôi) phát sinh phản ứng tỏa nhiệt, nhiệt lượng phát ra làm tăng nhiệt độ của vôi, vôi càng tinh khiết (nhiều CaO) thì phát nhiệt càng nhiều, nhiệt độ vôi càng cao và tốc độ tôi càng nhanh, sản lượng vôi vữa cũng càng lớn như vậy phẩm chất của vôi càng cao. Nhiệt độ tôi : Là nhiệt độ cao nhất trong quá trình tôi. Tốc độ tôi (thời gian tôi) : Là thời gian tính từ lúc vôi tác dụng với nước đến khi đạt được nhiệt độ cao nhất khi tôi. Sản lượng vôi Sản lượng vôi vữa là lượng vôi nhuyễn tính bằng lít do 1kg vôi sống sinh ra. sản lượng vôi vữa càng nhiều vôi càng tốt. Sản lượng vôi vữa thường có liên quan đến lượng ngậm CaO, nhiệt độ tôi và tốc độ tôi của vôi. Vôi có hàm lượng CaO càng cao, nhiệt độ tôi và tốc độ tôi càng lớn thì sản lượng vôi vữa càng nhiều. 49
  20. Lượng hạt sạn Hạt sạn là những hạt vôi chưa tôi được trong vôi vữa. Hạt sạn có thể là vôi già lửa, non lửa hoặc bã than v.v Lượng hạt sạn là tỷ số giữa khối lượng hạt sạn so với khối lượng vôi sống (các hạt còn lại trên sàng 124 lỗ /cm2), tính bằng %. Lượng hạt sạn liên quan đến nhiệt độ tôi và và sản lượng vôi vữa, khi lượng hạt sạn càng lớn thì phần vôi tác dụng với nước càng ít đi do đó nhiệt độ tôi và sản lượng vôi vữa càng nhỏ. Độ mịn của bột vôi sống Bột vôi sống càng mịn càng tốt vì nó sẽ thủy hóa với nước càng nhanh và càng triệt để, nhiệt độ tôi và tốc độ tôi càng lớp sản lượng vữa vôi càng nhiều. Các chỉ tiêu cơ bản đánh giá chất lượng của vôi được quy định theo TCVN 2231 - 1989 bảng 4 - 1. Bảng 4 - 1 Vôi cục và vôi bột nghiền Tên chỉ tiêu Loại I Loại II Loại III 1 . Tốc độ tôi vôi, phút a . Tôi nhanh, không lớn hơn 10 10 10 b . Tôi trung bình, không lớn hơn 20 20 20 c . Tôi chậm, lớn hơn 20 20 20 2 .Hàm lượng MgO,%,không lớn hơn 5 5 5 3. Tổng hàm lượng (CaO+MgO) hoạt tính, % , 88 80 70 không nhỏ hơn 4 . Độ nhuyễn của vôi tôi, l/kg, không nhỏ hơn 2,4 2,0 1,6 5 . Hàm lượng hạt không tôi được của vôi cục, 5 7 10 %, không lớn hơn 6 . Độ mịn của vôi bột,%, không lớn hơn : - Trên sàng 0,063 2 2 2 - Trên sàng 0,008 10 10 10 4.2.4. Quá trình rắn chắc của vôi Vôi được sử dụng chủ yếu trong vữa. Trong không khí vữa vôi rắn chắc lại do ảnh hưởng đồng thời của hai quá trình chính: 1, sự mất nước của vữa làm Ca(OH)2 chuyển dần từ trạng thái keo sang ngưng keo và kết tinh; 2, cacbonat hóa vôi dưới sự tác dụng của khí cacbonic trong không khí. Quá trình rắn chắc của vôi không khí xảy ra chậm do đó khối xây bị ẩm ướt khá lâu. Nếu dùng biện pháp sấy sẽ tăng nhanh được quá trình rắn chắc. 4.2.5. Công dụng và bảo quản Công dụng Trong xây dựng vôi dùng để sản xuất vữa xây, vữa trát cho các bộ công trình ở trên khô, có yêu cầu chịu lực không cao lắm. Ngoài ra vôi còn được dùng để sản xuất gạch silicat hoặc quét trần, quét tường, là lớp trang trí và bảo vệ vật liệu phía trong. 50
  21. Bảo quản Tùy từng hình thức sử dụng mà có cách bảo quản thích hợp. Với vội cục nên tôi ngay hoặc nghiền mịn đưa vào bao, không nên dự trữ vôi cục lâu. Vôi nhuyễn phải được ngâm trong hố có lớp cát hoặc nước phủ bên trên dày 10 - 20 cm để ngăn cản sự tiếp xúc của vôi với khí CO2 trong không khí theo phản ứng: Ca(OH)2 + CO2 = CaCO3 + H2O . Khi vôi bị hóa đá (CaCO3), chất lượng vôi sẽ giảm, vôi ít dẻo khả năng liên kết kém. 4.3. Thạch cao xây dựng 4.3.1. Khái niệm Thạch cao xây dựng là một chất kết dính cứng rắn được trong không khí, chế tạo bằng cách nung thạch cao hai phân tử nước (CaSO4.2H2O) ở nhiệt độ 0 140-170 C đến khi biến thành thạch cao nửa phân tử nước (CaSO4.0,5H2O) rồi nghiền thành bột nhỏ. Cũng có thể nghiền thạch cao hai nước trước rồi mới nung thành thạch cao nửa nước. Trong một số sơ đồ công nghệ việc nghiền và nung được tiến hành cùng trong một thiết bị: 140− 1700 C CaSO4 .2H 2 O ⎯⎯→⎯⎯ CaSO4 .0,5H 2 O+ 1,5H2 O Khi nung thạch cao xây dựng được tạo thành theo phản ứng : Nếu nhiệt độ nung cao 600 - 7000C thì đá thạch cao hai nước biến thành thạch cao cứng CaSO4, loại này có tốc độ cứng rắn chậm hơn so với thạch cao xây dựng. 4.3.2. Quá trình rắn chắc Khi nhào trộn thạch cao với nước sẽ sinh ra một loại vữa dẻo có tính linh động tốt rồi dần dần sau một quá trình biến đổi lý, hóa, tính dẻo mất dần, quá trình đó gọi là quá trình đông kết, sau đó thạch cao trở thành cứng rắn, độ chịu lực tăng dần, đây là quá trình rắn chắc. Cả hai quá trình này được gọi chung là quá trình rắn chắc của thạch cao. Thạch cao tác dụng với nước theo phương trình phản ứng sau : CaSO4.0,5H2O + 1,5 H2O = CaSO4. 2H2O . Quá trình rắn chắc của thạch cao chia làm 3 thời kỳ : Thời kỳ hòa tan. Thời kỳ hóa keo. Thời kỳ kết tinh. Hai thời kỳ đầu gọi là thời kỳ đông kết, thời kỳ thứ 3 gọi là thời kỳ rắn chắc và thạch cao có khả năng chịu lực. Ba thời kỳ của quá trình rắn chắc không phân chia tách biệt và xảy ra xen kẽ với nhau. 51
  22. 4.3.3. Các tính chất cơ bản Độ mịn Thạch cao nung xong được nghiền thành bột mịn, thạch cao càng mịn thì quá trình thủy hóa càng nhanh, cứng rắn càng sớm và cường độ càng cao. Độ mịn của thạch cao phải đạt chỉ tiêu lượng sót trên sàng 918 lỗ/cm2 đối với thạch cao loại I không lớn hơn 25% đối với loại II không lớn hơn 35% Khối lượng riêng và khối lượng thể tích Khối lượng riêng : ρ = 2600 - 2700 kg/m3. 3 Khối lượng thể tích : ρv = 800 - 1000 kg/m . Lượng nước tiêu chuẩn Khi nhào trộn thạch cao với nước để tạo ra vữa, nếu trộn ít nước quá thì vữa sẽ khô khó thi công, nếu lượng nước trộn nhiều quá thì vữa sẽ nhão dễ thi công nhưng nước thừa nhiều khi bay hơi đi để lại nhiều lỗ rỗng làm cho cường độ chịu lực của vữa giảm. Vì vậy phải nhào trộn với một lượng nước thích hợp nhằm đảm bảo hai yêu cầu vừa dễ thi công vừa đạt được cường độ chịu lực cao. Lượng nước đảm bảo cho vữa thạch cao đạt được hai yêu cầu trên gọi là lượng nước tiêu chuẩn. Lượng nước đó đảm bảo cho hồ thạch cao có độ đặc tiêu chuẩn và được biểu thị bằng tỷ lệ % nước so với khối lượng của thạch cao: N =0,5 ÷ 0,7 X Lượng nước tiêu chuẩn của thạch cao được xác định như sau : Dùng dụng cụ Xuttard gồm một ống làm bằng đồng, đường kính trong bằng 5,0 cm; cao 10 cm và một tấm kính vuông có cạnh bằng 20 cm. Trên tấm kính hoặc trên miếng giấy dán dưới tấm kính vẽ một loạt các vòng tròn đồng tâm có đường kính dưới 14cm, các vòng tròn cách nhau 1cm, các vòng tròn to hơn vẽ cách nhau 2cm. Cân 300g thạch cao trộn với 50 - 70% nước, cho thạch cao vào nước và trộn nhanh (trong 30 giây) từ dưới lên trên cho đến khi hỗn hợp đồng đều rồi để yên trong một phút. Sau đó trộn mạnh 2 cái rồi đổ nhanh hồ thạch cao vào ống trụ đặt trên tấm kính nằm ngang, dùng dao gạt bằng mặt thạch cao ngang mép hình trụ. Tất cả các động tác này làm không quá 30 giây, rút ống trụ lên theo phương thẳng đứng, khi đó hồ thạch cao chảy xuống tấm kính thành hình nón cụt. Nếu đường kính đáy nón cụt bằng 12 cm thì hồ đã đạt độ đặc tiêu chuẩn, lượng nước đã nhào trộn gọi là lượng nước tiêu chuẩn. Nếu đường kính đáy nón cụt lớn hơn hoặc nhỏ hơn 12 cm, phải trộn hồ thạch cao khác với lượng nước ít hơn hoặc nhiều hơn và tiếp tục thí nghiệm như trên để tìm được lượng nước tính bằng % so với khối lượng của thạch cao ứng với hồ có độ đặc tiêu chuẩn. Thời gian đông kết Sau khi trộn thạch cao với nước hồ thạch cao dần dần đông đặc lại . Thời gian từ khi bắt đầu nhào trộn thạch cao với nước cho tới khi hồ thạch cao mất dẻo và bắt đầu có khả năng chịu lực gọi là thời gian đông kết. Thời gian đông kết của thạch cao bao gồm hai giai đoạn: 52
  23. Thời gian bắt đầu đông kết: Là khoảng thời gian từ khi bắt đầu nhào trộn thạch cao với nước đến khi hồ mất tính dẻo. Ứng với lúc kim vika có đường kính 1,1mm lần đầu tiên cắm sâu cách tấm kính ≤ 0,5 mm. Thời gian kết thúc đông kết : Là khoảng thời gian từ khi bắt đầu nhào trộn thạch cao với nước đến khi hồ có cường độ nhất định, ứng với lúc kim vika có đường kính 1,1 mm lần đầu tiên cắm sâu vào hồ ≤ 0,5 mm. Ý nghĩa của thời gian đông kết của hồ thạch cao Sau khi đã bắt đầu đông kết hồ, vữa và bê tông thạch cao không được đổ vào khuôn hoặc dùng để trát bề mặt, đặc biệt sau khi thạch cao đã kết thúc đông kết, vì khi đó các thao tác của quá trình thi công sẽ phá vỡ cấu trúc mới được hình thành của hồ thạch cao làm cho cường độ chịu lực giảm đi nhiều. Chính vì vậy phải thi công vữa và bê tông thạch cao trong khoảng thời gian từ lúc trộn đến lúc bắt đầu đông kết. Các loại thạch cao có thời gian đông kết khác nhau. Nếu đông kết sớm quá thì việc thi công phải hết sức khẩn trương, có khi thi công không kịp nhưng cường độ lúc đầu cao và ngược lại. Với ý nghĩa như trên nên thời gian đông kết của hồ thạch cao được quy định Thời gian bắt đầu đông kết / 6 phút. Thời gian kết thúc đông kết ≤ 30 phút. Để có chế độ thi công hợp lý và đảm bảo chất lượng công trình thời gian đông kết của thạch cao cần phải được xác định cụ thể bằng cách sau : Dụng cụ thử: Là máy cắm kim vika (hình 4-1) gồm bộ phận chính là thanh chạy có gắn kim chỉ thị di chuyển theo phương thẳng đứng bên cạnh thước khắc độ từ 0 đến 40 mm gắn trên giá. Ở đầu dưới thanh chạy gắn một cái kim thép đường kính 1,1mm, chiều dài 50 mm, khối lượng của thanh và kim bằng 120 g. Ngoài ra còn có một khâu hình côn làm bằng nhựa ebonit hoặc bằng đồng thau cao 40mm, đường kính trên 65mm, đường kính dưới 75 mm và một tấm kính vuông có kích thước 10 x 10 mm. Hình 4 - 1 : Dụng cụ vi ka Cách xác định: Thời gian bắt đầu 1. Thanh chạy; 2. Lỗ trượt; 3. Vít điều chỉnh; đông kết và thời gian kết thúc đông 4. Kim chỉ vạch; 5. Thước chia độ; 6. Kim vika; kết được xác định như sau : 7. Khâu vika; 8. Bàn để dụng cụ vika Đổ một lượng nước tương ứng với độ đặc tiêu chuẩn của hồ thạch cao vào một chậu bằng kim loại hoặc bằng sứ; Sau đó đổ vào chậu 200g thạch cao, bắt đầu tính thời gian rồi trộn đều bằng tay. Phải đổ từ từ trong 30 giây cho hồ thạch cao vào khâu của máy đặt trên tấm kính, cắt hồ thừa bằng dao và miết bằng mặt. Sau đó đặt khâu dưới kim của máy cho đầu kim xuống sát mặt hồ, mở ốc hãm thanh chạy và kim tự do rơi xuống cắm vào hồ thạch cao. Cứ 30 giây cho 53
  24. kim rơi một lần, cắm ở các vị trí khác nhau, trước khi cho kim rơi phải lau sạch kim. Dùng đồng hồ theo dõi thời gian trong suốt quá trình trộn và thả kim rơi. Thời gian bắt đầu đông kết là khoảng thời gian từ lúc bắt đầu trộn thạch cao với nước cho đến khi lần đầu tiên kim cắm cách tấm kính đáy ≤ 0,5 mm. Thời gian kết thúc đông kết là khoảng thời gian từ lúc bắt đầu trộn thạch cao với nước cho đến khi lần đầu tiên kim cắm sâu vào hồ thạch cao ≤ 0,5 mm. Có thể dùng chất làm tăng nhanh hoặc làm chậm đông kết, pha vào hồ thạch cao với liều lượng bằng 0,5 - 2% khối lượng thạch cao để thay đổi thời gian đông kết của thạch cao. Chất làm chậm đông kết là vôi và chất làm nhanh đông kết là natri sunfat (Na2SO4). Cường độ chịu lực Khi sử dụng trong công trình, đá thạch cao có thể chịu nén hoặc chịu kéo, v.v Tuy nhiên cường độ chịu nén vẫn là chủ yếu và nó đặc trưng cho cường độ của thạch cao, cường độ nén là một chỉ tiêu để đánh giá phẩm chất của thạch cao. Do đó quy định cường độ nén sau 1,5 giờ đối với thạch cao loại 1 không nhỏ hơn 45 kG/cm2 và đối với thạch cao loại 2 không nhỏ hơn 35 kG/cm2. Để đánh giá cường độ nén của thạch cao người ta đúc 3 mẫu hình lập phương cạnh 7,07 cm và đem nén sau 1,5 giờ bảo dưỡng. Cách tiến hành như sau : Trộn thạch cao với một lượng nước tương ứng với độ đặc tiêu chuẩn của hồ thạch cao cho tới khi đồng nhất sau đó đổ ngay vào các khuôn. Sau khi đổ đầy khuôn miết phẳng mặt, sau 1 giờ tính từ lúc bắt đầu trộn thạch cao với nước thì tháo mẫu ra khỏi khuôn, sau 1,5 giờ đem thí nghiệm nén các mẫu. Giới hạn cường độ chịu nén của thạch cao bằng trị số trung bình cộng của các kết quả thí nghiệm trên 3 mẫu. 4.3.4. Công dụng và bảo quản Công dụng Thạch cao là chất kết dính chỉ rắn và giữ được độ bền trong không khí, nhưng có độ bóng, mịn, đẹp do đó được dùng để chế tạo vữa trát ở nơi khô ráo, làm mô hình hay vữa trang trí. Bảo quản Thạch cao ở dạng bột mịn do đó nếu dự trữ lâu và bảo quản không tốt thạch cao sẽ hút ẩm làm giảm cường độ chịu lực. Để chống ẩm cho thạch cao ta phải bảo quản bằng cách chứa bột thạch cao trong các bao kín có lớp cách nước và để trong kho nơi khô ráo. 4.4. Một số loại chất kết dính vô cơ khác rắn trong không khí 4.4.1. Chất kết dính magie Khái niệm Chất kết dính magie thường ở dạng bột mịn có thành phần chủ yếu là oxyt magie (MgO), được sản xuất bằng cách nung đá magiezit MgCO3 hoặc đá 0 đôlômit (CaCO3.MgCO3) ở nhiệt độ 750 - 850 C. 54
  25. 750− 850O C MgCO 3 ⎯⎯→⎯⎯ MgO+ CO 2 Tính chất Khi nhào trộn chất kết dính magie với nước thì quá trình rắn chắc xảy ra rất chậm, nhưng nếu nhào trộn với dung dịch clorua magie hoặc các loại muối magie khác thỉ quá trình cứng rắn xảy ra nhanh hơn và làm tăng đáng kể cường độ của chất kết dính, vì sản phẩm thủy hóa ngoài Mg(OH)2 còn có cả loại muối kép ngậm nước 3MgO.MgCl2.6H2O. Cường độ chịu lực của chất kết dính magie tương đối cao, tùy thuộc vào thành phần khoáng của nó mà cường độ chịu nén ở tuổi 28 ngày đạt 100 - 600 kG/cm2. Chất kết dính magie chỉ rắn chắc trong môi trường không khí với độ ẩm không lớn hơn 60%. Công dụng Chất kết dính magie được dùng để sản xuất các tấm cách nhiệt, tấm lát, tấm ốp bên trong nhà. 4.4.2. Thủy tinh lỏng Khái niệm Thủy tinh lỏng là chất kết dính vô cơ rắn trong không khí có thành phần là Na2O.nSiO2 hoặc K2O.mSiO2 . Trong đó : n; m là môđun silicat; n = 2,5 - 3 , m = 3 - 4 . Thủy tinh lỏng natri rẻ hơn nên trong thực tế nó được dùng rộng rãi hơn. Thủy tinh lỏng natri được sản xuất bằng cách nung cát thạch anh SiO2 với 0 Na2CO3 (hoặc Na2SO4 + C ) ở nhiệt độ 1300 - 1400 C. nSiO2 + Na2CO3 → Na2O.SiO2 + CO2 . hoặc nSiO2 + Na2SO4 + C → Na2O.nSiO2 + CO + SO2 Sau đó hỗn hợp được cho vào thiết bị chứa hơi nước ở áp suất 3 - 8 atm để tạo thành thủy tinh lỏng. Tính chất Thủy tinh lỏng có khối lượng riêng 1,3 - 1,5 g/cm3, tồn tại ở dạng keo trong suốt không màu. Thủy tinh lỏng không cháy, không mục nát , bền với tác dụng của axít. Công dụng Thủy tinh lỏng dùng để sản xuất vữa hay bê tông chịu axít, xây dựng các bộ phận của công trình trực tiếp tiếp xúc với axít. Để thúc đẩy quá trình rắn chắc của thủy tinh lỏng có thể cho thêm Na2SiF6. Phụ gia Na2SiF6 còn làm tăng độ bền nước và bền axít của thủy tinh lỏng. 4.4.3. Chất kết dính hỗn hợp Khái niệm Chất kết dính hỗn hợp rất đa dạng. Trong xây dựng chất kết dính hỗn hợp được sử dụng ở dạng hỗn hợp của vôi và phụ gia vô cơ hoạt tính nghiền mịn, 55
  26. chúng được sản xuất bằng cách nghiền chung vôi sống với phụ gia hoạt tính hoặc trộn lẫn vôi nhuyễn với phụ gia nghiền mịn. Phụ gia vô cơ hoạt tính có hai nhóm chính. Phụ gia vô cơ hoạt tính thiên nhiên: điatômit, Trepen, túp núi lửa, tro núi lửa. Phụ gia hoạt tính nhân tạo: Tro xỉ trong công nghiệp nhiệt điện hoặc luyện kim. Nói chung phụ gia vô cơ hoạt tính là những loại vật liệu chứa nhiều SiO2 vô định hình. Độ hoạt tính của chúng được đánh giá thông qua độ hút vôi. Tỷ lệ phối hợp của chất kết dính hỗn hợp là vôi sống 15 - 30 %, phụ gia vô cơ hoạt tính 70 - 80% (có thể thêm cả thạch cao). Tính chất Chất kết dính hỗn hợp có cường độ tương đối cao nhờ có phản ứng tạo ra silicat canxi ngậm nước ở ngay nhiệt độ thường Ca(OH)2 + SiO2 + H2O → nCaO.mSiO2.pH2O Khoáng nCaO.mSiO2.pH2O (viết tắt CSH) là khoáng bền nước hơn các sản phẩm tạo thành khi vôi rắn chắc trong không khí. Công dụng Chất kết dính hỗn hợp có khả năng bền nước tốt hơn vôi không khí, do đó phạm vi sử dụng của nó rộng rãi hơn. Có thể dùng chúng để chế tạo bê tông mác thấp, vữa xây dựng trong môi trường không khí và cả môi trường ẩm ướt. 4.5. Vôi thủy 4.5.1. Khái niệm Vôi thủy là chất kết dính vô cơ không những có khả năng rắn chắc trong không khí mà còn có khả năng rắn chắc trong nước, nhưng mức độ rắn chắc trong nước yếu hơn nhiều so với xi măng pooc lăng. Vôi thủy được sản xuất bằng cách nung đá mácnơ (chứa nhiều sét 6-20%) ở nhiệt độ 900 - 11000C. Ở nhiệt độ 9000C đầu tiên đá vôi bị phân hủy tạo ra CaO, sau đó CaO tác dụng với SiO2, Al2O3 , Fe2O3 có trong sét để tạo ra khoáng mới theo phản ứng : 2CaO + SiO2 = 2CaO.SiO2 . 2CaO + Fe2O3 = 2CaO.Fe2O3 . CaO + Al2O3 = CaO. Al2O3 . CaO + Fe2O3 = CaO. Fe2O3 . Nếu trong đá vôi có lẫn tạp chất MgCO3 thì trong thành phần của vôi thủy còn có MgO. Như vậy sau khi nung trong thành phần của vôi thủy gồm có: - 2CaO.SiO2 (C2S); - 2CaO. Fe2O3 (C2F); - CaO.Al2O3 (CA); - CaO.Fe2O3 (CF); - CaO và MgO . 56
  27. Nhờ có khoáng C2S, C2F, CA và CF mà vôi thủy rắn chắc được trong môi trường ẩm ướt và trong nước. Thành phần CaO và MgO không rắn chắc được trong môi trường nước nhưng nó làm cho vôi thủy dễ tôi hơn. 4.5.2. Tính chất Khối lượng riêng , khối lượng thể tích 3 Khối lượng riêng : ρ = 2200 - 3000 kg/m . 3 Khối lượng thể tích : ρv = 500 - 800 kg/m . Độ mịn Khi độ mịn càng cao thì quá trình cứng rắn xảy ra càng nhanh, triệt để, cường độ chịu lực tốt. Do đó độ mịn của vôi thủy phải đảm bảo chỉ tiêu lượng lọt qua sàng 4900 lỗ /cm2 ≥ 85% (tương đương như xi măng pooc lăng). Bột vôi thủy có màu hồng nhạt. Khả năng rắn chắc trong nước Khả năng rắn chắc trong nước của vôi thủy yếu hơn xi măng và phụ thuộc vào hàm lượng các khoáng C2S; C2F ; CA ; CF, các khoáng này càng nhiều thì khả năng rắn chắc trong nước càng mạnh. Cường độ chịu lực Khả năng chịu lực của vôi thủy cao hơn vôi không khí nhưng thấp hơn xi măng pooc lăng và được đánh giá thông qua cường độ chịu nén. Cường độ chịu nén của vôi thủy thường từ 20 - 50 kG/cm2. Giới hạn cường độ nén của vôi thủy là cường độ nén trung bình của các mẫu thí nghiệm hình lập phương có cạnh 7,07 cm được chế tạo bằng vữa vôi thủy: cát, tỷ lệ 1:3 (theo khối lượng) ở tuổi 28 ngày. Cách xác định cường độ nén của vôi thủy như sau: Trộn 900g bột vôi thủy với 2700g cát thông thường và 360 g nước. Cho hỗn hợp vữa vào 3 khuôn mẫu hình lập phương cạnh 7,07cm thành 2 lớp, đầm chặt, gạt bằng và miết phẳng bề mặt các mẫu. Để các khuôn mẫu trong thùng dưỡng hộ ẩm 24 ± 2 giờ, sau đó tháo khuôn và dưỡng hộ ẩm 6 ngày, ngâm tiếp trong nước thêm 21 ngày nữa. Sau 28 ngày kể từ ngày đúc mẫu được vớt lên lau khô bằng vải rồi đem thí nghiệm xác định cường độ chịu nén. 4.5.3. Công dụng và bảo quản Công dụng Vôi thủy được dùng để sản xuất vữa xây, vữa trát, sản xuất bê tông mác thấp. Trước khi cho vữa vôi thủy tiếp xúc với môi trường nước phải để trong môi trường không khí 2- 5 ngày (nếu là vôi thủy mạnh), 2 - 3 tuần (nếu là vôi thủy yếu) sau đó mới cho tiếp xúc với nước để thành phần CaO rắn chắc theo cách cacbonat hóa. 57
  28. Bảo quản Do có độ mịn cao nên nếu bảo quản không tốt vôi thủy sẽ hút ẩm đóng cục, giảm cường độ chịu lực. Để bảo quản vôi thủy phải được đóng thành bao kín, để nơi khô ráo, không dự trữ lâu phương pháp bảo quản giống như xi măng. 4.6. Xi măng pooc lăng 4.6.1. Khái niệm Xi măng pooc lăng là chất kết dính rắn trong nước, chứa khoảng 70 - 80% silicat canxi nên còn có tên gọi là xi măng silicat. Nó là sản phẩm nghiền mịn của clinke với phụ gia đá thạch cao (3 - 5%). Đá thạch cao có tác dụng điều chỉnh tốc độ đông kết của xi măng để phù hợp với thời gian thi công. Clinke Clinke thường ở dạng hạt có đường kính 10 - 40 mm được sản xuất bằng cách nung hỗn hợp đá vôi, đất sét và quặng sắt đã nghiền mịn đến nhiệt độ kết khối (khoảng 1450oC). Chất lượng clinke phụ thuộc vào thành phần khoáng vật, hóa học và công nghệ sản xuất. Tính chất của xi măng do chất lượng clinke quyết định. Thành phần hóa học Thành phần hóa học của clinke biểu thị bằng hàm lượng (%) các oxyt có trong clinke, giao động trong giới hạn sau: CaO: 63 - 66%; Al2O3: 4 - 8%; SiO2: 21 - 24%; Fe2O3: 2 - 4%. Ngoài ra còn có một số oxyt khác như MgO; SO3; K2O; Na2O; TiO2; Cr2O3; P2O5, Chúng chiếm một tỷ lệ không lớn nhưng ít nhiều đều có hại cho xi măng. Thành phần hóa học của clinke thay đổi thì tính chất của xi măng cũng thay đổi. Ví dụ: Tăng CaO thì xi măng thường rắn nhanh nhưng kém bền nước, tăng SiO2 thì ngược lại. Thành phần khoáng vật Trong quá trình nung đến nhiệt độ kết khối các oxyt chủ yếu kết hợp lại tạo thành các khoáng vật silicat canxi, aluminat canxi, alumôferit canxi ở dạng cấu trúc tinh thể hoặc vô định hình. Clinke có 4 khoáng vật chính như sau : Alit : silicat canxi : 3CaO.SiO2 ( viết tắt là C3S). Chiếm hàm lượng 45 - 60% trong clinke. Alit là khoáng quan trọng nhất của clinke, nó quyết định cường độ và các tính chất khác của xi măng. Đặc điểm: Tốc độ rắn chắc nhanh, cường độ cao, tỏa nhiều nhiệt, dễ bị ăn mòn. Bêlit : silicat canxi 2CaO.SiO2 (viết tắt là C2S). Chiếm hàm lượng 20 - 30% trong clinke. Bêlit là khoáng quan trọng thứ hai của clinke. Đặc điểm: Rắn chắc chậm nhưng đạt cường độ cao ở tuổi muộn, tỏa nhiệt ít, ít bị ăn mòn. 58
  29. Aluminat canxi : 3CaO.Al2O3 (viết tắt là C3A ). Chiếm hàm lượng 4 - 12 % trong clinke. Đặc điểm: Rắn chắc rất nhanh nhưng cường độ rất thấp, tỏa nhiệt rất nhiều và rất dễ bị ăn mòn. Feroaluminat canxi : 4CaO.Al2O3.Fe2O3 ( viết tắt là C4AF ). Chiếm hàm lượng 10 - 12% trong clinke. Đặc điểm: Tốc độ rắn chắc, cường độ chịu lực, nhiệt lượng tỏa ra và khả năng chống ăn mòn đều trung bình. Ngoài các khoáng vật chính trên trong clinke còn có một số thành phần khác như CaO; Al2O3; Fe2O3; MgO; K2O và Na2O, tổng hàm lượng các thành phần này khoảng 5-15% và có ảnh hưởng xấu đến tính chất của xi măng làm cho xi măng kém bền nước. Khi hàm lượng các khoáng thay đổi thì tính chất của xi măng cũng thay đổi theo. Ví dụ: Khi hàm lượng C3S nhiều lên thì xi măng rắn càng nhanh, cường độ càng cao. Nhưng nếu hàm lượng C3A tăng thì xi măng rắn rất nhanh và dễ gây nứt cho công trình. 4.6.2. Sơ lược quá trình sản xuất Nguyên liệu sản xuất Nguyên liệu sản xuất clinke là đá vôi có hàm lượng canxi lớn như đá vôi đặc, đá phấn, đá macnơ và đất sét. Trung bình để sản xuất 1 tấn xi măng cần khoảng 1,5 tấn nguyên liệu. Tỷ lệ giữa thành phần đá vôi và đất sét vào khoảng 3 : 1 . Ngoài hai thành phần chính là đá vôi và đất sét người ta có thể cho thêm vào thành phần phối liệu các nguyên liệu phụ để điều chỉnh thành phần hóa học, nhiệt độ kết khối và kết tinh của các khoáng. Ví dụ: Cho trepen để tăng hàm lượng SiO2 , cho quặng sắt để tăng Fe2O3, Nhiên liệu chủ yếu và hiệu quả nhất trong sản xuất xi măng ở nhiều nước là khí thiên nhiên có nhiệt trị cao. Ở nước ta nhiên liệu được dùng phổ biến nhất là than và dầu. Các giai đoạn của quá trình sản xuất Quá trình sản xuất xi măng gồm các công đoạn chuẩn bị phối liệu, nung và nghiền. Sơ dồ công nghệ sản xuất xi măng pooc lăng được tóm tắt trên hình 4-2 Chuẩn bị phối liệu Gồm có khâu nghiền mịn, nhào trộn hỗn hợp với tỷ lệ yêu cầu để đảm bảo cho các phản ứng hóa học được xảy ra và clinke có chất lượng đồng nhất. Thông thường có hai phương pháp chuẩn bị phối liệu: Khô và ướt. Phương pháp khô: Khâu nghiền và trộn đều thực hiện ở trạng thái khô hoặc đã sấy trước. Đá vôi và đất sét được nghiền và sấy đồng thời cho đến độ ẩm 1- 2% trong máy nghiền bi. Sau khi nghiền, bột phối liệu được đưa vào xi lô để kiểm tra hiệu chỉnh lại thành phần và để dự trữ đảm bảo cho lò nung làm việc liên tục. 59
  30. Khi chuẩn bị phối liệu bằng phương pháp khô thì quá trình nung tốn ít nhiệt, mặt bằng sản xuất gọn nhưng thành phần hỗn hợp khó đồng đều ảnh hưởng tới chất lượng xi măng. Phương pháp này thích hợp khi đá vôi và đất sét có độ ẩm thấp (10 - 15%). Hình 4-2: Sơ đồ sản xuất ximăng pooclăngt bằng phương pháp ướt 1. Đất sét, đá vôi từ mỏ về; 2. Chuẩn bị phối liệu; 3. Định lượng; 4. Lò quay; 5. Truyền nhiên liệu; 6. Chuyển Clinke; 7. Kho Clinke; Phương pháp ướt: Đất sét được máy khuấy tạo ềhuyền phù sét, đá vôi được đập nhỏ rồi cho vào nghiền chung với đất sét ở trạng thái lỏng (lượng nước chiếm 35-45%) trong máy nghiền bi cho đến khi độ mịn đạt yêu cầu. Từ máy nghiền hỗn hợp được bơm vào bể bùn để kiểm tra và điều chỉnh thành phần trước khi cho vào lò nung. Khi chuẩn bị phối liệu bằng phương pháp ướt thì thành phần của hỗn hợp đồng đều, chất lượng xi măng tốt nhưng quá trình nung tốn nhiều nhiệt. Phương pháp này thích hợp khi đá vôi và đất sét có độ ẩm lớn. Nung Quá trình nung phối liệu được thực hiện chủ yếu trong lò quay. Nếu nguyên liệu chuẩn bị theo phương pháp khô có thể nung trong lò đứng. Lò quay là ống trụ bằng thép đặt nghiêng 3-4o, trong lót bằng vật liệu chịu lửa (hình 4 - 3). Chiều dài lò 95-185m, đường kính 5-7m. Lò quay làm việc theo nguyên tắc ngược chiều. Hỗn hợp nguyên liệu được đưa vào đầu cao, khí nóng được phun lên từ đầu thấp. Khi lò quay, phối liệu được chuyển dần xuống và tiếp xúc với các vùng có nhiệt độ khác nhau, tạo ra những quá trình hóa lý phù hợp để cuối cùng hình thành clinke. Tốc độ quay của lò 1 - 2 vòng/phút. 60
  31. Clinke khi ra khỏi lò ở dạng màu sẫm hoặc vàng xám được làm nguội từ 10000C xuống đến 100 - 2000C trong các thiết bị làm nguội bằng không khí rồi giữ trong kho 1- 2 tuần. Hình 4 - 3 : Sơ đồ lò quay sản xuất xi măng theo phương pháp ướt 1 -Hỗn hợp phối liệu; 2 - Khí nóng; 3- Lò quay; 4-Xích treo;5 - Truyền động; 6-Nước làm nguội vùng kết khối của lò ; 7-Ngọn lử ; 8 - Truyền nhiên liệu ; 9 – Clinke; 10 - Làm nguội; 11- Gối đỡ . Nghiền Việc nghiền clinke thành bột mịn được thực hiện trong máy nghiền bi làm việc theo chu trình hở hoặc chu trình kín. Máy nghiền bi là ống hình trụ bằng thép bên trong có những vách ngăn thép để chia máy ra nhiều buồng. Máy nghiền loại lớn có kích thước 3,95 x 11 m (năng suất 100T/giờ) và 4,6 x 16,4 m (năng suất 135t/giờ). Sơ đồ nghiền clinke được thể hiện trên hình 4-4. Hình 4-4: Sơ đò nghiền clinke theo chu trình kín a) Với hai máy nghiền: 1. Máy nghiền thô; 2. Gầu nâng; 3. Thiết bị phân loại li tâm; 4. Máy nghiền mịn; b) Với một máy nghiền: 1. Gầu nâng; 2. Thiết bị phân loại; 3. Máy nghiền; 4. Hạt thô; 5. Ximăng Clinke được nghiền dưới tác dụng của bi thép hình cầu (nghiền thô) và bi thép hình trụ (nghiền mịn). Khi máy quay bi thép được nâng lên đến một độ cao nhất định rồi rơi xuống va đập và trà sát làm vụn hạt vật liệu (clinke, thạch cao và phụ gia). Xi măng sau khi nghiền có nhiệt độ 80 - 1200C được hệ thống vận chuyển bằng khí nén đưa lên xilô. Xilô là bể chứa bằng bê tông cốt thép đường kính 8 - 15 m, cao 25 - 30m, những xi lô lớn có thể chứa được 4000 - 10000 tấn xi măng. 61
  32. 4.6.3. Lý thuyết về sự rắn chắc của xi măng. Phản ứng thuỷ hoá Khi nhào trộn xi măng với nước, ở giai đoạn đầu xảy ra quá trình tác dụng nhanh của khoáng alit với nước tạo ra hyđrosilicat canxi và hyđroxit canxi. 2(3CaO.SiO2) + 6H2O = 3CaO.2SiO2.3H2O + 3Ca(OH)2. Vì đã có hyđroxit canxi tách ra từ khoáng alit nên khoáng belit thuỷ hoá chậm hơn alit và tách ra ít Ca(OH)2 hơn. : 2(2CaO.SiO2) + 4H2O = 3CaO.2SiO2.3H2O + Ca(OH)2. Hyđrosilicat canxi hình thành khi thuỷ hoá hoàn toàn đơn khoáng silicat tricanxi ở trạng thái cân bằng với dung dịch bão hoà hyđroxit canxi. Tỷ lệ CaO/SiO2 trong các hyđrosilicat trong hồ xi măng có thể thay đổi phụ thuộc vào thành phần vật liệu, điều kiện rắn chắc và các yếu tố khác. Pha chứa alumô chủ yếu trong xi măng là aluminat tricanxi 3CaO.Al2O3, đây là pha hoạt động nhất. Ngay sau khi trộn với nước, trên bề mặt các hạt xi măng đã có lớp sản phẩm xốp, không bền có tinh thể dạng tấm mỏng lục giác của 4CaO.Al2O3.9H2O và 2.CaO.Al2O3.8H2O. Cấu trúc dạng tơi xốp này làm giảm độ bền nước của xi măng. Dạng ổn định của nó là hyđroaluminat 6 nước có tinh thể hình lập phương được tạo thành từ phản ứng: 3CaO.Al2O3 + 6H2O = 3CaO.Al2O3.6H2O Để làm chậm quá trình đông kết khi nghiền clinke cần cho thêm một lượng đá thạch cao (3% ÷ 5% so với khối lượng xi măng). Sunfat canxi sẽ đóng vai trò là chất hoạt động hoá học của xi măng, tác dụng với aluminat tricanxi ngay từ đầu để tạo thành sunfoaluminat canxi ngậm nước (khoáng etringit) : 3CaO.Al2O3 + 3 (CaSO4.2H2O) + 26H2O = 3CaO.Al2O3.3CaSO4.32H2O Trong dung dịch bão hoà Ca(OH)2, ngay từ đầu etringit sẽ tách ra ở dạng keo phân tán mịn đọng lại trên bề mặt 3CaO.Al2O3 làm chậm sự thuỷ hoá của nó và kéo dài thời gian đông kết của xi măng. Sự kết tinh của Ca(OH)2 từ dung dịch quá bão hoà sẽ làm giảm nồng độ hyđroxit canxi trong dung dịch và etringit chuyển sang tinh thể dạng sợi, tạo ra cường độ ban đầu cho xi măng. Etringit có thể tích lớn gấp 2 lần so với thể tích các chất tham gia phản ứng, có tác dụng chèn lấp lỗ rỗng của đá xi măng, làm cường độ và độ ổn định của đá xi măng tăng lên. Cấu trúc của đá xi măng cũng sẽ tốt hơn do hạn chế được những chỗ yếu của hyđroaluminat canxi. Sau đó etringit còn tác dụng với 3CaO.Al2O3 còn lại sau khi đã tác dụng với đá thạch cao để tạo ra muối kép của sunfat : 2(3CaO.Al2O3)+3CaO.Al2O3.3Ca.SO4.32H2O+22H2O = (3CaO.Al2O3.CaSO4.18H2O). Feroaluminat tetracanxi tác dụng với nước tạo ra hyđroaluminat và hyđroferit canxi : 4CaO.Al2O3.Fe2O3 + mH2O = 3CaO.Al2O3.6H2O + CaO.Fe2O3.nH2O. Hyđroferit sẽ nằm lại trong thành phần của gen xi măng, còn hyđro- aluminat sẽ tác dụng với đá thạch cao như phản ứng trên. Tính chất và sự hình thành cấu trúc của hồ xi măng Hồ xi măng tạo thành sau khi nhào trộn xi măng với nước là loại huyền phù đặc của nước. Trước khi tạo hình hỗn hợp bê tông và bắt đầu đông kết, hồ xi 62
  33. măng có cấu trúc ngưng tụ. Trong đó những hạt rắn hút nhau bằng lực Vanđecvan và liên kết với nhau bằng lớp vỏ hyđrat. Cấu trúc này sẽ bị phá huỷ khi có lực cơ học tác dụng (nhào, trộn, rung ) nó trở thành chất lỏng nhớt, dễ tạo hình. Việc chuyển hồ sang trạng thái chảy mang đặc trưng xúc biến, có nghĩa là khi loại bỏ tác dụng của lực cơ học thì liên kết cấu trúc trong hệ lại được phục hồi. Tính chất cơ học - cấu trúc của hồ xi măng tăng theo mức độ thuỷ hoá xi măng. Thí dụ ứng suất trượt của hồ đo được sau khi nhào trộn là 0,1kG/cm2, khi bắt đầu đông kết tăng lên 15 lần (1,5 kG/cm2), còn khi kết thúc đông kết lên 50 lần (5kG/cm2). Như vậy, hồ xi măng có khả năng thay đổi nhanh tính lưu biến trong khoảng 1 ÷ 2 giờ. Sự hình thành cấu trúc của hồ xi măng và cường độ của nó xảy ra như sau : Những phân tố cấu trúc đầu tiên được hình thành sau khi nhào trộn xi măng với nước là etringit, hyđroxit canxi và các sợi gen CSH. Etringit dạng lăng trụ lục giác được tạo thành sau 2 phút, còn mầm tinh thể Ca(OH)2 xuất hiện sau vài giờ. Phần gen của hyđrosilicat canxi đầu tiên ở dạng ‘bó”. Những lớp gen mỏng tạo thành xen giữa các tinh thể Ca(OH)2 làn đặc chắc thêm hồ xi măng. Đến cuối giai đoạn đông kết cấu trúc cơ bản của hồ xi măng được hình thành làm cho nó biến đổi thành đá xi măng. Giải thích quá trình rắn chắc của xi măng Khi xi măng rắn chắc, các quá trình vật lý và hoá lý phức tạp đi kèm theo các phản ứng hoá học có một ý nghĩa rất lớn và tạo ra sự biến đổi tổng hợp, khiến cho xi măng khi nhào trộn với nước, lúc đầu chỉ là hồ dẻo và sau biến thành đá cứng có cường độ. Tất cả các quá trình tác dụng tương hỗ của từng khoáng với nước để tạo ra những sản phẩm mới xảy ra đồng thời, xen kẽ và ảnh hưởng lẫn nhau. Các sản phẩm mới cũng có thể tác dụng tương hỗ với nhau và với các khoáng khác của clinke để hình thành những liên kết mới. Do đó hồ xi măng là một hệ rất phức tạp cả về cấu trúc thành phần cũng như sự biến đổi. Để giải thích quá trình rắn chắc người ta thường dùng thuyết của Baikov – Rebinder. Theo thuyết này, quá trình rắn chắc của xi măng được chia làm 3 giai đoạn: Giai đoạn hoà tan : Khi nhào trộn xi măng với nước các thành phần khoáng của clinke sẽ tác dụng với nước ngay trên bề mặt hạt xi măng. Những sản phẩm mới tan được [Ca(OH)2; 3CaO.Al2O3.6H2O] sẽ tan ra. Nhưng vì độ tan của nó không lớn và lượng nước có hạn nên dung dịch nhanh chóng trở nên quá bão hoà. Giai đoạn hoá keo : Trong dung dịch quá bão hoà, các sản phẩm Ca(OH)2; 3CaO.Al2O3.6H2O mới tạo thành sẽ không tan nữa mà tồn tại ở trạng thái keo. Còn các sản phẩm etringit, CSH vốn không tan nên vẫn tồn tại ở thể keo phân tán. Nước vẫn tiếp tục mất đi (bay hơi, phản ứng với xi măng), các sản phẩm mới tiếp tục tạo thành, tỷ lệ rắn/lỏng ngày một tăng, hỗn hợp mất dần tính dẻo, các sản phẩm ở thể keo liên kết với nhau thành thể ngưng keo. 63
  34. Giai đoạn kết tinh : Nước ở thể ngưng keo vẫn tiếp tục mất đi , các sản phẩm mới ngày càng nhiều. Chúng kết tinh lại thành tinh thể rồi chuyển sang thể liên tinh làm cho cả hệ thống hoá cứng và cường độ tăng. 4.6.4. Tính chất của xi măng pooc lăng Khối lượng riêng khối lượng thể tích Khối lượng riêng của xi măng pooc lăng (không có phụ gia khoáng) ρa = 3,05- 3.15 g/cm3. Khối lượng thể tích có giá trị dao động khá lớn tùy thuộc vào độ lèn chặt, 3 đối với bột xi măng ở trạng thái xốp tự nhiên ρv = 1100kg/m , lèn chặt trung 3 3 bình ρv= 1300 kg/m , lèn chặt mạnh ρv= 1600kg/m . Độ mịn Xi măng có độ mịn cao sẽ dễ tác dụng với nước, các phản ứng thủy hóa sẽ xảy ra triệt để, tốc độ rắn chắc nhanh, cường độ chịu lực cao. Như vậy độ mịn là một chỉ tiêu đánh giá phẩm chất của xi măng. Độ mịn có thể xác định bằng cách sàng trên sàng 4900 lỗ/cm2 và đo tỷ diện bề mặt của xi măng. Theo TCVN 2682 - 1999, khi sàng bằng sàng 4900 lỗ/cm2 thì độ mịn của xi măng thông thường PC30 và PC40 phải đạt chỉ tiêu lượng lọt qua sàng lớn hơn hoặc bằng 85% (lượng sót trên sàng ≤ 15%). Tỷ diện bề mặt của xi măng là tổng diện tích của các hạt trong 1g xi măng. Xi măng càng mịn tỷ diện càng lớn do đó người ta dùng tỷ diện để biểu thị độ mịn của xi măng. Cũng theo TCVN 2682-1999 tỷ diện bề mặt của xi măng PC30 và PC40 phải đạt ≥ 2700cm2/g Lượng nước tiêu chuẩn Lượng nước tiêu chuẩn của xi măng là lượng nước tính bằng % so với khối lượng xi măng đảm bảo cho hồ xi măng đạt độ dẻo tiêu chuẩn. Độ dẻo tiêu chuẩn được xác định bằng dụng cụ vi ka (hình 4 - 5), phương pháp xác định theo TCVN 6017:1995 Hồ xi măng đảm bảo độ cắm sâu của kim vi ka (đường kính kim 10 ± 0,05 mm) từ 33- 35mm trong khuôn có đường kính trên 70 ± 5mm, đường kính dưới 80 ± 5mm và chiều Hình 4-5: Dụng cụ Vika để xác định độ dẻo tiêu chuẩn cao 40 ± 0,2mm thì hồ đó có độ và thời gian đông kết của ximăng a) Xác định độ dẻo tiêu chuẩn và thời gian bắt đầu đông kết. dẻo tiêu chuẩn và lượng đã b) Xác định thời gian kết thúc đông kết. 64
  35. nhào trộn là lượng nước tiêu chuẩn. Lượng nước tiêu chuẩn của xi măng càng lớn thì lượng nước nhào trộn trong bê tông và vữa càng nhiều. Mỗi loại xi măng có lượng nước tiêu chuẩn nhất định tùy thuộc vào thành phần khoáng vật, độ mịn, hàm lượng phụ gia, thời gian đã lưu kho và điều kiện bảo quản xi măng. Xi măng để lâu bị vón cục thì lượng nước tiêu chuẩn sẽ giảm. N Lượng nước tiêu chuẩn của xi măng biểu thị bằng tỷ lệ: =0.22 ÷ 0,32 . X Cách thực hiện: Trộn 500g xi măng với một lượng nước đã ước tính sơ bộ (trong khoảng X =0,22 ÷ 0,32 ). Thời gian trộn kéo dài 5 phút kể từ lúc đổ nước vào xi măng. N Ngay sau khi trộn xong đặt khuôn lên tấm kính, dùng bay xúc hồ xi măng đổ đầy khuôn một lần rồi đập tấm kính lên mặt bàn 5 - 6 cái, dùng dao đã lau ẩm gạt cho hồ bằng miệng khuôn. Đặt khuôn vào dụng cụ vika, hạ đầu kim (có đường kính 10 ± 0,05 mm và dài 50 ± 1 mm) xuống sát mặt hồ xi măng và vặn vít để giữ kim, sau đó mở vít cho kim tự do cắm vào hồ xi măng. Qua 30 giây vặn chặt vít và đọc trị số kim chỉ trên thước chia độ để biết độ cắm sâu của kim trong hồ xi măng. Nếu kim cắm cách tấm đế 6±1mm thì hồ xi măng đạt độ dẻo tiêu chuẩn. Nếu kim căm nông hoặc sâu hơn thì phải trộn mẻ khác với lượng nước nhiều hơn hoặc ít hơn. Cứ thí nghiệm nhiều lần như vậy cho đến khi tìm được lượng nước ứng với độ dẻo tiêu chuẩn của hồ xi măng. Thời gian đông kết của xi măng Sau khi trộn xi măng với nước, hồ xi măng có tính dẻo cao nhưng sau đó tính dẻo mất dần. Thời gian tính từ lúc trộn xi măng với nước cho đến khi hồ xi măng mất dẻo và bắt đầu có khả năng chịu lực gọi là thời gian đông kết. Thời gian đông kết của xi măng bao gồm 2 giai đoạn là thời gian bắt đầu đông kết và thời gian kết thúc đông kết. Thời gian bắt đầu đông kết: Là khoảng thời gian tính từ lúc bắt đầu trộn xi măng với nước cho đến khi hồ xi măng mất tính dẻo, ứng với lúc kim vika nhỏ có đường kính 1,13 ± 0,05 mm lần đầu tiên cắm cách tấm kính 4 ± 1 mm. Thời gian kết thúc đông kết: Là khoảng thời gian tính từ lúc bắt đầu trộn xi măng với nước cho đến khi trong hồ xi măng hình thành các tinh thể, hồ cứng lại và bắt đầu có khả năng chịu lực, ứng với lúc kim vika có đường kính 1,13 ± 0,05 mm lần đầu tiên cắm sâu vào hồ 0,5 mm. Thời gian đông kết của xi măng phụ thuộc vào thành phần khoáng, độ mịn, hàm lượng phụ gia, thời gian lưu giữ trong kho và điều kiện bảo quản xi măng. Các loại xi măng có thời gian đông kết khác nhau. Khi thi công bê tông và vữa cần phải biết thời gian bắt đầu đông kết và thời gian kết thúc đông kết của xi măng để định ra kế hoạch thi công hợp lý. 65
  36. Khi xi măng bắt đầu đông kết nó mất tính dẻo nên tất cả các khâu vận chuyển, đổ khuôn và đầm chặt bê tông phải tiến hành xong trước khi xi măng bắt đầu đông kết, do đó thời gian bắt đầu đông kết phải đủ dài để kịp thi công. Khi xi măng kết thúc đông kết là lúc xi măng đạt được cường độ nhất định, do đó thời gian kết thúc đông kết không nên quá dài vì xi măng cứng chậm, ảnh hưởng đến tiến độ thi công. Từ những ý nghĩa trên mà TCVN 2682 - 1999 đã quy định : Thời gian bắt đầu đông kết không được sớm hơn 45 phút. Thời gian kết thúc đông kết không quá 375 phút. Cách xác định: Thời gian đông kết của hồ xi măng được thực hiện theo TCVN 6017: 1995 như sau: Dụng cụ thí nghiệm là dụng cụ vika (hình 4 - 5) đường kính của kim bằng 1,13 ±0,05 mm. Trộn hồ xi măng với lượng nước tiêu chuẩn và đổ vào khuôn, giống như khi xác định độ dẻo của tiêu chuẩn của xi măng. Cần ghi lại thời điểm trộn xi măng với nước. Sau khi cho hồ vào khuôn và đặt trên tấm kính của dụng cụ thì hạ kim xuống sát mặt hồ và vặn chặt vít hãm, sau đó mở vít cho kim tự do cắm vào hồ xi măng. Cứ 10 phút cho kim cắm một lần, Hình 4-6: Thùng giữ mẫu khi kim cắm cách đáy 4 ± 1mm thì ghi lại thời điểm đó và tính được thời gian bắt đầu đông kết của hồ xi măng. Sau đó thay kim nhỏ khác có lắp sẵn vòng nhỏ, đồng thời lật úp khuôn để tiến hành xác định thời gian kết thúc đông kết. Cứ 30 phút cho cắm kim một lần cho đến khi kim chỉ cắm vào hồ xi măng 0,5mm đó chính là thời điểm mà vòng gắn trên kim, lần đầu tiên không còn để lại dấu trên mẫu. Ghi lại thời điểm lúc đó và tính thời gian kết thúc đông kết của hồ xi măng. Hình 4-7: Thùng chưng và luộc mẫu Tính ổn định thể tích Xi măng phải đảm bảo tính ổn định thể tích để không bị biến dạng và nứt nẻ, nguyên nhân gây nên hiện tượng không ổn định thể tích là hàm lượng CaO; MgO tự do và khoáng aluminat canxi lớn, các chất này khi khi cứng rắn thường nở thể tích. Mặt khác nếu lượng nước sử dụng nhiều quá cũng gây hiện tượng co cho đá xi măng cũng như bê tông và vữa. Để xác định tính ổn định thể tích bằng phương pháp mẫu bánh đa theo TCVN 4031:1985 người ta trộn 300g xi măng với nước thành hồ dẻo tiêu chuẩn, chia hồ xi măng thành 4 phần bằng nhau, nặn mỗi phần thành một viên bi, đặt mỗi viên bi lên một tấm kính đã lau bằng dầu nhờn rồi rung tấm kính cho đến khi các viên tạo thành hình tròn dẹt như các bánh đa (bánh tráng) có đường kính 7-8cm, bề dày chỗ giữa chừng 1 cm. 66
  37. Dùng dao ẩm miết từ cạnh vào giữa để mép mẫu mỏng và nhẵn mặt. Đặt các mẫu đó vào thùng giữ mẫu (hình 4-6) rồi đậy nắp kín và giữ trong 24 ± 2 giờ kể từ lúc tạo mẫu. Sau đó lấy ra khỏi thùng và tách mẫu ra khỏi tấm kính. Đặt 2 mẫu trên lưới thép trên, 2 mẫu trên lưới thép dưới của thùng chưng và luộc mẫu (hình 4-7). Sau khi xếp mẫu, đun sôi nước trong thùng 4 giờ liền, thời gian từ lúc đun đến lúc sôi không quá 30 - 40 phút. Để mẫu nguội trong thùng đến nhiệt độ trong phòng rồi lấy ra quan sát. Khi quan sát nếu thấy mẫu thử bị cong vênh và có những vết nứt chạy xuyên tâm ra đến mép thì xi măng được coi không ổn định thể tích (hình 4 - 8). Nếu các mẫu không bị cong vênh không có vết nứt hoặc chỉ có các chấm nhỏ và một vài vết nứt ở giữa mẫu không chạy ra đến mép, thì xi măng được coi là có tính ổn định thể tích (hình 4 - 9). Hình 4-8: Mẫu ximăng ổn định thể tích Hình 4-9: Mẫu ximăng không ổn định thể tích Ngoài phương pháp xác định tính ổn định thể tích bằng mẫu bánh đa còn có thể đo độ ổn định thể tích bằng phương pháp Lơsatơlie theo TCVN 6016:1995. Dụng cụ Lơsatơlie (hình 4 -10) có khuôn bằng đồng đàn hồi có càng đo. Để xác định độ ổn định bằng phương pháp này cần chế tạo hồ xi măng có độ dẻo tiêu chuẩn rồi cho vào khuôn đã được lau dầu, gạt bằng mặt hồ rồi đậy Hình 4-10: Dụng cụ Lơsatơlie khuôn bằng đĩa thuỷ tinh (cũng được quét 1. Khuôn đồng; 2. Tấm kính; 3.Càng khuôn dầu). Cho ngay khuôn vào buồng ẩm, giữ trong 24 ±0,5 giờ ở độ ẩm không nhỏ hơn 98% và nhiệt độ 27 ±1oC rồi đo khoảng cách A giữa các đầu chóp của càng khuôn. Giữ khuôn ngập trong nước, đun dần đến sôi trong suốt 30 ± 5 phút và duy trì nhiệt độ sôi trong 3 giờ ± 5 phút. Để khuôn nguội đến 27 ± 2oC rồi đo khoảng cách B giữa các đầu chóp của càng khuôn. Hiệu số B - A (mm) chính là độ ổn định thể tích. Sự tỏa nhiệt Khi nhào trộn với nước hồ xi măng tỏa ra một lượng nhiệt nhất định, lượng nhiệt đó phụ thuộc vào thành phần khoáng vật, độ mịn của xi măng và hàm lượng thạch cao. Lượng nhiệt tỏa ra khi thủy hoá của xi măng có lợi trong trường hợp thi công các kết cấu bê tông mỏng, nhỏ vào mùa lạnh vì lượng nhiệt đó sẽ làm cho bê tông rắn nhanh, nhưng không có lợi khi thi công các kết cấu bê tông khối lớn 67
  38. trong điều kiện nhiệt độ môi trường thấp, vì chúng dễ gây rạn nứt cho công trình do chênh lệch nhiệt độ giữa bề mặt và trong lòng khối bê tông. Vì vậy đối với những công trình bêtông khối lớn phải chú ý đến kỹ thuật thi công phân đoạn, mặt khác nếu cần thiết phải dùng loại xi măng có hàm lượng thành phần khoáng C3S và C3A thấp vì đây là 2 loại khoáng có lượng nhiệt tỏa ra nhiều nhất. Cường độ chịu lực và mác của xi măng Khái niệm: Xi măng thường dùng để chế tạo bê tông, vữa và nhiều loại vật liệu đá nhân tạo khác. Trong kết cấu bê tông, vữa và vật liệu đá nhân tạo sử dụng xi măng, chúng có thể chịu nén, chịu uốn. Cường độ chịu nén và chịu uốn của vữa xi măng càng cao thì cường độ nén và uốn của bê tông cũng càng lớn. Giới hạn cường độ uốn và nén của vữa xi măng được dùng làm cơ sở để xác định mác xi măng và mác xi măng là chỉ tiêu cần thiết khi tính thành phần cấp phối bê tông và vữa. Theo TCVN 6016-1995, mác của xi măng được xác định theo cường độ chịu uốn của các mẫu hình dầm kích thước 40 x 40 x 160 mm và cường độ chịu nén của các nửa mẫu hình dầm sau khi uốn, các mẫu thí nghiệm này được bảo dưỡng trong điều kiện tiêu chuẩn (1 ngày trong khuôn ở môi trường nhiệt độ 27±1°C, độ ẩm không nhỏ hơn 90%, 27 ngày sau trong nước ở nhiệt độ 27±1°C). Theo cường độ chịu lực, xi măng pooc lăng gồm các mác sau: PC30; PC40; PC50. Trong đó : PC : Ký hiệu cho xi măng pooc lăng. Các trị số 30; 40; 50 là giới hạn bền nén sau 28 ngày tính bằng N/mm2, xác định theo TCVN 6016-1995. Trong quá trình vận chuyển và cất giữ, xi măng hút ẩm dần dần vón cục, cường độ giảm đi, do đó trước khi sử dụng xi măng nhất thiết phải thử lại cường độ và sử dụng xi măng theo kết quả kiểm tra chứ không dựa vào mác ghi trên bao. Phương pháp xác định : Mác xi măng được xác định theo tiêu chuẩn TCVN 6016-1995 là phương pháp dẻo (phương pháp mềm). Muốn xác định cường độ nén và uốn của xi măng phải đúc các mẫu thử hình lăng trụ tiêu chuẩn (dầm) 40 x 40 x 160 mm bằng vữa xi măng cát với tỷ lệ 1:3 theo khối lượng. Tỷ lệ nước/xi măng bằng 0,5. Dùng các khuôn tiêu chuẩn bằng thép đúc 3 mẫu, gạt bằng và miết phẳng bề mặt các mẫu, đặt các khuôn mẫu đó vào thùng giữ ẩm sau 24 ± 2 giờ thì tháo khuôn lấy mẫu ra ngâm vào nước, thể tích nước chứa trong thùng phải bằng 4 lần thể tích các mẫu thử và mực nước phải cao hơn mặt mẫu tối thiểu 5cm, thỉnh thoảng thêm nước để mực nước không đổi, 27 ngày thì lấy mẫu ra khỏi thùng nước, lau khô mặt mẫu rồi thử cường độ ngay không để chậm quá 30 phút. Hình 4-11: Sơ đồ đặt mẫu uốn Xác định cường độ chịu uốn của mẫu thử như sau: 68
  39. Đặt mẫu trên 2 gối tựa của máy thí nghiệm uốn theo sơ đồ (hình 4-11). Sau khi uốn gãy các mẫu, lấy các nửa mẫu đem thử cường độ nén như sơ đồ (hình 4-12). Cường độ chịu nén của mẫu tính bằng công Hình 4-12: Sơ đồ đặt mẫu nén thức: P P N R = = , n F 1600 mm2 Diện tích mặt chịu nén F là 16 cm2. Giới hạn cường độ chịu nén của vữa xi măng là trị số trung bình của 6 kết quả thí nghiệm . Từ giới hạn cường độ chịu nén và uốn của vữa xi măng tìm được, xác định mác xi măng bằng cách so sánh cường độ với các loại mác xi măng quy định. Ví dụ cường độ nén trung bình của nhóm mẫu xi măng sau khi thí nghiệm là 34N/mm2 vậy xi măng này thuộc loại PC 30. Ngoài phương pháp dẻo để xác định mác của xi măng như trên còn có thể dùng phương pháp khô (cứng) với các mẫu hình lập phương cạnh 7,07 cm và phương pháp thử nhanh với các mẫu 2 x 2 x 2 cm. Nhưng hiện nay các loại xi măng của nước ta đều dùng phương pháp dẻo để xác định mác theo đúng tiêu chuẩn của nhà nước quy định. Các yếu tố ảnh hưởng đến cường độ chịu lực của xi măng : Cường độ chịu lực của xi măng phát triển không đều, trong 3 ngày đầu có thể đạt 40-50%; 7 ngày đạt 60-70%, những ngày sau tốc độ tăng cường độ chậm đi, đến 28 ngày đạt cường độ chuẩn. Tuy nhiên trong những điều kiện thuận lợi sự rắn chắc của nó có thể kéo dài vài tháng và thậm chí hàng năm, cường độ cuối cùng có thể vượt gấp 2 - 3 lần cường độ 28 ngày. Cường độ của đá xi măng và tốc độ cứng rắn của nó phụ thuộc vào thành phần khoáng của clinke, độ mịn của xi măng, độ ẩm và nhiệt độ của môi trường, thời gian bảo quản xi măng. Thành phần khoáng: Tốc độ phát triển cường độ của các khoáng rất khác nhau (hình 4 - 13) . C3S có tốc độ nhanh nhất, sau 7 ngày nó đạt đến 70% cường độ 28 ngày, sau đó thì chậm lại. Trong thời kỳ đầu (đến tuổi 28 ngày) C2S có tốc độ phát triển cường độ chậm nhưng thời kỳ sau tốc độ này tăng lên và có thể vượt xa cường độ của C3S. Khoáng C3A là loại khoáng có cường độ thấp nhưng lại phát triển rất nhanh ở thời kỳ đầu. Độ mịn tăng thì cường độ của đá xi măng Hình 4-13 : Sự tăng cường độ cũng tăng vì mức độ thủy hóa của các hạt xi của các khoáng của Clinke măng được tăng lên. 1-C3S; 2-C4FA; 3-C2S; 4 - C3A Độ ẩm và nhiệt độ môi trường rắn chắc có 69
  40. ảnh hưởng đến quá trình rắn chắc của đá xi măng vì giai đoạn đầu của quá trình rắn chắc là thủy hóa, mặt khác quá trình thuỷ hoá cũng là quá trình xảy ra lâu dài. Để tạo môi trường ẩm, trong thực tế đã dùng những phương pháp khác nhau như tưới nước, phủ kết cấu bêtông bằng mùn cưa, phoi bào hay cát ẩm, v.v Thời gian bảo quản xi măng trong kho càng dài thì cường độ của đá xi măng càng giảm đi dù có bảo quản trong điều kiện tốt nhất. Thông thường trong điều kiện khí hậu của nước ta sau 3 tháng cường độ giảm đi 15 - 20%, sau một năm giảm đi 30 - 40%. Khi độ mịn của xi măng càng lớn thì cường độ của đá xi măng càng giảm nếu để dự trữ lâu. Vì độ mịn cao làm cho xi măng dễ hút ẩm hơn. Các chỉ tiêu cơ lý chủ yếu của xi măng pooc lăng được quy định trong TCVN 2682-1999 (bảng 4 -2). Bảng 4 - 2 Mác Tên chỉ tiêu PC 30 PC 40 PC 50 1 - Giới hạn bền nén, N/mm2 , không nhỏ hơn - Sau 3 ngày 16 21 31 - Sau 28 ngày 30 40 50 2 - Độ nghiền mịn - Phần còn lại trên sàng 0,08 mm, %, không lớn hơn 15 15 12 - Bề mặt riêng xác định theo phương pháp Blaine, 2700 2700 2800 cm2/g, không nhỏ hơn. 3 - Thời gian đông kết - Bắt đầu, phút, không nhỏ hơn 45 45 45 - Kết thúc, phút, không lớn hơn 375 375 375 4 - Độ ổn định thể tích, xác định theo phương pháp 10 10 10 lơsatơlie, mm, không lớn hơn Khả năng chống ăn mòn của đá xi măng Nguyên nhân Đá xi măng là loại vật liệu có cường độ chịu lực cao, khá bền vững trong môi trường, tuy nhiên sau một thời gian sử dụng đá xi măng thường bị ăn mòn làm giảm chất lượng của công trình. Đá xi măng bị ăn mòn chủ yếu là do sự tác dụng của các chất khí và chất lỏng lên các bộ phận cấu thành xi măng đã rắn chắc (chủ yếu là Ca(OH)2 và 3CaO.Al2O3.6H2O). Trong thực tế có tới hàng chục chất gây ra ăn mòn đá xi măng. Mặc dù các chất gây ăn mòn rất đa dạng, nhưng có thể phân ra 3 nguyên nhân cơ bản sau đây: Sự phân rã các thành phần của đá xi măng, sự hòa tan và rửa trôi hyđroxit canxi. 70
  41. Tạo thành các muối dễ tan do hyđroxit canxi và các thành phần khác của đá xi măng tác dụng với các chất xâm thực và sự rửa trôi các muối đó (ăn mòn axit, ăn mòn magiezit). Sự hình thành những liên kết mới trong các lỗ rỗng có thể tích lớn hơn thể tích của các chất tham gia phản ứng tạo ra ứng suất gây nứt bê tông (ăn mòn sunpho-aluminat). Các dạng ăn mòn cụ thể : Ăn mòn hòa tan : Do sự tan của Ca(OH)2 xảy ra nhanh mạnh dưới sự tác dụng của nước mềm (chứa ít các chất tan) như nước ngưng tụ, nước mưa, nước sông, nước đầm lầy. Sau 3 tháng rắn chắc hàm lượng Ca(OH)2 vào khoảng 10 - 15 % (tính theo CaO). Nếu sau khi hòa tan và rửa trôi mà nồng độ Ca(OH)2 giảm xuống thấp hơn 0,11% thì CSH và C3AH6 cũng bị phân hủy. Khi hàm lượng Ca(OH)2 có trong đá xi măng tới15 - 30% thì cường độ của đá xi măng giảm đến 40 - 50%. Ăn mòn Cacbonic : Xảy ra khi nước có chứa CO2 (ở dạng axit yếu). Lượng CO2 tăng hơn mức bình thường sẽ làm vỡ màng cacbonat để tạo thành bicacbonat axit canxi dễ tan theo phản ứng: CaCO3 + CO2 + H2O = Ca(HCO3)2 . Ăn mòn axit: Xảy ra trong dung dịch axit, có pH < 7. Axit tự do thường có trong nước thải công nghiệp và cũng có thể được tạo thành từ khí chứa lưu huỳnh trong các buồng đốt, trong không gian của các xí nghiệp công nghiệp, ngoài SO2 còn có thể có các anhyđrit của các axit khác, còn có clo và các hợp chất chứa clo. Khi chúng hòa tan vào nước bám trên bề mặt kết cấu bê tông cốt thép sẽ tạo nên các axit, ví dụ như HCl; H2SO4 axit tác dụng với Ca(OH)2 trong đá xi măng tạo ra những muối tan (CaCl2) , muốn tăng thể tích (CaSO4.2H2O ). HCl + Ca(OH)2 = CaCl2 + 2H2O . H2SO4 + Ca(OH)2 = CaSO4.2H2O . Ngoài ra axit có thể phá hủy cả silicat canxi. Ăn mòn magie: Gây ra do các loại muối chứa magie trong nước biển, nước ngầm, nước chứa muối khoáng tác dụng với Ca(OH)2 tạo ra các sản phẩm dễ tan (CaCl2; CaSO4.2H2O) hoặc không có khả năng dính kết [Mg(OH)2] : MgCl2 + Ca(OH)2 = CaCl2 + Mg(OH)2 . MgSO4 + Ca(OH)2 = CaSO4.2H2O + Mg(OH)2 . Ăn mòn phân khoáng: Là do nitrat amôn phản ứng với Ca(OH)2 có trong đá xi măng: 2NH4NO3 + Ca(OH)2 + 2H2O = Ca( NO3)2.4H2O + 2NH3 . Nitrat canxi tan rất nhiều trong nước nên dễ bị rửa trôi. Phân kali gây ra ăn mòn đá xi măng là do làm tăng độ hòa tan của Ca(OH)2. Supephotphat là chất xâm thực mạnh do trong thành phần của nó có chứa Ca(H2PO4)2, thạch cao và cả axit photphoric. Ăn mòn sunfat: Xảy ra khi hàm lượng sunfat lớn hơn 250mg/l (tính theo 2− SO4 ): 3CaO.Al2O3.6H2O + 3CaSO4 + 25H2O = 3CaO.Al2O3.3CaSO4.31H2O . Sự hình thành trong các lỗ rỗng đá xi măng loại sản phẩm ít tan etringit với thể tích lớn hơn hai lần sẽ gây áp lực tách lớp bê tông bảo vệ làm cốt thép bị ăn mòn. Ăn mòn sunfat luôn luôn xảy ra đối với công trình ven biển, công trình tiếp xúc với nước thải công nghiệp và nước ngầm. 71
  42. Nếu trong nước có chứa Na2SO4 thì đầu tiên nó tác dụng với vôi sau đó mới tác dụng etringit: Na2SO4 + Ca(OH)2 ' CaSO4 + 2NaOH Ăn mòn của các chất hữu cơ: Các loại axit hữu cơ cũng gây phá hủy các công trình bê tông xi măng. Các axit béo (olein, stearin, pannmitin) khi tác dụng với vôi gây ra rửa trôi. Dầu mỏ và các sản phẩm của nó (xăng, dầu hỏa, dầu mazut) sẽ không có hại cho bê tông xi măng nếu chúng không chứa các loại axit hữu cơ và các chất lưu huỳnh. Ăn mòn do kiềm có trong đá xi măng xảy ra ngay trong lòng khối bê tông giữa các cấu tử với nhau. Bản thân clinke luôn chứa một lượng các chất kiềm. Trong khi đó trong cốt liệu bê tông, đặc biệt là trong cát, lại hay gặp hơn chất silic vô định hình (opan, chanxeđon, thủy tinh núi lửa). Chúng có thể tác dụng với kiềm của xi măng ở ngay ở nhiệt độ thường làm cho bề mặt hạt cốt liệu nở ra một hệ thống vết nứt, bạc màu. Sự phá hoại này thường xảy ra khi thi công xong từ 10 - 15 năm. Biện pháp hạn chế sự ăn mòn Để bảo vệ đá xi măng khỏi bị ăn mòn một cách có hiệu quả, phải tùy từng trường hợp cụ thể mà áp dụng những biện pháp thích hợp sau đây : Giảm các thành phần khoáng gây ăn mòn (CaO tự do, C3A; C3S) bằng cách lựa chọn thành phần nguyên liệu và áp dụng các biện pháp gia công nhiệt phù hợp. Giảm thành phần gây ăn mòn lớn nhất [Ca(OH)2] bằng cách tiến hành cacbonat hóa trên bề mặt sản phẩm (cho tác dụng với CO2 để tạo thành CaCO3) hay silicat hóa (cho tác dụng với SiO2 vô định hình) có trong các loại phụ gia. Sử dụng các biện pháp cấu trúc để tăng cường độ đặc chắc cho vật liệu đá nhân tạo bằng công nghệ thi công kết hợp với lựa chọn thành phần vật liệu phù hợp. Làm cho bề mặt vật liệu nhẵn phẳng. Ngăn cách vật liệu với môi trường ăn mòn bằng cách ốp lớp vật liệu chống ăn mòn tốt bên ngoài. Thoát nước cho công trình. Tùy thuộc vào tính chất của môi trường ăn mòn mà lựa chọn sử dụng loại xi măng cho phù hợp. 4.6.5. Sử dụng và bảo quản Xi măng pooclăng là chất kết dính vô cơ quan trọng nhất trong xây dựng, nó được sử dụng rộng rãi cho hầu hết các công trình vì có tốc độ rắn chắc nhanh, cường độ chịu lực cao, rắn chắc được cả trên khô và trong nước, có khả năng bám dính tốt với cốt thép, bảo vệ cho cốt thép không bị ăn mòn. Bên cạnh những ưu điểm trên, xi măng pooclăng có một số nhược điểm: Dễ bị ăn mòn do nước mặn, nước thải công nghiệp. Tỏa nhiều nhiệt. Cường độ đá xi măng giảm đi khi thời gian để dự trữ xi măng kéo dài. Với những đặc tính ưu nhược điểm như trên xi măng được sử dụng để xây dựng rất nhiều loại công trình. Tuy nhiên không nên dùng xi măng pooclăng 72
  43. mác cao để xây dựng các công trình có thể tích bê tông lớn, các công trình xây dựng trong môi trường nước ăn mòn mạnh (nước biển, nước thải công nghiệp), công trình chịu axit, công trình chịu nhiệt. Với những loại công trình này cần phải sử dụng những loại xi măng đặc biệt. Xi măng pooclăng có độ mịn cao nên dễ hút hơi nước trong không khí làm cho xi măng bị ẩm đóng vón thành cục, cường độ của xi măng bị giảm, do đó xi măng phải được bảo quản tốt bằng cách: Khi vận chuyển xi măng rời phải dùng xe chuyên dụng. Kho chứa xi măng phải đảm bảo không dột, không hắt, xung quanh có rãnh thoát nước, sàn kho cách đất 0,5 m, cách tường ít nhất 20 cm. Trong kho các bao xi măng không được xếp cao quá 10 bao và riêng theo từng lô. Khi chứa ximăng rời bằng xi lô phải đảm bảo chứa riêng từng loại xi măng. 4.7. Xi măng pooclăng hỗn hợp 4.7.1. Khái niệm Xi măng pooclăng hỗn hợp là loại chất kết dính thủy, được chế tạo bằng cách nghiền mịn hỗn hợp clinke xi măng pooclăng với các phụ gia khoáng và một lượng thạch cao cần thiết hoặc bằng cách trộn đều các phụ gia khoáng đã nghiền mịn với xi măng pooclăng không chứa phụ gia. Clinke xi măng pooclăng dùng để sản xuất xi măng pooclăng hỗn hợp có hàm lượng magie oxit (MgO) không lớn hơn 5%. Phụ gia khoáng bao gồm phụ gia khoáng hoạt tính và phụ gia đầy. Phụ gia khoáng hoạt tính điển hình như puzolan, phụ gia đầy chủ yếu đóng vai trò cốt liệu mịn, làm tốt thành phần hạt và cấu trúc của đá xi măng pooclăng hỗn hợp. Tổng hàm lượng các phụ gia khoáng (không kể thạch cao) không lớn hơn 40% tính theo khối lượng xi măng. 4.7.2. Tính chất cơ bản Theo cường độ chịu nén mác của xi măng pooclăng hỗn hợp gồm PCB 30; PCB 40. Trong đó: PCB là quy ước cho xi măng pooclăng hỗn hợp. Các trị số 30 và 40 là giới hạn cường độ nén của các mẫu vữa ximăng sau 28 ngày dưỡng hộ tính bằng N/mm2, xác định theo TCVN 6016 -1995. Các chỉ tiêu cơ lý chủ yếu của xi măng pooclăng hỗn hợp được quy định trong TCVN 6260 - 1997 như bảng 4 - 3. 4.7.3. Công dụng và bảo quản Công dụng : Xi măng pooclăng hỗn hợp có khả năng chịu phèn, mặn do đó sử dụng rất thích hợp để xây dựng các công trình thoát lũ ra biển, các công trình ngăn mặn, v.v Ngoài ra xi măng pooclăng hỗn hợp cũng được sử dụng để xây dựng các công trình bình thường khác giống như xi măng pooclăng thường. 73
  44. Bảo quản : Xi măng pooclăng hỗn hợp cũng cần được bảo quản tốt để tránh ẩm. Kho chứa xi măng phải đảm bảo khô, sạch, cao có tường bao và mái che chắn, trong kho các bao xi măng không được xếp cao quá 10 bao, cách tường ít nhất 20 cm và riêng theo từng lô. Bảng 4 -3 Các chỉ tiêu Mức PCB 30 PCB 40 1 - Cường độ nén, N/mm2, không nhỏ hơn - 72 giờ ± 45 phút 14 18 - 28 ngày ± 2 giờ 30 40 2 – Thời gian đông kết - Bắt đầu, phút, không nhỏ hơn 45 45 - Kết thúc, giờ, không lớn hơn 10 10 3 - Độ mịn - Phần còn lại trên sàng 0,08mm; %, không lớn hơn 12 12 - Bề mặt riêng, xác định theo phương pháp Blaine, cm2/g, 2700 2700 không nhỏ hơn 4 - Độ ổn định thể tích - Xác định theo phương pháp lơsatơlie, mm;%, không lớn hơn 10 10 5 – Hàm lượng anhyđric sunfuric (SO3); %, không lớn hơn 3,5 3,5 4.8. Các loại xi măng khác 4.8.1. Xi măng pooclăng trắng Clinke của xi măng pooclăng trắng được sản xuất từ đá vôi và đất sét trắng (hầu như không có các oxit tạo màu như oxit sắt và oxit mangan), nung bằng nhiên liệu có hàm lượng tro bụi ít (dầu và khí đốt), khi nghiền tránh không để lẫn bụi sắt, thường dùng bi sứ để nghiền. Xi măng pooclăng trắng được chế tạo bằng cách nghiền mịn clinke của xi măng pooclăng trắng với lượng đá thạch cao cần thiết, có thể pha hoặc không pha phụ gia khác. Theo độ bền nén, xi măng pooclăng trắng được chia làm 3 mác: PCW25, PCW30; PCW40. Trong đó PCW ký hiệu xi măng pooclăng trắng, các trị số 25; 30; 40 là giới hạn bền nén của các mẫu chuẩn sau 28 ngày đêm bảo dưỡng tính bằng N/mm2, xác định theo TCVN 4032 - 1985. Các chỉ tiêu cơ bản của xi măng pooclăng trắng theo TCVN 5691 - 2000 quy định như bảng 4 - 4. Xi măng pooclăng trắng được dùng để chế tạo vữa trang trí, vữa granitô, sản xuất gạch hoa v.v Xi măng màu được chế tạo bằng cách nghiền chung các chất tạo màu vô cơ với clinke xi măng trắng. Các tính chất cơ bản của xi măng màu cũng giống như tính chất của xi măng trắng. Xi măng màu được dùng để chế tạo vữa và bê tông trang trí. 74
  45. Bảng 4 - 4 Tên chỉ tiêu Mức PCW 25 PVW 30 PCW 40 1. Giới hạn bền nén, N/mm2, không nhỏ hơn 25 30 40 2. Độ nghiền mịn - Phần còn lại trên sàng 0,08mm; %, không lớn hơn 12 12 12 -Bề mặt riêng xác định theo phương pháp Blaine, 2500 2500 2500 cm2/g, không nhỏ hơn 3. Thời gian đông kết - Bắt đầu, phút, không sớm hơn 45 45 45 - Kết thúc, giờ, không muộn hơn 10 10 10 4. Độ ổn định thể tích, xác định theo phương pháp 10 10 10 Lơsatơlie, mm, không lớn hơn 4.8.2. Xi măng pooclăng puzolan Khái niệm Xi măng pooclăng puzolan được chế tạo bằng cách cùng nghiền mịn hỗn hợp clinke xi măng pooclăng với phụ gia hoạt tính puzolan và một lượng thạch cao cần thiết hoặc bằng cách trộn đều puzolan đã nghiền mịn với xi măng pooclăng. Tùy theo bản chất của phụ gia hoạt tính puzolan mà tỷ lệ pha vào clinke xi măng hoặc xi măng pooclăng được quy định từ 15 - 40% tính theo khối lượng xi măng pooclăng puzolan. Tính chất cơ bản Theo độ bền nén xi măng pooclăng puzolan được phân làm 3 mác PCPUZ20, PCPUZ30; PCPUZ40. Trong đó: PCPUZ: Là ký hiệu cho xi măng pooclăng puzolan. Các trị số 20 , 30 , 40 là giới hạn bền nén của mẫu chuẩn sau 28 ngày đêm dưỡng hộ và được tính bằng N/mm2, xác định theo TCVN 4032 - 1985. Xi măng pooclăng puzolan phải đảm bảo các yêu cầu theo TCVN 4033 - 1995 quy định như bảng 4 - 5.Tính chất cơ bản Theo độ bền nén xi măng pooclăng puzolan được phân làm 3 mác PCPUZ20, PCPUZ30; PCPUZ40. Trong đó: PCPUZ: Là ký hiệu cho xi măng pooclăng puzolan. Các trị số 20 , 30 , 40 là giới hạn bền nén của mẫu chuẩn sau 28 ngày đêm dưỡng hộ và được tính bằng N/mm2, xác định theo TCVN 4032 - 1985. Xi măng pooclăng puzolan phải đảm bảo các yêu cầu theo TCVN 4033 - 1995 quy định như bảng 4 - 5. Xi măng pooclăng puzolan khi thủy hóa tỏa ra một lượng nhiệt ít hơn so với ximăng pooclăng và khả năng chống ăn mòn cũng tốt hơn. Sử dụng và bảo quản Sử dụng: Do những tính chất trên nên xi măng pooclăng puzolan được sử dụng cho các công trình trong nước như hải cảng, kênh mương, đập nước, ngoài ra còn dùng xi măng pooclăng puzolan cho những công trình có kết cấu khối lượng lớn vì nó tỏa nhiệt ít. 75
  46. Bảo quản: Giống như xi măng pooclăng thường, xi măng pooclăng puzolan cũng được cần bảo quản tốt để chống ẩm, hạn chế mức độ giảm cường độ. Bảng 4 - 5 Mức Tên chỉ tiêu PCPUZ 20 PCPUZ 30 PCPUZ 40 1 - Giới hạn bền nén, N/mm2 không nhỏ hơn - Sau 7 ngày đêm 13 18 25 - Sau 28 ngày 20 30 40 2 - Độ nghiền mịn - Phần còn lại trên sàng có kích thước lỗ 15 15 15 0,08mm;%, không lớn hơn - Bề mặt riêng xác định theo phương pháp 2600 2600 2600 Blaine, cm2/g, không nhỏ hơn 3 - Thời gian đông kết - Bắt đầu, phút, không sớm hơm 45 45 45 - Kết thúc, giờ, không muộn hơn 10 10 10 4 - Độ ổn định thể tích, xác định theo 10 10 10 phương pháp LơSatơlie, mm, không lớn hơn 4.8.3. Xi măng pooclăng bền sunfat Sản xuất Xi măng pooclăng bền sunfat là sản phẩm được nghiền mịn từ clinke xi măng pooclăng bền sunfat với thạch cao. Clinke xi măng pooclăng bền sunfat được sản xuất như clinke xi măng pooclăng nhưng thành phần khoáng vật được quy định chặt chẽ hơn, đặc biệt là phải hạn chế thành phần C3A (bảng 4 - 6). Bảng 4 - 6 Mức , % Tên chỉ tiêu Bền sunfat thường Bền sunfat cao PCS 30 PCS 40 PCHS 30 PCHS 40 - Hàm lượng magie oxit 5 5 5 5 (MgO), không lớn hơn - Hàm lương sắt oxit (Fe O ), 2 3 6 6 - - không lớn hơn - Hàm lượng silic ôxit (SiO ), 2 20 20 - - không nhỏ hơn - Hàm lượng anhyđrit sunfuric 3 3 2,3 2,3 (SO3), không lớn hơn - Hàm lượng tri canxi aluminat 8 8 5 5 (C3A), không lớn hơn - Tổng hàm lượng khoáng - - 25 25 (C4AF +2C3A), không lớn hơn - Tổng hàm lượng khoáng (C S 3 58 58 - - + C3A), không lớn hơn 76
  47. Tính chất cơ bản Xi măng pooclăng bền sunfat gồm hai nhóm : Xi măng pooclăng bền sunfat thường : PCS 30; PCS 40. Xi măng pooclăng bền sunfat cao : PCHS 30; PCHS 40. Trong đó: PCS: Là ký hiệu xi măng pooclăng bền sunfat. Các trị số 30, 40, là giới hạn bền nén của mẫu chuẩn sau 28 ngày dưỡng hộ, tính bằng N/mm2 và xác định theo TCVN 4032-1985. Chất lượng của ximăng pooclăng bền sunfat phải đảm bảo các yêu cầu theo TCVN 6067 - 1995 quy định như bảng 4 - 7. Bảng 4- 7 Mức , % Tên chỉ tiêu Bền sunfat thường Bền sunfat cao PCS 30 PCS 40 PCHS 30 PCHS 40 1-Độ nở sunfat sau 14 ngày; %, - - 0,040 0,040 không lớn hơn 2-Giới hạn bền nén, N/mm2, không nhỏ hơn - Sau 3 ngày 11 14 11 14 - Sau 28 ngày 30 40 30 40 3 - Độ nghiền mịn - Phần còn lại trên sàng kích thước 15 12 15 12 lỗ 0,08 mm; % không lớn hơn - Bề mặt riêng xác định theo phương pháp Blaine, cm2, không 2500 2800 2500 2800 nhỏ hơn 4 - Thời gian đông kết - Bắt đầu, phút, không sớm hơn 45 45 45 45 - Kết thúc, phút, không muộn hơn 375 375 375 375 Ximăng pooclăng bền sunfat tỏa nhiệt ít hơn và khả năng chống ăn mòn sunfat tốt hơn xi măng pooclăng thường. Sử dụng và bảo quản Sử dụng: Xi măng pooclăng bền sunfat được sử dụng tốt nhất cho các công trình xây dựng trong môi trường xâm thực sunfat, ngoài ra cũng có thể dùng để xây dựng các công trình trong môi trường khô, môi trường nước ngọt, v.v Bảo quản: Xi măng pooclăng bền sunfat phải được bảo quản giống như các loại xi măng pooclăng thường để chống ẩm. 4.8.4. Xi măng pooclăng ít tỏa nhiệt Khái niệm Xi măng pooclăng ít tỏa nhiệt là sản phẩm nghiền mịn từ clinke của xi măng pooclăng ít tỏa nhiệt với thạch cao. 77
  48. Clinke xi măng pooclăng ít tỏa nhiệt được sản xuất như clinke thường nhưng thành phần hóa, khoáng được quy định ở TCVN 6069-1995 (bảng 4 - 8). Bảng 4 - 8 Loại xi măng Tên chỉ tiêu PCLH30A PCLH30 PCLH40 1-Hàm lượng anhyđric sunfuric (SO ); %, 3 2,3 - - không lớn hơn 2-Hàm lượng khoáng C3S; %, không lớn hơn 35 - - 3-Hàm lượng khoáng C2S ; %, không nhỏ hơn 40 - - 4-Hàm lượng khoáng C3A ; %, không lớn hơn 7 - - Tính chất cơ bản Xi măng ít tỏa nhiệt là tên gọi chung cho loại xi măng tỏa nhiệt ít và tỏa nhiệt vừa. Tùy theo nhiệt thủy hóa và cường độ chịu nén, xi măng pooclăng ít tỏa nhiệt được phân ra làm ba loại: PCLH30A, PCLH30, PCLH40. Trong đó: - PCLH30A là ký hiệu của xi măng pooclăng tỏa nhiệt ít với giới hạn bền nén sau 28 ngày dưỡng hộ, không nhỏ hơn 30 N/mm2. - PCLH30; PCLH40 là ký hiệu của xi măng pooclăng tỏa nhiệt vừa với giới hạn bền nén sau 28 ngày dưỡng hộ, không nhỏ hơn 30 N/mm2 và 40 N/mm2. Các chỉ tiêu cơ lý chủ yếu của xi măng pooclăng ít tỏa nhiệt được quy định ở TCVN 6069 - 1995 như bảng 4 - 9. Bảng 4 - 9 Loại xi măng Tên chỉ tiêu PCLH30A PCLH30 PCLH40 1. Nhiệt thủy hóa, Cal/g, không lớn hơn - Sau 7 ngày 60 70 70 - Sau 28 ngày 70 80 80 2. Giới hạn bền nén, N/mm2 không nhỏ hơn - Sau 7 ngày 18 21 28 - Sau 28 ngày 30 30 40 3. Độ mịn - Phần còn lại trên sàng 0,08mm; %, 15 15 15 không lớn hơn - Bề mặt riêng, xác định theo phương 2500 2500 2500 pháp Blaine, cm2/g, không nhỏ hơn 4. Thời gian đông kết - Bắt đầu, phút, không sớm hơn 45 45 45 - Kết thúc, giờ, không muộn hơn 10 10 10 5. Độ ổn định thể tích, xác định theo 10 10 10 phương pháp Lơsatơlie, mm, không lớn hơn 78