Bài giảng Lý thuyết viễn thông

pdf 189 trang phuongnguyen 2620
Bạn đang xem 20 trang mẫu của tài liệu "Bài giảng Lý thuyết viễn thông", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pdfbai_giang_ly_thuyet_vien_thong.pdf

Nội dung text: Bài giảng Lý thuyết viễn thông

  1. Lý thuyết viễn thông 1. Hệ thống viễn thông điện tử 1.1 Hệ thống viễn thông điện tử ngày nay Công nghệ viễn thông điện tử đã tiếp tục tiến bộ nhanh chóng kể từ khi có phát minh hệ thống điện tín và điện thoại đến mức nó đã cách mạng hoá các phương tiện thông tin truyền thông khoảng một thế kỷ trước đây. Ngày nay, hệ thống viễn thông điện tử được xem như các phương tiện kinh tế nhất có được để trao đổi tin tức và các số liệu. Ngoài ra song song với tǎng trưởng về xã hội kinh tế, việc hình thành các phương tiện cần thiết cho viễn thông điện tử đã trở nên phức tạp hơn và có khuynh hướng kỹ thuật cao nhằm đáp ứng nhu cầu đang tǎng về các dịch vụ có chất lượng cao và dịch vụ viễn thông tiên tiến hơn; mặc dù vậy các thiết bị có thể được hình thành theo các cách khác nhau và có các mức độ phức tạp khác nhau theo các yêu cầu của người sử dụng. Về cơ bản chúng được mô phỏng như sau (diễn giải) : Hình 1.1. Cấu tạo của mạng lưới viễn thông. a. Nguồn thông tin: Con người hay máy để phát ra thông tin cần truyền đi. Thông tin phát ra được phân loại thành tiếng nói, mã, và hình ảnh (ký tự, ký hiệu và hình ảnh). b. Thiết bị truyền:Bộ phận hay thiết bị để chuyển thông tin phát ra thành các tín hiệu để được truyền đi qua đường truyền dẫn. c. Đường truyền dẫn:Một phương tiện để truyền các tín hiệu từ thiết bị truyền đến thiết bị nhận. Các loại cáp đồng trục, cáp quang, không gian, và các hướng sóng
  2. được dùng rộng rãi cho mục đích này. Các tín hiệu được gửi đi qua đường truyền bị nhiễu bởi các yếu tố như tiếng ồn. d. Thiết bị nhận: Là một bộ phận hay thiết bị dùng để biến đổi các tín hiệu đã nhận được thành các tín hiệu ban đầu. e. Người sử dụng: Là con người hay máy nhận thông tin đã được phục hồi từ thiết bị nhận. Hệ thống viễn thông điện tử được sử dụng phổ biến nhất là hệ thống thông tin điện thoại trong đó con người là nguồn thông tin cũng lại là người sử dụng, còn máy điện thoại dùng làm thiết bị truyền thiết bị nhận. Hiện nay loại máy (bǎng) dịch vụ thông báo thông tin trong đó máy hoạt động như nguồn thông tin và con người như là người sử dụng có như cầu cao. Ngoài ra, việc giao tiếp giữa máy với máy như việc trao đổi số liệu hiện cũng đang hoạt động. Như trình bày ở hình 1.2, các quá trình trao đổi được tiến hành thông qua giao diện giữa người với máy, và giữa máy với máy, như trong trường hợp các phương pháp thông thường, sẽ trở nên ngày càng thông dụng hơn. Hình 1.2. Truyền, nhận thông tin Xu thế phát triển các mạng lưới viễn thông hiện nay được mô tả ngẵn gọn ở phần sau. Trước hết, là giải thích về việc đa dạng hoá các dịch vụ viễn thông và các phương tiện. Cùng với các dịch vụ viễn thông điện tử thông dụng dựa trên cơ sở các hệ thống điện thoại và điện tín hoạt động một cách độc lập thông qua việc sử dụng mạng lưới thuê bao điện thoại, mạng lưới chuyển mạch rơ-le điện tín, và mạng lưới thuê bao điện tín, một số các phương tiện có độ phức tạp cao và rất mạnh càng tǎng lên như các các phương tiện truyền số liệu và hình ảnh để truyền thông tin các loại và
  3. cho phép thực hiện các dịch vụ phi điện thoại đang được lắp đặt và vận hành, đang cách mạng hoá cuộc sống của chúng ta. Dịch vụ phi điện thoại được đưa ra hiện nay yêu cầu các thiết bị và phương tiện viễn thông tiên tiến và chuyên môn hoá cao độ.Thực tế này càng trở nên rõ ràng hơn khi chúng ta kiểm tra các loại tần số hiện đang dùng; không giống như các phương tiện phổ thông chỉ yêu cầu các dường tín hiệu 4 KHz cho các loại dịch vụ, các dải tần 1-4 MHz, 12-240 KHz, và 12-240 KHz đang được sử dụng, một cách tương ứng cho Video, các số liệu tốc độ vừa và cao, truyền fax để đáp ứng các đặc tính dịch vụ của chúng; đồng thời khi cung cấp một dịch vụ, các tần số khác nhau có thể được sử dụng để có kết quả tối ưu. Theo đó, việc thiết lập nhiều mạng lưới viễn thông khác nhau, sử dụng các dải tần khác nhau và các dịch vụ khác nhau là điều không thực tế và không kinh tế. Do vậy một nhu cầu cấp bách là phát triển công nghệ các mạng lưới viễn thông với dung lượng có thể giao tiếp với nhau, có khả nǎng xử lý các loại dịch vụ khác nhau để có thể đưa ra sử dụng trong tương lai gần. Với mục đích này, các nhà nghiên cứu và kỹ sư tham gia vào lĩnh vực này đang cố gắng kết hợp các mạng lưới viễn thông hiện nay một cách có hệ thống và có hiệu quả. Thứ nhì, xu hướng gần đây có đặc điểm là tǎng nhu cầu đối với mạng lưới số. Từ khi phát hiện ra các nguyên lý về điện thoại từ việc chuyển nǎng lượng âm thanh thành nǎng lượng điện để truyền đi tiếng nói cho đến khi phát sinh ra phương pháp truyền bằng ghép kênh điện thoại, các dịch vụ điện thoại đưa ra sử dụng các hệ thống chuyển mạch phân chia không gian thông qua các đường truyền tương tự. Điều này cũng dựa vào công nghệ tương tự. Vào đầu những nǎm 1960, phương pháp PCM-24 đã được thương mại hoá một cách thành công vì vậy chứng minh rằng phương pháp truyền dẫn số là kinh tế hơn nhiều so với phương pháp truyền dẫn tương tự. kể từ đó, các hệ thống tổng đài số sử dụng hệ thống truyền dẫn số đã được lắp đặt và vận hành một cách rộng rãi. Những ưu điểm của các mạng lưới viễn thông số là: Khi sử dụng hệ thống tổng đài tương tự và đường truyền dẫn số, bộ mã hoá và bộ giải mã được sử dụng cho các dịch vụ thoại để biến đổi các tín hiệu ngược lại thành tiếng nói tại thời điểm chuyển mạch; Khi sử dụng hệ thống số và đường truyền dẫn số, chỉ cần có một thiết bị đầu cuối với khả nǎng thực hiện chức nǎng đơn giản vì các tín hiệu số đã dược đấu nối
  4. ở mức ghép kênh. Một ưu điểm khác của việc sử dụng hệ tổng đài số là nó làm tǎng chất lượng truyền dẫn. Trong mạng lưới điện thoại số, các tín hiện đã được mã hoá tại tổng đài chủ gọi được giải mã, sau đó được mã hoá tại tổng đài trung chuyển và cuối cùng được gửi đến tổng đài bị gọi. Theo đó, bằng cách sử dụng phương pháp này, có thể tránh được việc tǎng lượng tiếng ồn phát ra khi chuyển các tín hiệu tương tự thành các tín hiệu số. Ngoài ra, do đường truyền dẫn số trải qua ít thay đổi về mức hơn là đường truyền dẫn tương tự, hiện tượng mất đường truyền sẽ có thể đặt nhỏ hơn. Để thực hiện mục đích này, nếu sử dụng một đường truyền số giữa hai tổng đài, thì sự mất đường truyền có thể được giảm bớt từ 10 dB xuống còn 6dB. Đồng thời, trong mạng điện thoại số, đối với một đường điện thoại, 64 kbps được dùng như tốc độ bít cơ sở; các số liệu, fax, và thông tin video có tốc độ nhỏ hơn mức bít này có thể được gửi đi một cách tương đối dễ dàng hơn thông qua mạng điện thoại số. Như đã trình bày, các thiết bị có thể được chia sẻ theo các yêu cầu dịch vụ và vì thế có thể được sử dụng một cách linh hoạt để ứng dụng cho các loại dịch vụ hiện đang tồn tại cũng như các dịch vụ mới. Hình 1.3. Tiến trình trong số hoá Các nhà nghiên cứu và kỹ sư ở các nước tiên tiến đang cố gắng phát triển loại mạng truyền thông số này. Tiến bộ thực hiện được trong công nghệ số được giải thích sử dụng mô hình ở Hình 1.3. Một đường truyền số dược sử dụng giữa hai tổng đài trong mạng lưới số tích hợp được mô phỏng trong sơ đồ. Đồng thời mạng ISDN (mạng đa dịch vụ số) cũng được phát triển trong đó các dịch vụ tích hợp
  5. được cung cấp với các thiết bị đầu cuối được số hoá. Ngoài ra, do các loại dịch vụ viễn thông được đưa ra ngày càng trở nên phong phú, một phạm vi rộng lớn các loại thiết bị đầu cuối, một trong 3 phần quan trọng mạng lưới viễn thông, chủ yếu là, các thiết bị đầu cuối, đường truyền dẫn và các thiết bị tổng đài, hiện nay được sử dụng rộng rãi. Hầu hết các thiết bị đầu cuối công cộng hiện nay đều được thiết kế để vận hành càng dễ dàng càng tốt, tuy nhiên một số các thiết bị đầu cuối này gọi là các thiết bị đầu cuối tích hợp, được trang bị với các tính nǎng tiên tiến dùng cho các dịch vụ đặc biệt. Từ đó, việc sử dụng truyền thông sẽ trở nên đa dạng hoá hơn, và việc cố gắng phát triển công nghệ phù hợp cho các mục đích đó cũng sẽ được thực hiện. 1.2 Lịch sử phát triển công nghệ viễn thông điện tử Trong suốt lịch sử của loài người, việc phát minh ra ngôn ngữ là cuộc cách mạng truyền thông lớn nhất đầu tiên. Sau đó ít lâu con người phát sinh ra tín hiệu bằng lửa có khả nǎng truyền đạt các thông tin có hiệu quả và nhanh chóng tới các vùng xa. Câu truyện lịch sử cho thấy vào khoảng nǎm 1000 trước công nguyên, các đội quân Hy Lạp sử dụng phương pháp này để thông báo các chiến thắng của họ cho các công dân đang nóng lòng của Hy Lạp. Trong một thời gian dài, phương pháp này đã được sử dụng một cách rộng rãi để đáp ứng các nhu cầu về truyền thông. Một cuộc cách mạng thông tin khác nữa lớn hơn đã xảy ta khi con người biết được làm thế nào để ghi lại ý nghĩ và tư tưởng của mình bằng cách dìng cách dùng các chữ viết. Với khả nǎng này, con người có khả nǎng truyền thông tin mà không bị giới hạn bởi thời gian và không gian. Đồng thời, việc phát minh này đã đưa ta các dịch vụ đưa thư và thông báo. Hoàng đế Rô-ma đã có thể truyền đi thông tin cần thiết đến các vùng xa đến 160 km cách xa thành Rôm trong một ngày bằnghệ thống (mạng lưới) đường bộ họ đã xây dựng nên trong toàn quốc. Việc phát minh ta công nghệ in đã thúc đẩy hơn nữa việc phát triển các phương tiện truyền tin và cho con người có khả nǎng thông tin với nhiều người hơn và với các khu vực ở cách xa nhau. Từ cuối thế kỷ 18 đến thế kỷ 19, công nghệ phát thanh và truyền thông bằng điện đã được phát triển và bắt đầu được dùng rộng khắp. Đài phát thanh và truyền hình được phát minh và thời gian này đã làm thay đổi thế giới chúng ta rất nhiều. Trong phần tiếp theo, các phát minh lớn khác và những phát hiện liên quan đến công
  6. nghệ thông tin điện tử đã xảy ra trong suốt 160 nǎm qua cũng như xu hướng phát triển của chúng ở tương lai đã được thảo luận một cách ngắn gọn. Nǎm 1820, Georgo Ohm đã đưa ta công thức phương trình toán học để giải thích các tín hiệu điện chạy qua một dây dẫn rất thành công. Và nǎm 1830, Michall Faraday đã tìm ta định luật dẫn điện từ trường. Nǎm 1850, đại số Boolean của George Boolers đã tạo ta nền móng cho lôgíc học và phát triển các rơ-le điện. Chính vào khoảng thời gian này khi các đường cáp đầu tiên xuyên qua Đại Tây Dương để đánh điện tín được lắp đặt. James Clerk Maxwell đã đưa ra học thuyết điện từ trường bằng các công thức toán học nǎm 1870. Cǎn cứ vào học thuyết này, Henrich Hertz đã truyền đi và nhận được sóng vô tuyến thành công bằng cách dùng điện trường lần đầu tiên trong lịch sử. Tổng đài điện thoại đầu tiên được thiết lập đầu tiên nǎm 1876 ngay sau khi Alexander Graham Bell phát minh ra điện thoại. 5 nǎm sau, Bell bắt đầu dịch vụ gọi điện thoại đường dài giữa New York và Chicago và Guglieno Mareconi của Italia đã lắp đặt một trạm phát sóng vô tuyến để phát các tín hiện điện tín. Trong thế kỷ 21 việc phát triển và áp dụng có tính thực tế về công nghệ liên quan đang tiếp tục phát triển nhanh chóng và trong quá trình đó, cách mạng hoá thế giới chúng ta. Nǎm 1900, Einstein, một nhà vật lý nổi tiếng về học thuyết tương đối, đã viết rất nhiều tài liệu quan trọng về vật lý chất rắn, thồng kê học, điện từ trường, và cơ học lượng tử. Vào khoảng thời gian này phòng thí nghiệm Bell của Mỹ đã phát minh và sáng chế ra ống phóng điện cực cho các kính thiên vǎn xoay được và Le de Forest trở thành người khởi xướng trong lĩnh vực vi mạch điện tử thông qua phát minh của ông ta về một ống chân không ba cực. Việc này được tiếp theo bằng phát minh một hệ thống tổng đài tương tự tự động có khả nǎng hoạt động không cần có bảng chuyển mạch. Nǎm 1910, Erwin Schrodinger đã thiết lập nền tảng cho cơ học lượng tử thông qua công bố của ông ta về cân bằng sóng để giải thích cấu tạo nguyên tử và các đặc điểm của nguyên tử và R.H Goddard đã chế tạo thành công tên lửa bay bằng phản lực chất lỏng, và máy tê-lê-típ đã được phát minh. Đồng thời, vào khoảng thời gian này, phát thanh công cộng được bắt đầu bằng cách phát sóng. Nǎm 1920, Ha rold S. Black của phòng thí nghiệm nghiên cứu Bell đã phát minh ra một máy khuếch đại phản hồi âm bản mà ngày nay vẫn còn dùng trong lĩnh vực viễn thông và công nghệ máy điện toán. V.K. Zworykin của RCA, Mỹ đã phát minh ra đèn hình bằng điện cho vô tuyến truyền hình, và các cáp đồng trục, phương tiện truyền dẫn có hiệu quả hơn các loại dây đồng bình thường, đã được sản xuất. Nǎm 1939, dịch vụ phát sóng truyền hình thường xuyên được bắt đầu lần
  7. đầu tiên trong lịch sử và nǎm 1930, Claude Schannon của phòng thí nghiệm Bell, bằng cách sử dụng các công thức toán học tiên tiến đã thành công trong việc đặt ra học thuyết thông tin dùng để xác định lượng thông tin tối đa mà một hệ thống viễn thông có thể xử lý vào một thời điểm đã định. Học thuyết này đã được phát triển thành học thuyết truyền thông số. Đồng thời, ra-đa đã được phát minh trong thời kỳ này. Nǎm 1940, phòng thí nghiệm Bell đã đặt nền móng cho các chất bán dẫn có độ tích hợp cao ngày nay qua việc phát minh ra đèn ba cực và Howard Aiken của đại học Harvrd, cùng cộng tác với IBM, đã thành công trong việc lắp đặt một máy điện đầu tiên có kích thước là 50feet và 8feet. Sau đó ít lâu, J. Presper Ecker và John W. Mauchly của đại học Pennsylvania lần đầu tiên đã phát triển máy điện toán phân tách gọi là ENIAC. Von Neuman dựa vào máy này, đã phát triển thành công sau đó máy điện toán có lưu giữ chương trình. PCBs được đưa ra vào những nǎm 50, đã làm cho việc tích hợp các mạch điện tử có thể thực hiện được. Cùng trong nǎm đó, RCA đã phóng thành công vệ tinh nhân tạo vào không trung và la-re dùng cho truyền thông quang học đã được phát minh. Vào những nǎm 60, các loại LSIs, các máy điện toán mini có bộ nhớ kiểu bong bóng, cáp quang, và máy phân chia thời gian được phát triển và thương mại hoá một cách thành công vào các nǎm 70, các loại CATVs hai hướng, đĩa Video, máy điện toán đồ hoạ, truyền ảnh qua vệ tinh, và các hệ thống tổng đài điện tử hoá toàn bộ được đưa ra. 2. Công nghệ chuyển mạch 2.1 Khái quát chung 2.1.1 Nhu cầu đối với hệ thống chuyển mạch Máy điện tín được Samuel F.B Morse phát minh nǎm 1837, lần đầu tiên trong lịch sử, các tín hiệu điện đã được sử dụng để truyền tin; các số liệu được mã hoá được dùng như một phương tiện truyền dẫn. Việc truyền tiếng nói trở thành có thể thực hiện được khi Alexander Graham Bell phát minh ra điện thoại nǎm 1876. Nói chung, việc truyền thông tin đề cập đến quá trình chuyển thông tin từ người phát thông tin đến người sử dụng. Thông tin được xác định là các tư tưởng và các số liệu cần thiết cho người sử dụng. Đồng thời, một số phương tiện truyền tin đã được sử dụng trong suốt lịch sử loài người. Loại tín hiệu lửa đã được dùng rộng khắp trong quá khứ là một ví dụ điển hình. Tuy nhiên, vì nhu cầu về các dịch vụ truyền
  8. thông chất lượng cao và đáng tin cậy càng tǎng lên, con người bắt đầu dùng điện thay cho lửa để làm phương tiện truyền thông quan trọng nhất. Trong tương lai gần, người ta dự định là ánh sáng sẽ thay thế điện để làm phương tiện chính. Hệ thống truyền thông đề cập đến một số thiết bị hay các bộ phận sử dụng để cho phép người cấp tin chuyển thông tin cho người sử dụng; các bộ phận này hay thiết bị được phân loại thành các hệ thống truyền tin phân tán và hệ thống truyền thông tổng đài như ghi ở Hình 2.1. Trong trường hợp đầu, người cấp tin chỉ cấp thông tin trong đó người sử dụng chỉ nhận được thông tin truyền đi. Một trong các ví dụ rõ ràng cho các loại này bao gồm có đài phát thanh và vô tuyến truyền hình. Hệ truyền thông phân tán Đài và vô tuyến, truyền hình v.v. Hệ truyền thông tổng đài Hệ truyền thông Mạng lưới truyền thông điện thoại v.v. Hình 2.1. Phân loại các hệ thống truyền thống. Trong hệ truyền thông tổng đài, người cấp thông tin và dùng thông tin chưa được xác định và hệ thống sử dụng có khả nǎng cung cấp và sử dụng thông tin vào cùng một thời gian. Ví dụ cho việc này là hệ thống truyền thông điện thoại. Hệ truyền thông tổng đài đề cập đến quá trình chọn lựa chọn những người đang ở cách xa nhau hoặc giữa các máy đặt cách biệt nhau và sau đó giao tiếp với nhau bằng tiếng nói hoặc bằng các số liệu. Để phân tích một cách có hiệu quả, thì các điều kiện sau đây phải được đáp ứng. Trước hết, chọn một bên nhận thông tin và sau đó chọn đường giao tiếp, một hệ tổng đài được dùng cho mục đích này. Các loại hệ tổng đài hiện có thể có để truyền tin bao gồm các hệ tổng đài điện tử chủ yếu dùng cho các dịch vụ điện thoại và các hệ chuyển mạch số liệu dùng để truyền số liệu. Thứ hai, các hệ truyền dẫn được dùng để truyền thông tin ở các mức chất lượng có thể chấp nhận được không kể đến khoảng cách cần phải được đảm bảo. Hiện vay các hệ thống truyền dẫn bằng dây như các loại cáp cân bằng, cáp đồng trục, sợi
  9. quang và các hệ thống truyền dẫn không dây (vô tuyến) sử dụng các sóng cực ngắn đang được dùng rộng rãi. Thứ ba, các mạng lưới truyền tin phải được thiết lập có xem xét đến việc bố trí hệ tổng đài và đường truyền dẫn, chất lượng giao diện tổng thể, và duy trì chất lượng truyền dẫn, ngoài ra, mạng lưới tuyến được lập ra, phân phối sự mất đường truyền, kế hoạch đánh số, các vấn đề liên quan đến tính cước phải được thiết kế theo nhu cầu của người sử dụng. Các hệ thống truyền thông tổng đài đã tiếp tục được nâng cấp một cách nhanh chóng kể từ khi phát minh ra hệ thống điện thoại cách đây gần 100 nǎm. Về cơ bản, tất cả các hệ thống đó đều cần máy điện thoại để chuyển các tín hiệu tiếng nói thành tín hiệu điện và ngược lại cũng như các hệ truyền dẫn để truyền các tín hiệu điện. Một mạng lưới truyền tin có thể được xây dựng bằng cách nối trực tiếp các thuê bao cung cấp và nhận thông tin qua mạng lưới khi số lượng thuê bao này chưa phải nhiều quá. Ví dụ, được minh hoạ ở (a) của hình 2.2, 8C2=28 đường là cần thiết trong trường hợp ở đó chỉ có 8 thuê bao được đǎng ký trong hệ thống. Tuy nhiên, khi sử dụng hệ tổng đài với chức nǎng giao tiếp giữa các thuê bao như trình bày ở (b) hình 2.2 số các đường điện thoại cần thiết phải bằng với số thuê bao đã đǎng ký trong hệ thống. Như đã trình bày, điều quan trọng thiết lập các mạng lưới thông tin một cách kinh tế và có hiệu quả. Hình 2.2. Các phương pháp của mạng chuyển mạch cho 8 thuê bao 2.1.2 Phát triển công nghệ chuyển mạch
  10. Hệ tổng đài dùng nhân công gọi là loại dùng điện từ được xây dựng ở New Haven của Mỹ nǎm 1878 là tổng đài thương mại thành công đầu tiên trên thế giới. Để đáp ứng yêu cầu ngày càng tǎng về các dịch vụ điện thoại một cách thoả đáng và để kết nối nhanh cán cuộc nối chuyện và vì mục đích an toàn cho các cuộc gọi, hệ tổng đài tự động không cần có nhân công được A.B Strowger của Mỹ phát minh 1889. Version cải tiến của mô hình này, gọi là hệ tổng đài kiểu Strowger trở thành phổ biến vào các nǎm 20. Trong hệ tổng đài Strowger, các cuộc gọi được kết nối liên tiếp tuỳ theo các số điện thoại trong hệ thập phân và do đó được gọi là hệ thống gọi theo từng bước. EMD (Edelmatall-Drehwahler) do công ty Siemens của Đức phát triển cũng thuộc loại này; hệ thống này còn được gọi là hệ tổng đài cơ vì các chuyển mạch của nó được vận hành theo nguyên tắc cơ điện. Do đại chiến thế giới thứ II bùng nổ, sự cố gắng lập nên các hệ tổng đài mới bị tạm thời đình chỉ. Sau chiến tranh, nhu cầu về các hệ tổng đài có khả nǎng xử lý các cuộc gọi đường dài tự động và nhanh chóng đã tǎng lên. Phát triển loại hệ tổng đài này yêu cầu phải có sự tiếp cận mới hoàn toàn bởi vì cần phải giải quyết các vấn đề phức tạp về tính cước và việc truyền cuộc gọi tái sinh yêu cầu phải có xử lý nhiều khâu. Ericsson của Thuỵ Điển đã có khả nǎng xử lý vấn đề này bằng cách phát triển thành công hệ tổng đài có các thanh cheó (Cross bar). Hệ tổng đài có các thanh chéo được đặc điểm hoá bởi việc tách hoàn toàn việc chuyển mạch cuộc goị và các mạch điều khiển được phát triển đồng thời ở Mỹ. Đối với mạch chuyển mạch chéo, loại thanh chéo kiểu mở /đóng được sử dụng; bằng cách sử dụng loại chuyển mạch này có một bộ phận mở/đóng với điểm tiếp xúc được giáp vàng, các đặc tính của cuộc gọi được cải tiến rất nhiều. Hơn nữa, một hệ điều khiển chung để điều khiển một số các chuyển mạch vào cùng một thời điểm được sử dụng. Đó là các xung quay số được dồn lại vào các mạch nhớ và sau đó được xác định kết hợp trên cơ sở của các số đã quay được ghi lại để lựa chọn mạch tái sinh. Nǎm 1965, Một hệ tổng đài điện tử thương mại có dung lượng lớn gọi là hệ ESS số 1 được thương mại hoá thành công ở Mỹ do vậy đã mở ra một kỷ nguyên mới cho các hệ tổng đài điện tử. Không giống với các hệ tổng đài thông thường sử dụng các chuyển mạch cơ, hệ thống ESS số 1 là hệ tổng đài sử dụng các mạch điện tử. Việc nghiên cứu loại hệ tổng đài này đã được khởi đầu từ đầu những nǎm 40 và được xúc tiến nhanh sau khi có phát minh ra đèn ba cực vào những nǎm 50. Hệ tổng đài điện tử mới được phát triển khác về cơ bản với các hệ thông thường ở điểm là
  11. trong khi hệ sau này sử dụng mạch điều khiển chuyển mạch dùng các lô-gíc kiểu dây thì hệ trước đây dùng các thao tác logic bằng các phương tiện phần mềm lắp đặt trong hệ thống. Ngoài ra, hệ tổng đài điện tử mới triển khai tạo được sự điều khiển một cách linh hoạt bằng cách thay thế phần mềm cho phép người sử dụng có dịch vụ mới. Đồng thời, để vận hành và bảo dưỡng tốt hơn, tổng đài này được trang bị chức nǎng rự chẩn đoán. Tầm quan trọng việc trao đổi thông tin và số liệu một cách kịp thời và có hiệu quả đang trở nên quan trọng hơn khi xã hội tiến đến thế kỷ 21. Để đáp ứng đầy đủ một phạm vi rộng các nhu cầu của con người sống trong giai đoạn đầu của kỷ nguyên thông tin, các dịch vụ mới như dịch vụ truyền số liệu, dịch vụ truyền hình bao gồm cả dịch vụ điện thoại truyền hình, các dịch vụ truyền thông di động đang được phát triển và thực hiện. Nhằm thực hiện có hiệu quả các dịch vụ này, IDN (mạng lưới số tích hợp) có khả nǎng kết hợp công nghệ chuyển mạch và truyền dẫn thông qua qui trình sử lý số là một điều kiện tiên quyết. Ngoài ra, việc điều chế xung mã (PCM) được dùng trong các hệ thống truyền dẫn đã được áp dụng cho các hệ thống chuyển mạch để thực hiện việc chuyển mạch số. Dựa vào công nghệ PCM này, một mạng đa dịch vụ số (ISDN) có thể xử lý nhiều luồng với các dịch vụ khác nhau đang được phát triển hiện nay. 2.1.3 Các chức nǎng của hệ thống tổng đài Mặc dù các hệ thống tổng đài đã được nâng cấp rất nhiều từ khi nó được phát minh ra, các chức nǎng cơ bản của nó như xác định các cuộc gọi của thuê bao, kết nối với thuê bao bị gọi và sau đó tiến hành việc phục hồi lại khi các cuộc gọi đã hoàn thành, hầu như vẫn như cũ. Hệ tổng đài dùng nhân công tiến hành các quá trình này bằng tay trong khi hệ tổng dài tự động tiến hành các việc này bằng các thiết bị điện. Trong trường hợp đầu, khi một thuê bao gửi đi một tín hiệu thoại tới một tổng đài, nhân viên cắm nút trả lời của đường dây bị gọi vào ổ cắm của dây chủ gọi để thiết lập cuộc gọi với phía bên kia. Khi cuộc gọi đã hoàn thành, người vận hành rút dây nối ra và đqa nó về trạng thái ban đầu. Hệ tổng đài nhân công được phân loại thành lloại điện từ và hệ dùng ǎc-qui chung. Đối với loại dùng điện từ, thì thuê bao lắp thêm cho mỗi ǎc-qui một nguồn cấp điện. Các tín hiệu gọi và tín hiệu hoàn thành cuộc gọi được gửi đến người thao tác viên bằng cách sử dụng từ trường. Đối với hệ dùng ắc qui chung, nguồn điện được cung cấp chung và các tín hiệu gọi và
  12. tín hiệu hoàn thành cuộc gọi được đơn giản chuyển đến người thao tác viên thông qua các đèn. Đối với hệ tổng đài tự động, các cuộc gọi được phát ra và hoàn thành thông qua các bước sau: 1) Nhận dạng thuê bao chủ gọi: Xác định khi thuê bao nhấc ống nghe và sau đó cuộc gọi được nối với mạch điều khiển. 2) Tiếp nhận số được quay: Khi đã được nối với mạch điều khiển, thuê bao chủ gọi bắt đàu nghe thấy tín hiệu mời quay số và sau đó chuyển số điện thoại của thuê bao bị gọi. hệ tổng đài thực hiện các chức nǎng này. 3) Kết nối cuộc gọi: Khi các số quay được ghi lại, thuê bao bị gọi đã được xác định, thì hệ tổng đài sẽ chọn một bộ các đường trung kế đến tổng đài của thuê bao bị gọi và sau đó chọn một đường rỗi trong số đó. Khi thuê bao bị gọi nằm trong tổng đài nội hạt, thì một đường gọi nội hạt được sử dụng. 4) Chuyển thông tin điều khiển: Khi được nối đến tổng đài của thuê bao bị gọi hay tổng đài trung chuyển, cả hai tổng đài trao đổi với nhau các thông tin cần thiết như số thuê bao bị gọi. 5) Kết nối trung chuyển: Trong trường hợp tổng đài được nối đến là tổng đài trung chuyển, mục 3) và 4) trên đây được nhắc lại để nối với trạm cuối và sau đó thông tin như số thuê bao bị gọi đưọc truyền đi. 6) Kết nối tại trạm cuối: Khi trạm cuối được đánh giá là trạm nội hạt dựa trên số của thuê bao bị gọi được truyền đi, thì bộ điều khiển trạng thái máy bận của thuê bao bị gọi được tiến hành. Nếu máy không ở trạng thái bận, thì một đường nối được nối với các đường trung kế được chọn để kết nối cuộc gọi. 7) Truyền tín hiệu chuông: Để kết nối cuộc gọi tín hiệu chuông được truyền và chờ cho đến khi có trả lời từ thuê bao bị gọi. Khi trả lời, tín hiệu chuông bị ngắt và trạng thái được chuyển thành trạng thái máy bận. 8) Tính cước:Tổng đài chủ gọi xác định câu trả lời của thuê bao bị gọi và nếu cần thiết, bắt đầu tính toán giá trị cước phải trả theo khoảng cách gọi và theo thời gian gọi.
  13. 9) Truyền tín hiệu báo bận: Khi tất cả các đường trung kế đều đã bị chiếm theo các bước trên đây hoặc thuê bao bị gọi bận, thì tín hiệu bận được truyền đến cho thuê bao chủ gọi. 10) Hồi phục hệ thống: Trạng thái này được xác định khi cuộc gọi kết thúc. Sau đó, tất cả các đường nối đều được giải phóng. Như vậy, các bước cơ bản do hệ thống tổng đài tiến hành để xử lý các cuộc gọi đã dược trình bày ngắn gọn. Trong hệ thống tổng đài điện tử, nhiều đặc tính dịch vụ mới được thêm vào cùng với các chức nǎng trên. Những điều này sẽ được bàn thêm sau này. Các điểm cơ bản sau đây phải được xem xét khi thiết kế các chức nǎng này. 1) Tiêu chuẩn truyền dẫn: mục đích đầu tiên của việc đấu nối điện thoại là truyền tiếng nói và theo đó là một chỉ tiêu của việc truyền dẫn để đáp ứng chất lượng gọi phải được xác định bằng cách xem xét sự mất mát khi truyền, độ rộng dải tần số truyền dẫn, và tạp âm. 2) Tiêu chuẩn kết nối: điều này liên quan đến vấn đề duy trì dịch vụ đấu nối cho các thuê bao. Nghĩa là, đó là chỉ tiêu về các yêu cầu đối với các thiết bị tổng đài và số các đường truyền dẫn nhằm bảo đảm chất lượng kết nối tốt. Nhằm mục đích này, một nạng lưới tuyến linh hoạt có khả nǎng xử lý đường thông có hiệu quả với tỷ lệ cuộc gọi bị mất ít nhất phải được lập ra. 3) Độ tin cậy: các thao tác điều khiển phải được tiến hành phù hợp, đặc biệt các lỗi xuất hiện trong hệ thống với các chức nǎng điều khiển tập trung có thể gặp phải hậu quả nghiêm trọng trong thao tác hệ thống. Theo đó, hệ thống phải có được chức nǎng sửa chữa và bảo dưỡng hữu hiệu bao gồm việc chẩn đoán lỗi, tìm và sửa chữa. 4) Độ linh hoạt: số lượng các cuộc gọi có thể xử lý thông qua các hệ thống tổng đài đã tǎng lên rất nhiều và nhu cầu nâng cấp các chức nǎng hiện nay đã tǎng lên. Do đó, hệ thống phải đủ linh hoạt để mở rộng và sửa đổi được.
  14. 5) Tính kinh tế: Do các hệ tổng đài điện thoại là cơ sở cho việc truyền thông đại chúng, chúng phải có hiệu quả về chi phí và có khả nǎng cung cấp các dịch vụ thoại chất lượng cao. Cǎn cứ vào các xem xét trên đây, một số loại tổng đài tự động đã được triển khai và lắp đặt kể từ khi nó được đưa vào lần đầu tiên. 2.2 Chuyển mạch cuộc gọi 2.2.1 Phân loại chuyển mạch cuộc gọi Có nhiều loại chuyển mạch cuộc gọi bao gồm các chuyển mạch loại cơ điện và điện tử được sử dụng trong các tổng đài. Chúng có thể được phân loại rộng lớn thành các loại chuyển mạch phân chia không gian và các loại chuyển mạch ghép. Hình 2.4. Chuyển mạch xoay kiểu đứng.
  15. A. Loại chuyển mạch phân chia không gian Các chuyển mạch phân chia không gian thực hiện việc chuyển mạch bằng cách mở/đóng các cổng điện tử hoặc các điểm tiếp xúc được bố trí theo cách quǎng nhau như các chuyển mạch xoay và các chuyển mạch có thanh chéo. Loại chuyển mạch này được cấu tạo bởi các bộ phận sau: 1) Chuyển mạch cơ kiểu chuyển động truyền 1. Chuyển mạch cơ kiểu mở/đóng 2. Chuyển mạch cơ kiểu rơ-le điện từ 3. Chuyển mạch điện tử kiểu chia không gian Như được trình bày ở hình 2.3 và 2.4, loại chuyển mạch cơ kiểu chuyển động truyền là loại chuyển mạch thực hiện việc vận hành cơ tương tự như chuyển mạch xoay. Chuyển mạch lựa chọn dây rỗi trong quá trình dẫn truyền và tiến hành chức nǎng điều khiển ở mức nhất định. Do tính đơn giản của nó, nó được sử dụng rộng rãi trong các hệ thống tổng đài tự động đầu tiên phát triển. Tuy nhiên, do tốc độ thực hiện chậm, sự mòn các điểm tiếp xúc, và thay đổi các hạng mục tiếp xúc gây ra do việc rung động cơ học, ngày nay nó ít được sử dụng. Loại chuyển mạch cơ kiểu mở/đóng đã được phát triển để cải tiến yếu điểm của công tắc cơ kiểu chuyển động truyền bằng cách đơn giản hoá thao tác cơ học thành thao tác mở/đóng. Loại chuyển mạch này không có chức nǎng điều khiển lựa chọn và được thực hiện theo giả thuyết là mạch gọi và mạch điều khiển là hoàn toàn tách riêng nhau. Như vậy, với khả nǎng cung cấp điều khiển linh hoạt, nó được dùng rộng rãi hiện nay và được coi là chuyển mạch tiêu chuẩn, và loại được sử dụng nhiều nhất là loại chuyển mạch thanh chéo. Chuyển mạch kiểu rơ-le điện tử là loại chuyển mạch có rơ-le điện tử ở mỗi điểm cắt của chuyển mạch loại thanh chéo. Đối với chuyển mạch cơ loại mở/đóng được mô tả trên đây, thì thao tác mở/đóng được thực hiện nhờ việc định điểm cắt thông qua thao tác cơ học theo chiều đứng/chiều ngang trong khi chuyển mạch kiểu rơ-le điện tử, thì điểm cắt có thể được lựa chọn theo hướng của luồng điện trong cuộn dây của rơ-le.
  16. Vì vậy về nguyên tắc các thao tác cơ học cũng như việc mở/đóng của các điểm tếp xúc thể được tiến hành nhanh chóng hơn. Chuyển mạch điện tử hiểu phân chia không gian có một cộng điện tử ở mỗi điểm cắt của chuyển mạch có thanh cắt chéo. Nó có những bất lợi sau đây so với loại chuyển mạch điểm tiếp xúc; không tương thích với phương pháp cũ do có sự khác nhau về mức độ tín hiệu hoặc chi phí và các đặc điểm thoại khá xấu bao gồm cả hiện tượng mất cuộc gọi và xuyên âm. Theo đó, trừ trường hợp đặc biệt, nó chưa đưlợc sử dụng rộng rãi. Tuy nhiên, do các mạch điện tử như các ICs hay các LSIs trở nên tích hợp hơn, dự kiến chúng được sử dụng nhiều hơn trong tương lai gần đây. B. Chuyển mạch ghép Các loại chuyển mạch ghép được vận hành trên cơ sở công nghệ truyền tải tập trung được sử dụng rộng rãi trong hệ thống truyền dẫn. Các chuyển mạch này có cùng chung một cổng để có hiệu quả và kinh rế cao hơn. Có các loại chuyển mạch ghép phân chia thời gian để ghép các cuộc gọi dựa vào thời gian và chuyển mạch ghép phân chia tần số để ghép các cuộc gọi trên cơ sở tần số. Nguyên lý sử dụng cho loại chuyển mạch phân chia thời gian là nó tách nhịp thông tin có pha đã định bằng cách sử dụng ma trận nhịp có pha thay đổi trong khi nguyên lý dùng cho phương pháp phân chia tần số là tách các tín hiệu có các tần số cần thiết bằng cách sử dụng bộ lọc có thể thay đổi. Phương pháp chia tần số được biết là có các vấn đề kỹ thuật như là việc phát sinh các loại tần số khác nhau và việc cung cấp và ngắt các tần số này cũng như bộ lọc có thể thay đổi. Đồng thời nó không kinh tế. Theo đó, phương pháp này được nghiên cứu rộng rãi trong thời kỳ đầu của sự phát triển hệ thống tổng đài điện tử nhưng chưa được vào sử dụng cho hệ tổng đài phân tải. Mặt khác, phương pháp phân chia thời gian được đề nghị vào thời kỳ đầu phát triển hệ tổng đài điện tử và nó đang được nghiên cứu tiếp ngày nay. Phương pháp điều chế này được phân loại thêm thành điều chế theo biên độ xung (PAM) tiến hành bằng chuyển mạch PAM và điều chế xung mã được thực hiện nhờ chuyển mạch PCM. Mỗi chuyển mạch được phân loại thêm như sau.
  17. Hình 2.5. Phân loại chuyển mạch ghép. Đã mất nhiều thời gian để phát triển thành công chuyển mạch PAM. Khi được đưa ra, do thiết kế đơn giản của nó, chuyển mạch PAM được sử dụng cho hệ tổng đài có dung lượng loại vừa. Ví dụ cụ thể của nó là ESS kiểu 101, một loại PBX điều khiển từ xa được dùng ở Mỹ cho các mục đích đặc biệt vì nó chưa phù hợp cho các hệ thống tổng đài dung lượng lớn với những vấn đề của nó về các đặc điểm thoại như tạp âm và xuyên âm. Đồng thời, vì nó là loại tương tự, tương lai của nó là không rõ ràng. Chuyển mạch PCM được dự kiến là một trong các thành phần chính của IDN hay ISDN để xử lý nhiều loại thông tin cùng một lúc bao gồm cả số liệu. Mạng số tích hợp kết hợp hệ truyền dẫn và hệ chuyển mạch thông qua sử dụng công nghệ PCM. Do phương pháp này sử dụng mạch số, nó được dự định được vi mạch hoá trực tiếp trong tương lai gần đây. Khi sử dụng loại chuyển mạch này, việc chuyển mạch được tiến hành trong giai đoạn dồn kênh theo các đặc tính thoại ổn định của PCM. Do vậy, bởi vì chuyển mạch rơ-le nhiều mức có thể thực hiện được nhờ sử dụng chuyển mạch này, một mạng lưới truyền thông mới có thể được thiết lập dễ dàng thông qua việc dùng loại chuyển mạch nay. Như đã được trình bày, phương pháp này sẽ được sử dụng rộng rãi trong tương lai. 2.2.2 Chuyển mạch PCM.
  18. Chuyển mạch PCM là loại chuyển mạch ghép hoạt động dựa vào công nghệ dồn kênh chia thời gian và điều chế xung mã. PCM là phương pháp truyền biên độ của PAM sau khi đã lượng hoá nó và sau đó biến đổi nó thành ra mã nhị phân. Theo đó, việc tái mã hoá có thể được tiến hành dễ dàng vì nó có thể dễ dàng phân biệt được với các tín hiệu ngay cả khi có tạp âm và xuyên âm trong đường truyền dẫn. Ngoài ra, để thực hiện chuyển mạch phân chia thời gian có thể dùng, các chuyển mạch thời gian để trao đổi khe thời gian và chuyển mạch phân chia thời gian để trao đổi theo không gian các khe thời gian được phân chia theo thời gian. A. Chuyển mạch T Các số liệu đưa vào được nạp vào các khe thời gian trong một khung (frame). Để kết nối một đường thoại, thông tin ở các khe thời gian được gửi từ bên đầu vào của mạch chuyển mạch đến phía đầu ra. Mỗi một đường thoại được định hình với một khe thời gian cụ thể trong một luồng số liệu cụ thể. Theo đó mạch chuyển mạch thay đổi một khe thời gian của một luồng số liệu cụ thể đến khe thời gian của một luồng số liệu khác. Quá trình này được gọi là quá trình trao đổi các khe thời gian. ở hình 2.6 mô tả qui trình chuyển mạch các khe thời gian. Khe thời gian đưa vào được ghi lại tạm thời trong bộ nhớ đệm. Như thể hiện trên hình vẽ, các khe thời gian đưa vào được lưu giữ ở địa chỉ 1 (address 1) đến chỉ x (address x) của khung thể hiện luồng đầu vào. Số liệu của khe thời gian 1, khe thời gian 2, và khe thời gian X được lưu giữ lại ở các từ thứ nhất, thứ hai và thứ X tương ứng. Vào lúc này, số liệi của mỗi frame đã được thay thế bởi số liệu mới một lần. Chức nǎng chuyển mạch khe thời gian liên quan đến việc chuyển mạch từ một khe thời gian được đưa vào đến khe thời gian được lựa chọn ngẫu nhiên được đưa ra. Ví dụ, nếu chuyển từ khe thời gian 7 của luồng đầu vào đến khe thời gian 2 của luồng đầu ra, thông tin từ thuê bao được ghi ở khe thời gian đưa vào số 7 được gửi đến thuê bao được chỉ thị bằng khe thời gian số 2 ở đầu ra.
  19. Hình 2.6. Qui trình chuyển mạch theo khe thời gian. Có sẵn cho loại qui trình này là phương pháp đọc ngẫu nhiên theo dãy ghi lần lượt (SWRR) trong đó các số liệu được ghi lần lượt từ phía đầu vào và được đọc một cách ngẫu nhiên từ phía đầu ra. Phương pháp đọc lần lượt ghi ngẫu nhiên (RWSR) là phương pháp ghi các số liệu một cách ngẫu nhiên từ phía đầu vào và đọc chúng theo trình tự ở phía đầu ra, còn phương pháp ghi ngẫu nhiên đọc ngẫu nhiên (RWRR) là viết và đọc các số liệu một cách ngẫu nhiên. B. Chuyển mạch không gian Chức nǎng chuyển đổi khe thời gian giữa các khe thời gian đầu vào/đầu ra được giải thích ở phần trên chịu trách nhiệm cho chức nǎng chuyển mạch hoàn thiện đối với tất cả các khe thời gian. Bây giờ, nếu mạch chuyển mạch xử lý thuê bao M như là một điểm cuối của khe thời gian đơn, thì càn có bộ nhớ có số "M" được tạo bởi các từ được dùng ở tốc độ thích hợp. Ví dụ, trong trường hợp tần số mẫu là 8 KHz, thì hệ thống có 128 khe thời gian có thể có khả nǎng viết và đọc các số liệu vào bộ nhớ mỗi 125 u giây/128=976 nano giây (nsec.). Tuy nhiên, nếu hệ thống trở nên lớn hơn, thì các yêu cầu về bộ nhớ và tốc độ truy nhập có thể không đáp ứng nổi với công nghệ đang có hiện nay. Ví dụ như, hệ thống với 16.384 khe thời gian có khả nǎng viết và đọc các số liệu cho mỗi 76,3 nano giây (125u giây/16.384). Do vậy
  20. để tǎng hiệu suất của hệ thống, một phương pháp mở rộng dung lượng sử dụng các bộ phận tiêu chuẩn là cần thiết. Một trong các phương pháp có sẵn cho mục đích này là việc đổi các khe thời gian trong một luồng khe thời gian tới các khe thời gian của một luồng khác bằng cách đấu nối qua lại các nhóm chuyển mạch khe thời gian với cổng lôgíc. Công nghệ này được gọi là chuyển mạch phân chia không gian - thời gian sử dụng các thanh đấu chéo theo không gian. ở đây, thanh đấu chéo theo không gian tương tự như thanh quét sử dụng các tiếp điểm rơ-le trừ trường hợp yêu cầu một cổng logic vận hành ở tốc độ cao. Một thanh quét được mô phỏng với bên đầu vào của trục đứng và bên đầu ra của trục nằm ngang. Một cổng lôgic được dùng ở điểm cắt chéo của trục đứng và trục nằm ngang. Sự tiếp xúc phù hợp được tiến hành thông qua việc kích hoạt cổng lôgic tương ứng trong thời hạn của khe thời gian và nhờ đó thông tin được truyền đi từ bên đầu vào đến phía đầu ra. Hình 2.7. Thanh cắt chéo không gian trong chuyển mạch phân chia thời gian. Ví dụ, một khe thời gian trong luồng đầu vào liên tục có "K" các từ PCM khác nhau kích hoạt một cổng thích hợp để thực hiện việc chuyển mạch tới trục nằm ngang mong muốn. Đầu vào của trục đứng còn lại có thể được nối với đầu ra của trục nằm ngang bằng cách kích hoạt một cách phù hợp các cổng tương ứng. Đồng thời, ở khe thời gian tiếp theo, một đường dẫn hoàn toàn khác với đường trước đó có thể được lập ra.
  21. ở đây chú ý là các khe thời gian của trục đứng và trục nằm ngang được phát sinh một cách tương ứng trong cùng một thời điểm và vì vậy ở thanh quét, việc chuyển khe thời gian không được thực hiện. Như trong trường hợp chuyển đổi khe thời gian, một bộ nhớ điều khiển có thông tin để kích hoạt các cổng tại các khe thời gian mong muốn là cần thiết. Hệ thống có thể có "m" các đầu vào và "n" các đầu ra được mô tả ở hình 2.7. "m" và "n" có thể là giống nhau hoặc khác nhau tuỳ thuộc vào cấu hình của hệ để thực hiện việc tập trung, phân phối, và các chức nǎng mở rộng. Vì vậy, đối với mạng chuyển mạch không gian, một thanh quét nhiều mức có thể được sử dụng. Khi muốn gửi các tín hiệu từ đầu vào 1 đến đầu ra 2, cổng S21 phải được kích hoạt trong thời hạn của khe thời gian mong muốn. Nếu Sm1 được kích hoạt vào cùng thời gian đó, đầu vào "m" được gửi đến đầu ra 1. Như đã giải thích, một vài thanh quét có thể được kích hoạt đồng thời trong thời hạn của khe thời gian nhất định và vì vậy số các đường nối đồng thời có thể được là một trong hai số "m" hoặc "n" tuỳ theo số nào là nhỏ hơn. 2.2.3 Phương pháp thiết lập mạng chuyển mạch kiểu phân chia thời gian Một mạng lưới có thể được lập nên bằng các sử dụng một trong các chuyển mạch T, chuyển mạch S, hay phối hợp cả hai, theo đó mạng lưới có thể được thiết lập như sau: Chuyển mạch T đơn Chuyển mạch S đơn Chuyển mạch T-S Chuyển mạch S-T Chuyển mạch T-S-T Chuyển mạch S-T-S Sự phối hợp phức tạp hơn của S và T A. T-S-T Cấu hình này cho phép hệ thống xử lý các cuộc gọi một cách không bị ngắt quãng do bị khoá như ở hình 2.8. Trong việc điều khiển mạng, việc lựa chọn khe thời gian ở đầu vào/đầu ra và khe thời gian ở chuyển mạch không gian là không liên quan
  22. đến nhau. Nghĩa là trong trường hợp của T-S-T, thì khe thời gian đầu vào có thể được đấu nối với khe thời gian đầu ra bằng cách dùng khe thời gian trong đường chéo của chuyển mạch không gian. Trong trường hợp khe thời gian 3 của đầu vào được xác định với các cuộc gọi phải đấu nối với khe thời gian 17 của đầu ta mong muốn để giải thích việc khóa trong mạng lưới số và đầu cuối không gian có thể cấp đường nối từ chiều dài đầu vào đến chiều rộng đầu ra, khe thời gian 3 và 17 phải được trao đổi với nhau. Như thế, việc đấu nối đạt được khi khe thời gian 3 của đầu vào và khe thời gian 17 của đầu ra còn rỗi. Vào lúc này chỉ có thể có được một đường thông, nếu khe thời gian 3 đã được dùng, khe thời gian 17 có thể được sử dụng nhưng vào lúc này các cuộc gọi đã bị khoá. Trong trường hợp mạng T-S-T, bộ biến đổi khe thời gian đầu vào có thể chon một trong các khe thời gian để sử dụng. Nếu hệ thống có 128 khe thời gian, khe thời gian đầu vào 3 có thể được nối với một khe thời gian bất kỳ của không gian trừ khe thời gian đầu vào 3. Theo đó trong trường hợp của T-S-T điều quan trọng phải tìm kiếm đường dây rỗi cũng như các khe thời gian sẽ sử dụng. Trong hầu hết các trường hợp, mạng lưới có thể cung cấp ít nhất một hay nhiều đường để nối các khe thời gian đầu vào/đầu ra. Hình 2.8. Cấu trúc mạng T-S-T. S-T-S Trong trường hợp của S-T-S, quá trình tương tự như T-S-T được tiến hành. Trên hình 2.9, một mạng S-T-S được mô tả. Việc lựa chọn khe thời gian đầu vào/đầu ra được xác định bằng đường giao tiếp theo yêu cầu. Do bộ biến đổi khe thời gian có thể được thay đổi bằng cách dùng hai chuyển mạch không gian, độ linh hoạt của đầu nối được cải thiện. Ví dụ, nếu khe thời gian 7 cần phải được nối đến khe thời
  23. gian 16, thì chỉ có một yêu cầu duy nhất là khe thời gian đó phải có khả nǎng trao đổi khe thời gian 7 và 16. Điều này có thể đạt được bằng cách sử dụng một trong các số "n" bất kỳ của thời gian. Các mạng lưới T-S-T và S-T-S có thể được thiết kế để có cùng khả nǎng kết nối cuộc gọi và tỷ lệ khoá cuộc gọi. Việc này chứng tỏ là tỷ lệ phân bố 1:1 được tiến hành giữa việc phân chia thời gian và phân chia không gian. Hình 2.9. Cấu trúc mạng S-T-S. 2.3 Phương pháp điều khiển 2.2.1 Phân loại phương pháp điều khiển Mặc dù có nhiều loại hệ thống tổng đài đang có hiện nay, tất cả các hệ thống đó có thể được phân loại như được ghi ở Bảng 2.1. Đầu tiên chúng có thể được phân loại theo phương pháp điều khiển mở/đóng của chuyển mạch cuộc gọi thành phương pháp điều khiển độc lập, phương pháp điều khiển chung, và phương pháp điều khiển theo chương trình lưu giữ. Điều khiển Quá trình Điều khiển Điều khiển Các phương pháp bằng chương trình đấu nối độc lập chung được lưu giữ Loại điều khiển 0 x x trực tiếp Loại điều khiển 0 0 0 gián tiếp
  24. 0 : Có tồn tại x : Không có hiện nay trừ các trường hợp đặc biệt Bảng 2.1 Phân loại phương pháp điều khiển chuyển mạch. Phương pháp điều khiển độc lập còn được gọi là phương pháp điều khiển đơn chiếc; Đây là phương pháp lựa chọn các đường nối khi mỗi chuyển mạch tiến hành một cách độc lập việc điều khiển lựa chọn vì mỗi chuyển mạch được trang bị bằng một mạch điều khiển. Bởi vì tính đơn giản của mỗi mạch phương pháp này được sử dụng rộng rãi cùng với phương pháp từng bước trong các hệ tổng đài đầu tiên được phát triển. Tuy nhiên, việc lựa chọn đường có hiệu quả cho toàn bộ hệ thống là khó khǎn bởi vì phạm vi lựa chọn của mỗi mạch điều khiển phần nào đó bị giới hạn. Phương pháp điều khiển thông thường là phương pháp tập trung các mạch điều khiển vào mỗi chỗ và sau đó theo dõi trạng thái đấu nối của toàn mạch để lựa chọn các đường nối. Khi sử dụng phương pháp này, các mạch điều khiển được tập trung để chia sẻ số lượng lớn các cuộc gọi cho nên khả nǎng của các mạch điều khiển là rất lớn. Đồng thời các chức nǎng phức tạp có thể được tiến hành một cách kinh tế. Hầu hết các hệ tổng đài kiểu cơ học phân chia không gian bao gồm cả hệ tổng đài thanh chéo cùng sử dụng phương pháp này. Phương pháp điều khiển theo chương trình được lưu giữ là một trong các loại phương pháp điều khiển chung; chúng được tập trung khá cao độ về chức nǎng và như là thiết bị xử lý thông tin đa nǎng, nó tiến hành một số điều khiển đấu nối. Hầu hết các hệ tổng đài điện tử đang dùng hiện nay đều áp dụng phương pháp này. Các đầu vào điều khiển trực tiếp cho một hệ tổng đài là các xung quay số dược gửi đến từ các máy điện thoại. Các đặc điểm xử lý đấu nối thay đổi rất lớn tuỳ thuộc vào việc sử dụng các loại đầu vào này. Phương pháp điều khiển trực tiếp là phương pháp trong đó các xung nhận được trực tiếp kích hoạt các mạch điều khiển nhằm để chọn các đường nối một cách liên tiếp. Khi áp dụng phương pháp này, việc vận hành có thể được tiến hành một cách đơn giản tuy nhiên cấu hình mạng lưới tuyến và số quay, là đường nối, phải có mối quan hệ tương đương 1-1. Theo đó, cấu hình mạng là ít linh hoạt và khả nǎng thấp hơn. Do đó, phương pháp này là không phù hợp với hệ tổng đài có dung lượng lớn có khả nǎng xử lý các cuộc gọi đường dài. Phương pháp điều khiển gián tiếp là phương pháp tập trung các xung quay số vào mạch nhớ, đọc tất cả các số và sau đó lựa chọn các đường nối cuộc gọi thông qua
  25. việc đánh giá tổng hợp. Theo đó với phương pháp này được đặc tính hoá bởi dung lượng xử lý đường thông cao và có khả nǎng biến đổi các số gọi, tương đương, các số gọi và các đường nối có thể được xác định độc lập để lập nên mạng lưới tuyến linh hoạt. Đặc biệt, chức nǎng này là cần thiết để có thể sử dụng một cách có hiệu quả các tuyến gọi đường dài. Tốc độ vận hành của mạch điều khiển trong các phương pháp điều khiển chung và điều khiển theo chương trình lưu giữ là nhanh hơn nhiều so với thao tác quay số. Theo đó các số đựoc quay được tập hợp lại trong một mạch nhớ tách biệt tạm thời nhằm để sử dụng mạch điều khiển tích hợp cao và sau đó chúng được đọc với tốc độ cực kỳ nhanh để điều khiển toàn bộ chúng ngay lập tức. Vì lý do này, hầu hết các hệ tổng dài sử dụng phương pháp điều khiển chung và điều khiển theo chương trình lưu giữ đều dùng phương pháp điều khiển gián tiếp loại trừ một số trường hợp trong thời kỳ ban đầu cuả quá trình phát triển. 2.3.2 Phương pháp điều khiển độc lập Các hệ tổng đài theo từng bước như của Strowger hoặc hệ tổng đài EMD sử dụng phương pháp điều khiển độc lập trong đó từng mạch điều khiển riêng được bố trí kèm theo cho mỗi chuyển mạch. Mặc dù đã cũ, đây vẫn là ví dụ tốt của cái gọi là điều khiển phân tán; nó tiến hành việc điều khiển chuyển mạch một cách thống nhất bằng cách kích hoạt một cách độc lập các điều khiển chuyển mạch phân tán. Mạch phân tán có bất lợi là nó làm giảm khả nǎng chuyển mạch hoặc các chức nǎng chuyển mạch. Tuy nhiên, vì hệ thống có trang bị loại mạch này có khả nǎng cô lập các lỗi một cách có hiệu quả, hệ này có thể được thay đổi hoặc được mở rộng dễ dàng. Đặc biệt, phương pháp này rất có thể được dùng rộng rãi khi công nghệ thiết bị mới bao gồm độ tích hợp cao của mạch điện tử trở nên pháp triển hơn. Phương pháp điều khiển độc lập đựoc phân loại thêm thành các loại điều khiển trực tiếp và điều khiển gián tiếp. ở phần tiếp theo, chúng được xem xét chi tiết hơn. A. Kiểu điều khiển trực tiếp Như đã mô tả ở phần trước đây, các xung sinh ra khi thuê bao quay số được đưa vào trực tiếp, tiếp đến được xử lý một cách liên tục để lựa chọn đường nối. Theo đó, một chuyển mạch để chọn đường được định ra bằng số quay đã nhận được và
  26. sau đó chọn đường dây rỗi trong số đó. Hệ thống được tạo nên bởi một nhóm các chuyển mạch như vậy. Hai loại chuyển mạch hiện có là loại chuyển mạch cơ học kiểu chuyển động đơn để chọn các đường ra thông qua việc dịch chuyển nhiều chiều đơn như dịch chuyển quay và chuyển theo đường thẳng và một loại chuyển mạch cơ học kiểu chuyển 2 cấp để phối hợp hai cách chuyển nhiều chiều như chuyển theo chiều đứng. Có nhiều phương pháp kích hoạt các chuyển động được nói trước đây; một phương pháp quay bánh rǎng đồng hồ sử dụng các phương tiện điện từ hoặc động cơ đặc biệt và một hệ thống nguồn chuyển động dịch chuyển từng chuyển mạch bằng cách lắp đặt một máy phát điện chung ở một số chuyển mạch hoặc thông qua các bánh rǎng hoặc các phối hợp phức tạp khác. B. Kiểu điều khiển gián tiếp Phương pháp điều khiển trực tiếp có thể được sử dụng cho các hệ tổng đài dung lượng nhỏ một cách không khó khǎn. Tuy nhiên, khi sử dụng cho hệ thống có dung lượng lớn, cấu hình mạng trở nên phức tạp và khi lắp đặt một đường trung kế giữa các tổng đài có lưu lượng nhỏ, thì hiệu quả của nó bị giảm xuống đáng kể. Để giải quyết các vấn đề này, phương pháp điều khiển gián tiếp được phát triển. Nghĩa là mạch nhớ số gọi được lắp đặt trong hệ tổng đài để đọc các số gọi đã được lưu giữ. Khi tổng đài bị gọi được xác định, việc chuyển đổi số phải được tiến hành tuỳ theo việc thiết lập mạng lưới dây cũng như việc thực hiện nhận số liên tục và thêm các số được quay. Phương pháp này được gọi là phương pháp điều khiển gián tiếp hay phương pháp chuyển đổi có lưu giữ. Hướng của đường trung kế có thể được chọn bằng cách quay một số thập phân giới hạn đến 10; vì vậy khi dùng phương pháp điều khiển độc lập cấu hình mạng lưới tuyến phần nào bị hạn chế trong khi đối với phương pháp điều khiển gián tiếp thì đường truyền dẫn có thể hoạt động với hiệu qủa cao vì cấu hình mạng lưới tuyến không quan hệ trực tiếp với các số được quay. Như đã trình bày ở trên, phương pháp điều khiển độc lập là ví dụ đặc biệt của điều khiển phân tán. Có thể phân bố các chức nǎng chuyển mạch (xác định cuộc gọi, nhận số được quay, xác định đường trung kế, chọn đường dây rỗi, cấp điện, truyền/nhận một số tín hiệu, gọi lại, xác định thời điểm kết thúc gọi, hồi phục và các chức nǎng khác) cho các loại mạch khác nhau để đấu nối các nhánh. Mỗi
  27. mạch được kết cấu đơn giản và một vài chuyển mạch được tập hợp thành nhóm để hình thành hệ tổng đài. 2.3.3 Phương pháp điều khiển chung Hệ điều khiển chung là phương pháp tách giữa mạch chuyển mạch gọi của hệ tổng đài và mạch điều khiển và phân chia một số nhỏ các mạch điều khiển thành nhiều điều khiển đầu nối để đạt hiệu quả cao hơn. Điều khiển đầu nối được tiến hành thông qua các quá trình sau: giai đoạn tập trung đường khi các cuộc gọi phát sinh từ các thuê bao được tập hợp lại sau đó được nối với mạng chuyển mạch gọi, giai đoạn phân bổ trong đó các cuộc gọi đã tập hợp được phân loại theo các hướng, thời kỳ tái phát sinh trong đó các cuộc gọi từ phía tổng đài đối diện được tái phát lại và sau đó được chuyển đến tổng đài bên kia, và một đoạn chọn cuối cùng khi các cuộc gọi đến được nối với phía bị gọi. Phương pháp điều khiển chung từng phần hay là hệ thống đánh dấu theo giai đoạn là phương pháp chia các chức nǎng trên đây thành các thời kỳ khác nhau và sau đó phân bổ chúng cho một số loại các mạch điều khiển chung. Mặt khác hệ đánh dấu chung là phương pháp cho phép mạch điều khiển chung điều khiển các đấu nối thông qua mạng chuyển mạch gọi của một tổng đài. Khi sử dụng phương pháp điều khiển chung từng phần, hệ tổng đài có thể được tách ra thành các ngǎn và theo đó khi nào cần thiết, có thể bổ sung các ngǎn một cách dễ dàng để mở rộng hệ thống. Tuy vậy, những bất lợi sau đây thường gặp khi sử dụng phương pháp này: việc xử lý thông tin điều khiển giữa mỗi ngǎn là khó khǎn, số lớn các thiết bị trung kế được đưa vào thông qua khoảng trống trong các mạch gọi tách riêng, dung lượng xử lý đường thông bị giảm đáng kể do toàn bộ hệ thống không được tích hợp hoàn toàn và các chức nǎng phức tạp. Do vậy, hiện nay hệ đánh dấu chung được dùng rộng rãi hơn. Hệ tổng đài số 5 của Mỹ là ví dụ điển hình sử dụng phương pháp đánh dấu theo giai đoạn và hệ tổng đài kiểu C45 của Nhật dùng hệ đánh dấu thông thường. A. Hệ đánh dấu thông thường
  28. Như đã trình bày ở phần trước đây, hệ đánh dấu thông thường là phương pháp điều khiển toàn bộ vận hành của việc đấu nối chọn lọc trên mạng thông qua việc sử dụng chuyển mạch cuộc gọi. Điều này không có nghĩa là chỉ có một mạch điều khiển hoặc một hệ tổng đài được sử dụng. Thay vì, nó có nghĩa là một mạch điều khiển điều khiển toàn bộ hệ thống thoại. Trong trường hợp đối với hệ tổng đài thanh chéo, cách thực hiện chung là việc điều khiển các cuộc gọi được thực hiện thông qua việc sử dụng các mạch điều khiển chung khác nhau tuỳ thuộc vào tốc độ điều khiển yêu cầu. Vì vậy, đôi khi có 2 thiết bị để thực hiện các chức nǎng khác nhau được lắp đặt cạnh kề nhau. Khi sử dụng phương pháp này, chuyển mạch gọi toàn bộ được kiểm tra đầu tiên và sau đó thông tin chưa được chiếm giữ của mỗi phần được tập hợp lại để chọn đường nối. Vì vậy, hiện tượng khoá đường thông, phát sinh do tình trạng máy bận, có thể được giữ ở mức tối thiểu để có hiệu quả cao hơn. Do có các lý do này, nên hầu hết các hệ tổng đài được phát triển gần đây sử dụng hệ đánh dấu chung. Trên hình 2.10, đường nối cuộc gọi của hệ tổng đài số 5 được thể hiện. Hình 2.10. Đường nối cuộc gọi của hệ tổng đài số 5. Thao tác nối cuộc gọi của hệ thống chuyển mạch thực hiện như sau: (1) Nối mã: từ lúc thuê bao nhấc ống nói cho đến khi truyền tín hiệu mời quay số. (2) Tiếp nhận xung quay số: số được ghi vào thanh ghi khi máy thuê bao chủ gọi quay số.
  29. (3) Nối cuộc gọi đi: Dựa vào số nhận được trong thanh ghi chủ gọi đường ra của tổng đài trung chuyển nối với máy thuê bao bị gọi được xác định (4) Nối trong nội bộ tổng đài: Nếu máy thuê bao bị gọi nằm trong tổng đài nội hạt, thì đường gọi trong tổng đài nội hạt được lựa chọn. (5) Nối cuộc gọi đến: Khi cuộc gọi đến từ một tổng đài khác, thanh ghi đầu vào bị chiếm bởi một đường trung kế vào. (6) Nối trung chuyển: Nếu hệ thống chuyển mạch là trung chuyển, thì cuộc gọi đến được chuyển tới tổng đài xa hoặc tổng đài cuối. Để kiểm tra xem những chức nǎng trên có thực hiện bình thường không, hệ thống chuyển mạch thường được trang bị thêm chức nǎng quản lý, vận hành và bảo dưỡng của bộ điều khiển tự động, chức nǎng phát hiện lỗi, vị trí, thời gian gây lỗi và thiết bị ghi. B. Phương pháp điều khiển chung từng phần Việc điều khiển đấu nối của hệ thống chuyển mạch được thực hiện qua những quá trình sau: giai đoạn tập trung đường theo lưu lượng cần xử lý sau khi xác định có tín hiệu gọi, giai đoạn phân phối các cuộc gọi cho các địa chỉ dựa trên số đã quay, giai đoạn thực hiện nối rơ-le, và cuối cùng là giai đoạn lựa chọn cuối cùng khi các cuộc gọi được nối tới các thuê bao bị gọi. Theo như trên, mỗi giai đoạn có sự điều khiển khác nhâu, Hệ thống đánh dấu giai đoạn là phương pháp phân chia sự điều khiển thành nhiều nhóm và sau đó phân loại phạm vi điều khiển đấu nối tương ứng để phân phối. Hệ thống này khác với hệ thống đánh dấu chung ở chỗ phạm vi giám sát của một mạch điều khiển chung là một bộ phận của mạng chuyển mạch cuộc gọi như chỉ rõ trong hình 2.11
  30. Hình 2.11. Phương pháp điều khiển chung từng phần. Phương pháp này có đặc điểm như sau: (1) Phạm vi mạng chuyển mạch gọi do một mạch điều khiển nhỏ (2) Hệ thống chuyển mạch có thể phân chia và xếp đặt lại bằng cách kết hợp các bộ phận một cách khác nhau để linh hoạt hơn. (3) Vận hành mạng tuyến có thể thực hiện linh hoạt tuỳ theo yêu cầu về đường thông. (4) Những lỗi xảy ra chỉ có ảnh hưởng ít nhất đối với toàn hệ thống vì các mạch điều khiển đã được mô-đun hoá. (5) Khả nǎng của mạng chuyển mạch gọi bị giảm bớt rõ rệt. (6) Hiệu quả của đường trung kế giảm xuống nhiều (7) Cần có những đường trung kế dẹ phòng giữa các mạng chuyển mạch phân phối (8) Thông tin về điều khiển phải truyền giữa các mạch điều khiển chung Như trên, phương pháp điều khiển chung từng phần thiết kế đơn giản đã được sử dụng rộng rãi trong các mô hình hệ thống tổng đài có đường nối chéo trước đây. 2.3.4 Phương pháp điều khiển bằng chương trình lưu trữ Việc điều khiển độc lập và điều khiển chung được phân loại trong khía cạnh sơ đồ của hệ thống điều khiển. Trái lại, nếu chúng ta xem xét hệ thống từ khía cạnh phép tính xử lý các biến đổi logic thì mạch điều khiênr của hệ thống chuyển mạch có thể phân loại tiếp thành mạch logic dây và mạch logic lưu trữ. Nói chung mạch điều
  31. khiển số được thực hiện với những phép tính logic như (AND), (OR), và (NOT), và kết hợp với thao tác bộ nhớ để xác định trạng thái tiếp theo sau khi đã lưu trữ phần ghi trước đó. Với mục đích đó, có 2 phương pháp thao tác: logic dây là phương pháp kết hợp các rơ-le, mạch điểm tiếp xúc hay cổng điện tử và sau đó nối các thao tác logic cần thiết để thiết lập hệ thống. Thao tác điều khiển được xác định bằng phương pháp nối dây. Những mạch điều khiển của phần lớn các hệ thống chuyển mạch kể cả hệ thống chuyển mạch thanh cheó phát triển trước đây đều được thực hiện theo phương pháp này. Mạch logic lưu trữ là phương pháp thực hiện các phép tính logic theo chỉ thị trên mạch nhớ bằng cách sử dụng một máy tính điện tử đa nǎng. Thí dụ, CPU của máy tính điện tử chỉ gồm có một mạch cộng và mạch logic cơ sở.Những phép tính và thao tác phức tạp có thể thực hiện bằng cách dùng mạch cơ sở nhiều lần theo thông tin nhớ đã ghi lại trong chương trình. Các loại thao tác này được xác định bởi các mạch dây đặc định (hardware: phần cứng) và các chương trình đưa vào bộ nhớ (phần mềm) quyết định, và các thao tác đó được gọi là những phép logic lưu trữ. Phương pháp điều khiển dùng các mạch logic lưu trữ gọi là điều khiển bằng chương trình lưu trữ (SPC). Mạch nối dây toàn phần dùng cho các thao tác chuyển mạch nhất định như xác định thuê bao chủ gọi, chọn đường, hệ số xung quay số không có ở trong CPU thực hiện điều khiển chung trong phương pháp này. Như trong trường hợp máy tính điện tử tổng hợp, hệ thống chỉ có các mạch cơ bản có chức nǎng logic và số học. Trình tự thực hiện thao tác chuyển mạch được lưu trong mạch nhớ dưới dạng những lệnh chương trình và sau đó theo các lệnh đó thực hiện thao tác chuyển mạch bằng cách kích hoạt các mạch cơ sở nhiều lần. Phương pháp này đòi hỏi sự biến đổi logic tốc độ cáp và mạch nhớ có dung lượng lớn. Do đó nó được sử dụng rộng rãi với sự xuất hiện của mạch điện tử vận hành đơn giản. Lợi thế đáng kể nhất của phương pháp điều khiển bằng chương trình lưu trữ là điều khiển rất linh hoạt. Trước đây, các hệ thống truyền thông chủ yếu sử dụng truyền tiếng nói 1:1. Tuy nhên ngày nay các hệ thống chuyển mạch phải có khả nǎng xử lý những dịch vụ truyền thông mới như truyền tiếng nói/hình ảnh và các loại trao đổi số liệu và dịch vụ chuyển mạch điện thoại như quay số tắt và điện thoại hội nghị, điều đó đòi hỏi phải có tính linh hoạt, tính có thể mở rộng và tính sẵn sàng. hệ thống tổng đài điện tử (ESS) đã được phát minh để phục vụ những loại
  32. dịch vụ này. ESS hoạt động theo phương pháp điều khiển bằng chương trình lưu trữ này. A. Nguyên tắc mạch logic lưu trữ Trước hết, nó khác với các mạch logic nối dây thông thường ở những điểm sau. Hình 2.12 minh hoạ một mạch tuần tự sử dụng logic nối dây gồm các cổng logic như Và, Hoặc và Không, những mạch logic kết hợp bằng nối dây để đáp ứng các nhu cầu của mạch điểm tiếp xúc và mạch nhớ để lưu trữ các bản tin về thao tác đã qua và sau đó chỉ thị trạng thái thao tác. Hoạt động của mạch logic nối dây được xác định thông qua việc thực hiện nối dây. Quá trình này tương tự như việc vận hành của công nhân lành nghề.Nghĩa là, mạch này xử lý những công việc thường lệ đơn giản liên quan tới trạng thái dòng điện và thông tin đưa vào. Do đó nó có thể thực hiện những công việc đặc biệt nhưng không thực sự linh hoạt. Mạch logic lưu trữ đặc biệt đưlợc thể hiện trong hình 2.13. Chương trình lưu trữ trong mạch nhớ là một bộ lệnh thể hiện mức thao tác. Mặt khác nó thể hiện chức nǎng phù hợp với đơn vị mạch logic kết hợp của mạch logic dây dẫn. Mạch xử lý số học logic diễn giải các mệnh lện đã được đọc và chỉ định địa chỉ bộ nhớ của lệnh được đọc tiếp đó. Phần lớn những thông tin trong địa chỉ này được ghi lại khi nhập lệnh. Mạch xử lý số học logic qua đánh giá địa chỉ từng phần và thông tin đàu vào tại thời điểm đó để xác định địa chỉ đầy đủ của mệnh lệnh sẽ được xử lý tiếp theo. Khi hoàn tất một loạt các thao tác bằng cách thực hiện các lệnh một cách tuần tự như đã bàn tới, và sau đó đi tới những lệnh thể hiện kết quả điều khiển đó là đầu ta và sau đó đọc. B. Phương pháp chuyển mạch điều khiển bằng chương trình lưu trữ Việc điều khiển bằng chương trình lưu trữ của hệ thống tổng đài điện tử có một bộ nhớ cố định để ghi nhớ các chương trình và một bộ nhớ tạm thời để viết và đọc các dữ liệu một cách tự do. Trong bộ nhớ cố định, các lệnh thao tác chuyển mạch, số điện thoại, số của thiết bị đầu cuối, thông tin chọn đường trong mạng, loại dịch vụ đầu cuối, và các loại thông tin dịch số được lưu trữ cố định. Mặt khác, bộ nhớ tạm thời được dùng để nhớ trạng thái của từng thiết bị đàu cuối và các cuộc gọi được điều khiển, các giai đoạn
  33. Hình 2.12. Mạch logic dây dẫn. Hình 2.13. Mạch logic lưu trữ. điều khiển, và kết quả tạn thời của các phép tính số học đang thực hiện. Trong hình 2.14, cấu hình của hệ thống tổng đài điện tử sử dụng điều khiển bằng chương trình lưu trữ được minh hoạ. Mạng chuyển mạch cuộc gọi thực hiện nối và cắt các cuộc gọi. Bộ quét được sử dụng để xác định trạng thái của từng trạm đầu cuối của mạch gọi, như các mạch đường thuê bao, đường trung kế, và thiết bị nhận xung quay số; nó quét trạng thái bật-tắt theo chu kỳ và sau đó gửi thông tin đầu vào cho mạch điều khiển trung tâm. Mạch điều khiển trung tâm, một mạch điều khiển điện tử gồm một mạch điều khiển và từng thanh ghi, để quản lý và vận hành toàn bộ hệ thống điều khiển. Nó cũng được dùng cho thiết bị thao tác số học của máy tính điện tử tổng hợp. Nó hoạt động theo chương trình lưu trữ trong mạch nhớ cố định. Bằng cách truyền các trạng thái ghi trong mạch nhớ tạm thời một cách tuần tự theo thông tin đầu vào, nó thực hiện điều khiển cuộc gọi bằng cách sử dụng phương pháp phân chia thời gian. Mạch bộ nhớ cố định là một bộ lưu trữ chương trình sử dụng chủ yếu để nhớ các chương trình và mạch nhớ tạm thời được dùng để nhớ trạng thái xử lý cuộc gọi và do đó gọi là bộ lưu trữ cuộc gọi. Bộ xử lý trung tâm gồm 2 bộ phận đó.
  34. Chức nǎng điều khiển mạng chuyển mạch được dùng để thực hiện mở/đóng chuyển mạch gọi, điều khiển đường trung kế hoặc các phép kiểm tra có liên quan với các đường gọi. Mạch điều khiển trung tâm, dựa vào kết quả các giai đoạn lệnh đã thực hiện, ghi ra danh sách các lệnh có liên quan tới trình tự thao tác của mạch chuyển mạch gọi trong mạch nhớ tạn thời: Danh sách lệnh đã hoàn tất được gửi đến mạch kích hoạt chuyển mạch để chỉ thị phương pháp thao tác cho mạch chuyển mạch gọi. Hệ thống tổng đài điện tử, cùng với các mạch cơ bản nói trước đây, nói chung có một bàn vận hành và bảo dưỡng cho các dịch vụ sửa chữa. Hệ thống này cũng thực hiện một chương trình sửa chữa phục hồi những lỗi xảy ra trong hệ thống và tự động chẩn đoán các vị trí lỗi. Kết quả thực hiện Hình 2.14. Thiết lập hệ thống tổng đài điện tử. những chức nǎng này được in ra qua máy in. Nhân viên sửa chữa cǎn cứ vào các bản báo cáo đó, thay các bảng lỗi để sửa chữa. Ngoài ra bàn bảo dưỡng và sửa chữa được dùng để thay các số quay, đường rơ- le và các chức nǎng dịch vụ. Người quản trị có thể thực hiện việc này bằng cách thay đổi thông tin diễn giải tương ứng hoặc các chương trình. Nói chung, những điều kiện sau đây phải được đáp ứng cho hoạt động thích hợp của hệ thống tổng đài điện tử sử dụng phương pháp điều khiển bằng chương trình lưu trữ.
  35. (1) Viết các chương trình hiệu quả (2) Dung lượng lớn và mạch nhớ tiết kiệm (3) Điều khiển tốc độ cao (4) Độ tin cậy cao (5) Dịch vụ mới dễ thích ứng (6) Mạch được tiêu chuẩn hoá (7) Chức nǎng tự chẩn đoán và sửa chữa C. Các loại dich vụ chuyển mạch cuộc gọi Có 2 loại dịch vụ trong hệ thống chuyển mạch chung: thông tin và dịch vụ chuyển mạch cuộc gọi và truyền và xử lý dữ liệu. Trong phần sau đây sẽ mô tả vắn tắt các dịch vụ thoại trong hệ thống chuyển mạch chung: (1) Quay số tắt: Các số của máy thuê bao thường gọi tắt bằng 2 hay 3 số đặc biệt (2) Giữ chỗ: Nều máy thuê bao bị gọi bận, thì cuộc gọi tới thuê bao đó được tự động thực hiện lại khi thuê bao được giải phóng bằng cách quay một số đặc biệt (3) ấn định cuộc gọi tự động: Một cuộc gọi có thể thiết lập giữa bên chủ gọi và bên được gọi vào thời gian định trước. (4) Hạn chế gọi: Hạn chế gọi đi (PBX và loại khác ) (5) Gọi vắng mặt: Bản tin đã ghi được kích hoạt khi thuê bao bị gọi vắng mặt (6) Hạn chế gọi đến : Còn gọi là vận hành đối ngẫu. Chỉ những thuê bao dặc biệt mới được phép gọi. (7) Chuyển thoại: Một cuộc gọi đến sẽ được chuyển tới một máy điện thoại khác (8) Tự động chuyển tới số mới: Dùng khi thay đổi số điện thoại (9) Chọn lựa số đại diện: Số đại diện có thể lựa chọn tự do (10) Nối số đại diện phụ: Một cuộc gọi được tự động chuyển tới số tiếp theo khi không có trả lời của số đại diện đã quay (11) Báo có cuộc gọi đến khi đang bận: Khi nhận được các cuộc gọi khác trong lúc đang bận (12) Chờ cuộc gọi: Nhận được cuộc gọi từ bên thứ ba khi đang bận thì có thể đặt tự động cuộc gọi với bên thứ ba (13) Gọi cho thao tác viên khi bận : Gọi cho điện báo viên khi bận (14) Thoại 3 đường: 3 Thuê bao có thể gọi cùng lúc
  36. (15) Gọi hội nghị: 3 hay nhiều hơn máy thuê bao có thể tham gia gọi cùng lúc (16) Giữ máy: Thuê bao có thể gọi cho bên thứ ba sau khi giữ máy với người đang nói (17) Đặt gọi tất cả: Tất cả hay một số điện thoại trong tổng đài được gọi cùng lúc để thông báo (18) Tính cước tức thì: Có thể tính cước ngay lập tức (19) Dịch cụ tính cước chi tiết: Có chi tiết về cước cho các cuộc gọi (20) Báo thức: Tín hiệu báo thức vào giờ định trước (21) Tìm cuộc gọi ý đồ xấu: Có thể tự động tìm ra số của máy chủ gọi Một trong số các chức nǎng nói trên đang được đưa vào hệ thống chuyển mạch dùng thanh chéo. Tuy vậy, hệ thống tổng đài điện tử sử dụng mạch nhớ dung lượng lớn và phương pháp điều khiển bằng chương trình lưu trữ có tính linh hoạt có thể cung cấp dịch vụ đó một cách tiết kiệm và hiệu quả hơn. 2.4 Thiết bị ngoại vi 2.4.1 Tổng quát Các hệ thống chuyển mạch số hiện nay đang thay thế hệ thống chuyển mạch tương tự là những hệ thống chuyển mạch lớn đang hoạt động. Như vậy các hệ thống chuyển mạch số cần phải được trang bị khả nǎng giao tiếp với mạng tương tự hiện tồn tại. Các hệ thống chuyển mạch số trên mạng điện thoại công cộng phải làm nhiều hơn là việc đáp ứng các điện thoại số. Nghĩa là, các hệ thống chuyển mạch số phải có khả nǎng xử lý nhiều loại điện thoại khác nhau kể cả loại tương tự. Do đó các mạch giao tiếp tương tự như mạch thuê bao tương tự hay mạch đường trung kế tương tự (analog) là phần chính của các hệ chuyển mạch số. Một số các thiết bị giao tiếp analog trong hệ thống là một trong những nhân tố quan trọng nhất để xác định những tham số như giá cả, kích thước, mức tiêu thụ điện. Giá của những mạch thuê bao tương tự chiếm khoảng 80% hoặc hơn trong giá thành sản xuất toàn bộ hệ thống. Vì vậy các nhà sản xuất hệ chuyển mạch dùng mạch VLSI thay thế cho mạch giao tiếp analog để giảm giá thành của mạch thuê bao analog
  37. Hình 2.15. Kết cấu của hệ thống chuyển mạch số chung. Hình 2.15 minh hoạ cấu hình của hệ thống chuyển mạch số điển hình. Các nguồn thông tin về thuê bao tương tự gồm các điện thoại dân dụng, thương mại và công cộng. Modem dữ liệu có thể dùng làm nguồn thông tin tương tự. Vì modem dùng để gửi thông tin số sử dụng mạch tương tự. Mạch trung kế dùng để giao tiếp với các hệ chuyển mạch khác, với điện thoại viên và mạch dịch vụ cũng nằm trong số này. Thông tin tương tự được nối với hệ chuyển mạch số qua một giá phối tuyến MDF. MDF trang bị với các bộ phận hạn chế vượt thế điện do bị sét hay các nguồn cao thế khác, cung cấp các địa điểm tiện lợi cho việc nối hệ chuyển mạch với các nguồn bên ngoài. Thiết bị bảo vệ sơ cấp này cùng với thiết bị bảo vệ thứ cấp, được dùng để bảo vệ các bộ phận điện tử trong hệ thống chuyển mạch số. 2.4.2 Thiết bị giao tiếp tương tự Các chức nǎng cơ bản của mạch thuê bao tương tự có thể tóm tắt bằng từ "BORSCHT" gồm chữ đầu, của từng chức nǎng, đó là: Nguồn ắc qui (B) Bảo vệ điện áp cao (O) Báo chuông (R) Báo hiệu hoặc giám sát (S) Bộ lập/giải mã (C) Hybrid (chuyển đổi 2 dây/4 dây) H
  38. Đo thử (T) A. Bộ nạp ắc qui Bộ này dùng để cung cấp điện gọi cho từng máy điện thoại thuê bao và đồng thời dùng để truyền các tín hiệu như nhấc máy hoặc xung quay số. B. Bảo vệ điện áp cao Các bộ phận điện tử nhậy cảm của hệ thống chuyển mạch cần phải được bảo vệ một cách đầy đủ để chống không để bị vượt quá điện áp do chớp hoặc điện thương mại không ổn định. Như vậy cần phải lắp đặt sẵn các phần tử bảo vệ trong hệ thống chuyển mạch dể cho hệ thống này có thể chống lại được tác động và dòng do điện áp quá cao sinh ra. Mặt khác dòng điện này có thể đưa vào cả 2 đầu cuối của hai dây điện thoại hoặc giữa một trong hai dây và đất (GND). C. Chuyển tín hiệu gọi Chức nǎng này dùng để chuyển các tín hiệu gọi để thông báo rằng cuộc nói chuyện của khách hàng sắp bị chấm dứt. Bởi vì tín hiệu cao thế xoay chiều được dùng làm tín hiệu gọi, hệ thống này có khả nǎng xử lý hiện tượng phóng điện trong quá trình truyền và được trang bị các phương tiện ngǎn cản thao tác sai trên mạch. Hệ thống này cũng cần phải được trang bị quạt gió. D. Xác định tín hiệu Chức nǎng này dùng dể phát hiện các tín hiệu nhấc máy/đặt máy phát sinh từ thuê bao hoặc các tín hiệu xung quay số. Mạch này phải có độ tin cậy cao. Mã hóa, giải mã Chức nǎng này dùng để mã hoá các tín hiệu tiếng nói tương tự thành các tín hiệu tiếng nói số và ngược lại. Hybrid
  39. Chức nǎng chính của hybrid là chức nǎng chuyển đổi 2 dây thành 4 dây. Như các chức nǎng phụ, việc chấm dứt, cách điện và các chức nǎng chuyển đổi từ cân đối sang không cân đối cho các tín hiệu xoay chiều có sẵn. Đo thử Các đường dây thuê bao thường bị hỏng do bị ngập nước, chập mạch với đường dây điện hoặc bị đứt dây. Người ta đã nghiên cứu ta một lại thiết bị kiểm tra tự động để phát hiện trước các loại lỗi này bằng cách theo dõi các đường dây thuê bao một cách thường xuyên theo chu kỳ. Thiết bị này được nối vào đường dây trong phương pháp analog kiểm tra và đo thử. Như vậy, thiết bị giao tiếp analog của hệ thống chuyển mạch số thường có một bus test-in (đo thử đầu vào) và test - out (đo thử đầu ra)cho các loại giao tiếp này. Nói chung, để thực hiện chức nǎng đo thử vào và đo thử ra người ta dùng một rơ-le. 2.4.3 Thiết bị giao tiếp số Một trong những ưu điểm quan trọng của hệ thống chuyển mạch số là nó có thể sử dụng các tín hiệu để truyền dẫn số mà không phải thay đổi chúng. Như vậy có nghĩa là các dòng bít PCM (ghép kênh chia thời gian) sử dụng trong hệ thống chuyển mạch cũng giống như các dòng bít sử dụng trong hầu hết các thiết bị truyền dẫn. Kết quả là người ta có thể sử dụng các mạch tương đối đơn giản để giao tiếp giữa các hệ thống chuyển mạch và thiết bị truyền dẫn và để tiết kiệm hơn. Hệ thống phân cấp số là tổ hợp các thiết bị truyền dẫn số chạy với nhiều loại tốc độ bit. Mỗi nước định ra tốc độ bit cho các hệ thống của họ. Trong trường hợp nước Mỹ, thiết bị đường truyền dẫn số được gọi là thiết bị tải T và hệ thống được sử dụng rộng rãi nhất là các thiết bị tải T. T1 truyền dòng bit tốc độ 2 hướng 1,544 Mbps (mega bites per second). Các thiết bị tải T khác đã có là T1C, T2, T3 và T4. Việc sử dụng chúng được xác định theo các kiểu ghép kênh. Vì 1.544 Mbps là tốc độ bit cơ sở, nên hầu hết các hệ thống chuyển mạch số có các mạch giao tiếp với tốc độ bit này. Các nước ở Châu Âu sử dụng 2.048 Mbps là tốc độ bit cơ sở. Hai điều kiện dưới đây phải được đáp ứng để giao tiếp một cách có hiệu quả giữa hệ thống chuyển mạch số và thiết bị truyền dẫn số.
  40. 1) Yêu cầu về điện: liên quan đến điện áp, xung điện, dạng sóng, trở kháng và tốc độ bit. được ứng dụng cho tất cả các hệ thống chuyển mạch và các thiết bị truyền dẫn. 2) Yêu cầu về loại bit: Xác định rõ các bit này là tiếng nói các dữ liệu, sự định dạng khung, sự định dạng tín hiệu hay là các số liệu bảo dưỡng và sửa chữa. Ngoại trừ vài trường hợp ít ỏi, các bit này không liên quan trực tiếp đến các thiết bị truyền dẫn và chúng chỉ được ứng dụng cho các hệ thống chuyển mạch. Hai điều kiện trên đây xác định 1 cách đầy đủ các tín hiệu được truyền qua các thiết bị truyền dẫn. DS1 (tín hiệu số 1) là tín hiệu được sử dụng rộng rãi nhất. Tín hiệu này định rõ yêu cầu về điện cho các tín hiệu được truyền thông qua việc sử dụng thiết bị truyền dẫn T1 và giá trị của từng bit có dòng bit. Vì vậy, các loại kênh như D1, D2, D3 và D4 mà đã đáp ứng được các đặc điểm kỹ thuật của DS1 (tín hiệu số 1) có khả nǎng hoạt động cùng với thiết bị truyền dẫn. Ngoài ra, các yêu cầu cho các thiết bị giao tiếp số có liên quan đến giá trị bit của dòng bit như sau. Dòng bit này được xác định cho mật độ 1, được sử dụng để lấy thông tin đồng bộ từ thiết bị tải T. Một dòng bit phải có ít nhất là 1, trong số 12,5% hay hơn Os sẽ không được phát ra liên tục. ở các nước sử dụng luật m , dòng bit được tạo thành từ các khung bao gồm 193 bit trong 1 khung (frame). Một khung bao gồm 1 bit khung và 24 kênh, và mỗi kênh có 8 bit. Các bit khung được sử dụng để gửi thông tin tín hiệu và để xác định vị trí của mỗi mẫu tin. Thông tin tín hiệu (nhấc máy, đặt máy) của mỗi kênh được đưa vào trong LSB (bit ít quan trọng nhất ) của mỗi kênh của mỗi khung thứ 6. Bit này được gọi là bit dịch chuyển. Ngoài các yêu cầu về tín hiệu số 1 kể trên (DS1), hệ thống chuyển mạch số còn thực hiện các chức nǎng sau: Các mã kênh đã được chọn phù hợp phải được gửi đến tất cả các đường trung kế còn rỗi. Các mã này phải đáp ứng tỷ trọng 1 và chúng phải được giải mã thành hầu như là điện 1 chiều 0 volt. Thông thường, chúng được truyền thông qua việc lặp 01111111.
  41. Thông thường, "0" được thêm vào để kết thúc không gửi đi các từ mà các bit của nó là 0. Điều đó có nghĩa là nếu mã số 00000000 được đưa ra hiển thị, nó sẽ được thay thế bằng 00000010. Quá trình này được thực hiện trong khung cùng với bit dịch chuyển. Do đó nếu việc thêm "0" và sự dịch chuyển xảy ra cùng 1 lúc mà kênh chỉ được sử dụng cho việc truyền dữ liệu, thì chỉ có 6 bit trong mỗi kênh được dùng và tốc độ bit lúc bấy giờ sẽ là 48 Kbps. Để giải quyết vấn đề này, người ta đang mong đợi 1 qui luật DS1 mới cấm bit dịch chuyển và việc thêm "0", sẽ được đưa ra trong tương lai gần. Thậm chí nếu các dòng bit đưa vào được đồng bộ hoá, pha có thể được thay đổi. Do đó, mỗi dòng bit phải có khả nǎng chậm lại để mối liên hệ pha thích hợp được thành lập trước khi thực hiện việc chuyển mạch. Việc giao tiếp DS1 phải có khả nǎng bảo đảm được việc bảo dưỡng sửa chữa và các chức nǎng báo cáo về cảnh báo. Ngoài các chức nǎng trên, thiết bị giao tiếp số phải được trang bị các chức nǎng báo lỗi 2 cực, phát ra số lần định khung lại và trượt quá độ. Đấy thường là những lần được nói đến như "GAZPACHO", 1 từ dựa theo các ký tự đầu tiên của mỗi chức nǎng. Đó là Việc phát ra mã khung Việc xắp hàng khung Nén dây 0 (Zero) Đổi cực Xử lý cảnh báo Khôi phục lại đồng hồ Tìm trong khi định lại khung Báo hiệu giữa các tổng đài 2.5 Mạng lưới truyền thông công cộng 2.5.1 Mạng lưới truyền thông và điều kiện kết cấu Mạng lưới truyền thông có thể được định nghĩa đại khái là một hệ thống chuyển thông tin. Các mạng lưới truyền thông điện hiện nay đang được sử dụng để xử lý
  42. các loại thông tin khác nhau bao gồm mạng lưới điện thoại, mạng lưới điện tín, và mạng lưới truyền số liệu. Ngoài ra, ISDN là một mạng lưới có khả nǎng xử lý tích hợp các loại thông tin trên. Về khía cạnh loại cuộc gọi và các dịch vụ, các mạng lưới truyền thông có thể được phân chia thành mạng truyền thông công cộng, mạng truyền thông chuyên dụng và mạng truyền thông di động. Dựa vào phạm vi các dịch vụ truyền thông được đưa vào hoạt động, các mạng truyền thông có thể được phân loại tiếp thành mạng truyền thông nội bộ, mạng truyền thông nội hạt, mạng truyền thông liên tỉnh, mạng truyền thông quốc tế. Nếu chúng ta phân loại chúng về xử lý chuyển mạch, ta có thể có mạng truyền thông tức thời và mạng truyền thông nhanh (dash). Như đã nói trên, các mạng truyền thông có thể được phân ra nhiều hơn nữa tuỳ theo nhu cầu và đòi hỏi của người sử dụng. Về cǎn bản, mạng truyền thông bao gồm một hệ thống chuyển mạch để định rõ đường nối cuộc gọi theo yêu cầu của thuê bao và một hệ thống truyền dẫn để truyền thông tin gọi đến người nhận. Về cǎn bản, nó phải đáp ứng những điều kiện sau đây. 1. Có khả nǎng kết nối các cuộc gọi được gọi đi từ tất cả các thuê bao chủ gọi có đǎng ký trong hệ thống đến thuê bao bị gọi vào bất cứ lúc nào hoặc vào thời gian đã định trước. 2. Có khả nǎng đáp ứng các yêu cầu và những đặc tính của truyền dẫn. 3. Số của thuê bao bị gọi phải được tiêu chuẩn hoá. 4. Có khả nǎng thực hiện việc truyền tin một cách cẩn thận và độ tin cậy cao. 5. Cần có một hệ thống ghi hoá đơn hợp lý. 6. Hoạt động của nó cần phải vừa tiết kiệm vừa linh hoạt. Để thực hiện được những điều trên, mạng tổng đài phải được thiết kế, sau đó đưa vào hoạt động một cách đúng đắn bằng cách xem xét chất lượng cuộc gọi, khả nǎng xử lý cuộc gọi, chi phí lắp đặt và chi phí vận hành, mối liên hệ giữa hệ thống truyền dẫn và hệ thống chuyển mạch. Các mục được nêu ra trên đây có thể được tổng hợp thành sự kết nối cuộc gọi và tiêu chuẩn truyền dẫn, kế hoạch đánh số, độ tin cậy và hệ thống ghi hoá đơn. 2.5.2 Mạng chuyển mạch và điện thoại Vì các thuê bao đã đǎng ký trong hệ thống ở rải rác, nên về cǎn bản mà nói thì hệ thống này phải có khả nǎng xử lý tất cả cuộc gọi của họ một cách tiết kiệm, tin cậy
  43. và nhanh chóng. Để đạt được mục đích này, các đặc tính và những yêu cầu đòi hỏi của thuê bao phải được xem xét để đảm bảo các dịch vụ thoại chất lượng cao. Một mạng nội hạt với một hoặc hai hệ thống chuyển mạch có thể được thiết lập nếu cần thiết. Đối với các thuê bao sống trong một vùng riêng biệt có thể chỉ cần một hệ thống tổng đài. Nhưng nếu số thuê bao trong một vùng riêng biệt vượt quá một giới hạn nào đó, có thể lắp đặt nhiều tổng đài. Nói chung, các mạng lưới đường dây có thể được lập ra như minh hoạ trong hình 2.16. Mạng lưới mắc nối tiếp trong hình (a) được lập ra bằng cách nối tất cả các mạng lưới dây của tất cả các vùng theo kiểu nối tiếp. Trái lại, mạng lưới vòng trong hình (b) được thiết lập theo kiểu tròn. Như được mô tả trong hình (c), mạng hình sao được tập trung vào 1 điểm chuyển mạch. Trong hình (d) trường hợp mạng được mắc theo kiểu lưới các đường nối các phía với nhau được thực hiện. Cũng vậy, nếu được yêu cầu, mạng lưới ghép có thể được lắp đặt như hình (e). Hình 2.16. Các kiểu mạng lưới đường dây Hình 2.17. Thiết lập mạng tổng đài
  44. Bất cứ mạng lưới nào được đề cập trước đây có thể được lắp đặt để đáp ứng những nhu cầu và yêu cầu của thuê bao. Trong trường hợp có một vùng rộng lớn cần nhiều hệ thống chuyển mạch, thông thường thì mạng mắc theo hình lưới được thiết lập. Đối với những vùng nông thôn hoặc những vùng xa xôi như nông trại hoặc các làng chài có mật độ gọi thấp, người ta sử dụng mạng hình sao. Các phương pháp nối mạng có thể dùng cho các mạng lưới đường dây có phần nào phức tạp hơn. Thông thường việc nối mạng được thực hiện theo 4 mức như được minh hoạ trong hình 2.17; trung tâm nội hạt, trung tâm liên tỉnh, trung tâm khu vực, trung tâm vùng. Trong mạng lưới phân cấp có các mức như trên, việc tạo hướng thay thế bao gồm các hướng có mức sử dụng cao và các hướng thay thế được sử dụng. Nếu 1 cuộc gọi được phát sinh, hướng có mức sử dụng cao sẽ được tìm đầu tiên. Cuộc gọi này được nối với bên bị gọi thông qua hướng thay thế của tổng đài ở mức cao kế tiếp. 2.5.3 Mạng dữ liệu chuyển mạch tuyến Để đáp ứng một cách thích đáng nhu cầu ngày càng tǎng của việc truyền số liệu và các dịch vụ thoại mới, các dịch vụ chuyển mạch số liệu được phát triển và được thực hiện bằng cách sử dụng mạng dữ liệu chuyển mạch tuyến và mạng dữ liệu chuyển mạch gói. A. Mạng dữ liệu chuyển mạch tuyến : Mạng dữ liệu chuyển mạch là một phơng pháp nối các đường dây thông tin từ các bên gọi đến các bên nhận và sau đó thực hiện việc trao đổi thông tin giữa các bên với nhau. Mạng lưới điện thoại là một ví dụ điển hình. Mạng lưới điện thoại được lập ra để thực hiện việc trao đổi thông tin tiếng nói, còn mạng dữ liệu chuyển mạch tuyến được lắp đặt để trao đổi dữ liệu. Nó biểu thị các điều kiện giao tiếp của mạng và cung cấp các thiết bị đầu cuối cần thiết cho các dịch vụ truyền mã số như các thông tin dữ liệu, fax bằng số; dịch vụ telex. Với mạng lưới này, các dữ liệu có thể được truyền đi nhanh hơn, tin cậy hơn và tiết kiệm hơn là sử dụng mạng lưới điện thoại hiện có hay mạng lưới thuê bao cho các dịch vụ điện thoại số. Thời gian đòi hỏi để kết nối cũng ngắn hơn nhiều. Mạng dữ liệu chuyển mạch gói (ở đây đang nói đến là "mạng chuyển mạch gói") thiết lập đường trao đổi thông tin như trong trường hợp mạng lưới điện thoại thông thường, và sau đó trao đổi thông tin. Một khi cuộc
  45. gọi được thiết lập, một đường mạch độc lập giữa 2 người sử dụng được lập ra sao cho sử dụng mạch này như một đường dây chuyên dụng cho đến khi chấm dứt cuộc gọi. Bởi vì hệ thống chuyển mạch không liên quan trực tiếp với thông tin đang truyền qua đường dẫn, nó không gây bất cứ hạn chế nào về các kiểu thông tin, các mã thông tin và trật tự điều khiển truyền dẫn. Ngoài ra, không có sự chậm trễ trong truyền dẫn do thời gian xử lý trong hệ thống chuyển mạch. Nghĩa là, có thể nói rằng mạng chuyển mạch gói có một độ thông suốt cao trong mạng lưới. Mạng lưới điện thoại công cộng (PSTN) được dùng cho việc trao đổi thông tin tiếng nói và nó được trang bị các hệ thống chuyển mạch và truyền dẫn cần thiết. Trong bảng 2.2 có ghi các hệ thống chuyển mạch đang dùng hiện nay và đặc tính của chúng. Phương pháp Phương pháp Phương pháp chuyển mạch chuyển mạch gói chuyển bản tin Phân bố mạch trao Cho mỗi cuộc gọi Cho mỗi packet Cho mỗi bản tin đổi thông tin Phương pháp phân Ngay tức thì Chuyển ngay tức thì Ngay tức thì phối mạch trao đổi theo luồng thông tin Thời gian trì hoãn Không đáng kể (cuộc Một chút (cuộc đàm Nhiều đàm thoại có thể thoại vẫn có thể thực hiện được) được) Loại thông tin trao Không hạn chế Dạng gói Có thể định dạng đổi bản tin Tính thông suốt của Có Không Không thời gian * Điều khiển lỗi trong Không Có Có (đối với một ít số mạng khác không có) Phạm vi các dịch vụ ít Trung bình Nhiều phụ được đưa vào hoạt động Bảng 2.2. Các đặc tính và phân loại hệ thống chuyển mạch
  46. * Đây là một đặc tính để duy trì quãng thời gian giữa các tín hiệu và việc chuyển chúng. Đặc tính này phải được đáp ứng trong việc truyền tín hiệu dạng sóng như tiếng nói. Mạng chuyển mạch gói bao gồm các thiết bị đầu cuối, thiết bị mạch dữ liệu, các chuyển mạch địa phương, bộ tập trung địa phương và máy phát lại. Các nguyên tắc hoạt động của mạng lưới này được minh hoạ trong hình 2.18. Các tín hiệu số từ thuê bao đầu cuối được mẫu hoá tuỳ theo tốc độ của đồng hồ nhận được từ DCE và sau đó gửi đến đường dây thuê bao. Bộ tập trung địa phương ghép các tín hiệu này cùng với các tín hiệu được gửi đến từ các mạch thuê bao khác và sau đó truyền chúng đến hệ thống chuyển mạch. Hệ thống chuyển mạch thực hiện việc chuyển mạch những tín hiệu này và sau đó truyền chúng đến thuê bao muốn gọi theo trình tự ngược lại. Các đường dây thông tin sử dụng trong mạng chuyển mạch gói là loại 4 dây, có thể thực hiện phương pháp trao đổi thông tin đối ngẫu toàn bộ, tuy nhiên thuê bao đầu cuối kia cũng có khả nǎng thực hiện phương pháp thông tin nửa đối ngẫu. Các dịch vụ được đưa vào hoạt động trong mạng chuyển mạch gói bao gồm các đường dây thuê bao thông thường cho các cuộc gọi đi và đến, dịch vụ chuyên dụng gọi và nhận, dịch vụ kết nối, dịch vụ gọi trực tiếp để bắt đầu các cuộc gọi mà không cần quay số, dịch vụ nhận dạng trạm đầu cuối và dịch vụ gọi tắt. Hình 2.18. Nguyên tắc hoạt động của mạng chuyển mạch tuyến. B. Thiết lập mạng lưới
  47. 1) Khái niệm về thiết lập mạng lưới Mạng dữ liệu chuyển mạch tuyến như trong trong hình 2.19 bao gồm phân cấp chuyển ở mức thấp, phần từ một trạm đầu cuối đến LS (chuyển mạch địa phương) được sử dụng để thu nhập và ghép kênh các dữ liệu để chuyển mạch và một phân cấp ở mức cao để thực hiện chức nǎng chuyển mạch. Thông thường ở phân cấp mức thấp của mạng lưới điện thoại, các bộ phận tập trung địa phương chỉ được lắp đặt trong các trạm chuyển mạch có trang bị các hệ thống đài. Trái lại, ở trong mạng chuyển mạch gói các bộ tập trung địa phương mà được đặt rải rác, ở các xa hệ thống chuyển mạch, tập trung lưu lượng gọi về một nơi mà hệ thống tổng đài được lắp đặt. Tín hiệu số đã được tập trung và được ghép kênh như nói ở trên được chuyển mạch tại hệ thống chuyển mạch phân chia thời gian và sau đó chuyển tới thuê bao đầu cuối bị gọi. Hình 2.19. Phân cấp mạng chuyển mạch Trong phân cấp bộ tập trung địa phương, những tín hiệu cần thiết cho hệ thống chuyển mạch được chuyển đổ thành các dữ liệu dồn kênh / tách kênh từ trạm đầu cuối. Các thuê bao được nối với các hộ tập trung địa phương hoặc trực tiếp với các trạm địa phương LS. Trên tuyến truyền dẫn giữa người thuê bao và hệ thống chuyển mạch, có những mạch thuê bao, bộ phận phục hồi giữa các tổng đài và
  48. mạch đặc nhiệm. Ngoài ra bộ phận phản hồi không bao gồm trong mạch thuê bao của mạng điện thoại trong khi đối với trường hợp mạng tuyến, bộ phận phản hồi bao gồm trong bộ phận mạch thuê bao. 2. Các thiết bị mạng 1) Phương pháp Rơ- le Phương pháp rơ - le trong phương pháp chuyển mạch tuyến được minh hoạ trong hình 2.20. Thiết bị dùng trong mạng chuyển mạch gồm những thiết bị điều khiển thuê bao, thiết bị truyền dữ liệu tốc độ cao, các bộ tập trung địa phương và một hệ thống chuyển mạch phân chia thời gian. Các thiết bị điều khiển thuê bao là các thiết bị đặt ở khu vực từ trạm đầu cuối đến bộ tập trung địa phương. Các thiết bị này bao gồm những khối dịch vụ dữ liệu, bộ dồn kênh 0, dồn kênh 1 và một khối điều khiển mạng (NCU). Bộ dồn kênh 0 chuyển các tốc độ dịch vụ khác nhau của người sử dụng sang 64 Kbps và Bộ dồn kênh 1 lại chuyển các tín hiệu của nhóm 0 từ 64 Kbps sang 1,544 Mbps trước khi truyền chúng đi. Thiết bị truyền dữ liệu tốc độ cao là một đường 1,544 Mbps để nối từ bộ tập trung địa phương đến hệ thống chuyển mạch phân chia thời gian. Nó bao gồm một thiết bị đồng bộ khung, thiết bị đồng bộ dòng tập trung, thiết bị cung cấp tín hiệu đồng hồ số, và bộ dồn kênh 1. Giữa thiết bị đồng bộ dòng tập trung của bộ tập trung địa phương và thiết bị đồng bộ khung của hệ thống chuyển mạch phân chia thời gian, thông tin và đồng bộ cần thiết cho việc nhận dạng kênh được trao đổi trong khi báo hiệu về truyền dẫn dữ liệu cao tốc. Bộ dồn kênh 1, trong trường hợp là bộ phận của thuê bao, ghép tốc độ nhóm 0 từ 64 Kbps thành nhóm sơ cấp 1,544 Mbps hoặc ngược lại. Đồng hồ đồng bộ cần để kích hoạt thiết bị này nhận được từ thiết bị cung cấp tín hiệu đồng hồ số. Bộ tập trung địa phương thu nhập những tín hiệu dữ liệu được ghép thành nhóm 0 với 64 Kbps từ những trạm đầu cuối khác nhau và ghép chúng thành nhóm sơ cấp 1,544 Mbps. Ngoài ra, nó cũng phát hiện nguồn chủ gọi và ngắt mạch theo yêu cầu của từng trạm đầu cuối.
  49. Hình 2.20. Phương pháp rơ-le của mạng chuyển mạch tuyến 2) Hệ thống chuyển mạch phân chia thời gian Hệ thống chuyển mạch phân chia thời gian, như đã bàn tới trước đây, bao gồm một thiết bị đường thoại phân chia thời gian, thiết bị xử lý trung tâm và thiết bị vào ra. Thiết bị xử lý trung tâm là một thiết bị điều khiển, một trong những thiết bị quan trọng nhất của hệ thống chuyển mạch. Thiết bị vào/ra chuyển và nhận thông tin để xử lý chuyển mạch giữa các thiết bị xử lý trung tâm và kết quả của nó đến và đi từ bảo dưỡng và sửa chữa. Nó gồm một thiết bị đĩa từ, thiết bị bǎng từ, thiết bị hiển thị và máy in dòng. Thiết bị gọi phân chia thời gian là một thiết bị trong đó chuyển mạch phân chia thời gian được thực hiện, thiết lập một đường gọi bằng cách biến đổi các khe thời gian trên đường truyền ghép kênh phân chia thời gian của nhóm sơ cấp, dưới sự điều khiển của CPU.
  50. Hình 2.21. Nguyên tắc hệ thống chuyển mạch số phân chia thời gian Trong hình 2.21 minh hoạ hệ thống chuyển mạch số phân chia thời gian gồm các chuyển mạch thời gian và không gian. Như hình vẽ, có 2 đường vào và mỗi đường được ghép với 3 kênh, và 2 đường ra mỗi đường được ghép với 3 kênh. Đường vào/ra đã được ghép kênh được gọi là xa lộ (Đường truyền tốc độ cao - highway). Chuyển mạch thời gian thực hiện chức nǎng thay đổi trật tự thời gian của các khe thời gian trên highway, còn chuyển mạch không gian bố trí các cổng theo cách đặc biệt và thay đổi các kênh highway với nhau để kết nối. Khi định kết nối cuộc gọi X vào kênh thứ nhất của đường ra 1 với đường ra 1, thứ tự kênh của X phải thay đổi vì kênh thứ nhất của đường ra 1 đã bị A chiếm. Như vậy việc biến đổi khe thời gian được thực hiện ở chuyển mạch thời gian và do đó X của kênh thứ nhất bị chuyển sang kênh thứ 2. Sau đó, cuộc gọi X được nối vào kênh thứ 2 của đường ra 1 khi cổng phân chia thời gian G22 được mở/đóng trong pha thứ 2 của xung P2. Việc kết nối được thực hiện trên cơ sở các thủ tục trên. Trong hệ thống chuyển mạch phân chia thời gian, những tín hiệu đã được ghép kênh được chuyển mạch và được đưa đến những tuyến dồn kênh theo hướng mong muốn mà không phải qua quá trình mã hoá và giải mã. 2.5.4 Mạng dữ liệu chuyển mạch gói A. Lịch sử phát triển Công nghệ chuyển mạch gói do lực lượng không quân Mỹ sáng tạo dựa theo đề nghị của Paul Baran nǎm 1961 để đáp ứng nhu cầu lập một hệ thống truyền thông có độ tin cậy cao. Không quân Mỹ đã khởi đầu việc nghiên cứu công nghệ này nhằm có được hệ thống truyền tin cậy có thể chống lại sự tấn công bất ngờ của kẻ địch. Kết quả của cuộc nghiên cứu như sau: (1) Mạng truyền tin phân tán (2) Dữ liệu lưu trữ trong các khối (gói) (3) Cần phải có chuyển mạch lưu trữ Cǎn cứ vào những kết quả nghiên cứu này, Bộ Quốc phòng Mỹ đã ký một hợp đồng phát triển với công ty BBN (Bolt Beranek and Newman) và trong nǎm 1969, công ty này đã sáng chế thành công mạng ARPA (Các công trình nghiên cứu tiên
  51. tiến). Để truyền tin, mạng ARPA gắn với hệ thống chuyển mạch IMP (bộ xử lý thông báo giao tiếp) và nối với các trung tâm máy tính lớn của Đại học Illinois, U.S.C., và các nơi khác qua một mạng 50 Kbps nối giữa các hệ thống chuyển mạch. Trên cơ sở thành công của mạng PRPA và công nghệ chuyển mạch gói, nhiều nước đã khởi xướng nghiên cứu về mạng dữ liệu chuyển mạch gói và dựa trên kiến nghị chuẩn X.25 cần cho việc tiêu chuẩn hoá việc giao tiếp giữa mạng chuyển mạch gói công cộng và trạm đầu cuối của ITU - T, phát triển thành công và đưa vào sử dụng các dịch vụ khoảng nǎm 1975. Những ví dụ điển hình là TYMENET của Hoa Kỳ, GTE TELENET dịch vụ thương mại của mạng ARPA, DATAPAC của Canada, TRANSPAC của Pháp, PSS của Anh, DATEX-P của Đức, DDX-P của Nhật, và DACOMNET của Hàn Quốc. 2) Những nguyên tắc: Mạng dữ liệu chuyển mạch gói chỉ sử dụng những ưu điểm của chuyển mạch tuyến và mạng dữ liệu chuyển thông báo; dữ liệu truyền dẫn được chia thành các đơn vị truyền dẫn có kích thước nhất định gọi là gói (128 bytes hoặc 256 bytes) trước khi đưa vào mạng chuyển mạch gói (từ đây gọi là "mạng gói"). Mạng gói chuyển mạch các đơn vị gói và rồi chuyển tới trạm đầu cuối nhận gói. Những nguyên tắc này được minh hoạ trong hình 2.22. Dữ liệu do người sử dụng gửi đi được chia thành những đơn vị gói và sau đó chuyển theo trình tự và mạng gói. Do đó, thông tin ngắn được đưa vào một gói, trong khi thông tin dài chỉ được gửi đi sau khi bị chia thành nhiều gói. Trong mỗi gói có địa chỉ của trạm đầu cuối gọi là ID của trạm. Các gói chuyển đi từ trạm chủ gọi được tạm thời giữ trong hệ thống chuyển mạch gói. Hệ thống chuyển mạch gói, dựa theo địa chỉ của trạm đầu cuối ghi trong gói nhận, lựa chọn con đường tốt nhất tới địa chỉ đã cho và rồi chuyển nó vào hệ thống chuyển mạch tiếp theo. Hệ thống chuyển mạch ở địa chỉ đến nhận lấy và phân phối cho các trạm đầu cuối tương ứng và như vậy truyền toàn bộ thông tin của một gói. Các thủ tục (Protocol) truyền tin như lập đường truyền dẫn, xoá bỏ những lỗi trong truyền dẫn và gói lại những thông báo truyền dẫn được thực hiện khi trao đổi dữ liệu giữa trạm đầu cuối và hệ thống chuyển mạch và giữa các hệ thống chuyển mạch với nhau. Các trạm đầu cuối để trao đổi gói lại được phân loại thành trạm đầu cuối chế độ gói và trạm đầu cuối chế độ không gói tuỳ theo chế độ trao đổi thông tin, nghĩa là có dùng các thủ tục hay không. Khác với các mạng
  52. truyền dẫn thông suốt như điện thoại hiện nay hay các mạng chuyển mạch, chế độ chuyển mạch gói trì hoãn việc truyền dẫn vì nó thực hiện truyền dẫn lưu trữ trong mạch và hoạt động dựa theo các thủ tục truyền tin. Tuy nhiên, do những lý do trên, những trạm đầu cuối chạy theo những tốc độ khác nhau và các mã sử dụng có thể trao đổi với nhau để có thể cung cấp nhiều dịch vụ hơn, có khả nǎng mở rộng và chất lượng truyền tin cao. Ngoài ra, nó khác với các mạng điện thoại hiện có là hệ thống ghi hoá đơn của nó có thể tính cước các cuộc gọi theo tỷ lệ khối lượng thông tin được truyền dẫn. Hình 2.22. Nguyên tắc chuyển mạch gói 3) Đặc điểm Đây là một mạng truyền tin rất tin cậy có thể chọn đường bình thường khác bằng đơn vị gói để có thể gọi thay thế ngay cả khi hệ thống chuyển mạch và mạch của mạng gói có lỗi vì đã có địa chỉ của đối tác trong gói được truyền đi. (1) Độ tin cậy cao Đây là một mạng truyền tin rất tin cậy có thể chọn đường bình thường khác bằng đơn vị gói, có thể gọi thay thế ngay cả khi hệ thống chuyển mạch và mạch của mạng gói có lỗi vì đã có địa chỉ của đối tác trong gói được truyền đi. (2) Chất lượng cao
  53. Vì chuyển mạch gói hoạt động theo chế độ truyền dẫn số biểu hiện bằng 0 và 1, chất lượng truyền dẫn của nó là tuyệt hảo. Nó cũng có thể thực hiện truyền dẫn chất lượng cao bằng cách kiểm tra xem có lỗi không trong khi truyền dẫn gói giữa các hệ thống chuyển mạch và giữa thuê bao với mạng. (3) Kinh tế Hệ thống chuyển mạch gói dùng các đường truyền tin tốc độ cao để nối với các hệ thống chuyển mạch nằm trong mạng nhằm ghép kênh các gói của các thuê bao khác nhau để tǎng tính kinh tế và hiệu quả truyền dẫn của các đường truyền dẫn. (4) Tiến trình chuyển mạch Do hệ thống chuyển mạch gói, để chuyển mạch, phải sử dụng chế độ chuyển mạch lưu trữ để đưa dữ liệu vào bộ nhớ trong hệ thống chuyển mạch bằng đơn vị gói, những tiến trình này có thể thực hiện dễ dàng trong hệ thống chuyển mạch và có thể phát triển một phạm vi dịch vụ rộng lớn. Ngoài ra, hệ thống này có thể thay đổi tốc độ truyền tin của từng thuê bao, chuyển đổi mã thuê bao và thủ tục truyền và nhận theo trình tự điều khiển truyền dẫn thuê bao. Nghĩa là, hệ thống này cho phép thuê bao đǎng ký ở những dạng hệ thống chuyển mạch khác nhau hoạt động với các tốc độ và chế độ thủ tục khác nhau để liên lạc với nhau. (5) Các dịch vụ bổ sung Hệ thống chuyển mạch gói có thể cung cấp những dịch vụ bổ sung như trao đổi thông báo, thư điện tử và dịch vụ khép kín khi các gói được lưu trữ trong hệ thống chuyển mạch. Hơn nữa, một dịch vụ lựa chọn nhanh chóng đưa dữ liệu vào các gói yêu cầu cuộc thoại của thuê bao chủ gọi, quay số tắt và các dịch vụ thay thế tiếp viên có thể được thực hiện. B. Thiết lập mạng 1) Khái niệm về thiết lập mạng Mạng chuyển mạch gói như chỉ rõ trong hình 2.23, gồm một hệ thống chuyển mạch cấp cao để nối những hệ thống chuyển mạch và một hệ thống tập trung cấp cao từ
  54. các trạm đầu cuối tới các hệ thống chuyển mạch. Hệ thống tập trung cấp thấp gồm có một PMX và các trạm đầu cuối. Thiết bị ghép kênh gói phục vụ các trạm đầu cuối loại chung và loại gói. Đó là một thiết bị dùng để tập hợp dữ liệu từ các trạm đầu cuối loại chung ở dạng gói, lưu trữ tạm thời dữ liệu từ các trạm đầu cuối loại gói trong thiết bị và sau đó ghép kênh/tách kênh những gói đó trước khi gửi chúng đi các hệ thống chuyển mạch. Những thiết bị ghép kênh gói này được thiết lập dưới dạng hình sao trong hệ thống chuyển mạch gói như sau: Hình 2.23. Phân cấp mạng chuyển mạch gói 2) Các phương tiện dùng cho mạng chuyển mạch gói (1) Chế độ rơ-le Chế độ rơ-le của hệ thống chuyển mạch gói được chỉ rõ trong hình 2.24. Trạm chuyển mạch gói gồm những hệ thống chuyển mạch gói, thiết bị ghép kênh gói và những thiết bị đo thử để điều khiển. Thiết bị ghép kênh gói dùng để lưu trữ tạm thời thông báo nhận được từ những trạm đầu cuối loại chung vận hành theo chế độ đồng bộ và rồi biến đổi sang dạng gói. Những gói này được ghép kênh trước khi truyền cho những hệ thống chuyển mạch gói. Các thiết bị đầu cuối có thể được dùng trong hệ thống chuyển mạch gói được tiếp tục phân loại thành các thiết bị đầu cuối loại gói và những thiết bị đầu cuối loại chung. Thiết bị đầu cuối loại gói là những thiết bị hoạt động trên cơ sở
  55. chuẩn X.25 theo khuyến nghị của ITU-T. Các thiết bị đầu cuối khác có thể phân loại theo tốc độ vận hành và phương pháp đồng bộ được gọi là các thiết bị đầu cuối loại chung. Chúng được phân loại giống như mạng chuyển mạch tuyến. Đường truyền dẫn giữa thiết bị ghép kênh gói và hệ thống chuyển mạch cũng giống như đường truyền dẫn của mạng chuyển mạch tuyến. (2) Hệ thống chuyển mạch gói Hệ thống chuyển mạch gói có thể được phân loại thêm thành một hệ thống xử lý trung tâm và điều khiển tín hiệu cao tốc. Hệ thống xử lý trung tâm điều khiển thiết bị điều khiển báo hiệu cao tốc và thiết bị vào/ra thông qua việc sử dụng phương pháp điều khiển bằng chương trình ghi sẵn. Nó cũng đưa ra những thông tin cần thiết qua đĩa từ hoặc máy in dòng cũng như phân tích thông tin trong hệ thống chuyển mạch gói và rồi truyền những mệnh lệnh chi tiết tới từng thiết bị theo kết quả thu được. Thiết bị điều khiển báo hiệu cao tốc nhận một gói đã được ghép kênh từ thiết bị ghép kênh gói và trao đổi những tín hiệu giữa các hệ thống chuyển mạch gói. Nó truyền/nhận thông tin để truyền dữ liệu một cách chính xác, kiểm tra các dạng thông tin liên quan tới các thiết bị và các lỗi. Ngoài ra nó còn có thể yêu cầu truyền lại khi có lỗi. (3) Mạng chuyển mạch gói Mạng chuyển mạch dữ liệu gói thường có những chức nǎng sau: (A) Điều khiển việc định tuyến Trong trường hợp một mạng gói với 4 hệ thống chuyển mạch gói như trong hình 2.25, thuê báo số 1 được gắn với một thuê bao duy nhất khi nó được đǎng ký trong mạng.
  56. Hình 2.24. Phương pháp phục hồi mạng chuyển mạch gói Khi thuê bao 1 muốn truyền các gói cho thuê bao 2, thuê bao 1 đặt một bộ nhận dạng (số của thuê bao khác/số của kênh logic) để xác định nơi đến của gói đó ghi vào trong gói và rồi gửi nó vào hệ thống chuyển mạch A. Hệ thống chuyển mạch gói A xác định một hệ thống chuyển mạch mà nó phải gửi gói đã nhận đó đến. Tiến trình này gọi là điều khiển định tuyến. Như chỉ rõ trong hình 2.25, gói của bao 1 có thể gửi đi tới bất kỳ một con đường nào trong số b, c và d. Tuy vậy hướng d cần phải được chọn để bảo đảm khoảng cách ngắn nhất và hiệu quả cao nhất. Nếu hướng d bị trục trặc hoặc lưu lượng quá lớn, gói đó cần được gửi theo b và c. Thực tế, hệ thống chuyển mạch hoạt động trên cơ sở một bảng lộ trình; nội dung của bảng này có thể thay đổi khi cần tuỳ theo tình trạng của hệ thống chuyển mạch kế cận và sự lưu thông của mạng. Bảng này cần phải được soạn thảo và sử dụng theo những nguyên tắc định sẵn như là thuật toán định tuyến cố định.
  57. Hình 2.25. Ví dụ về mạng chuyển mạch gói B) Kênh logic Trong việc truyền dữ liệu, quá trình truyền tin giữa 2 thuê bao không được thực hiện một cách tự động ngay cả khi đường thông tin đã được kết nối bằng điện. Trong trường hợp một cuộc gọi điện thoại, chỉ có một đường liên lạc được nối khi phía được gọi trả lời điện thoại. Như vậy chỉ có kênh vật lý là được thiết lập. Loại kênh này gọi là kênh logic. Trong mạng gói, kênh logic này được phân loại thành cuộc gọi ảo, cuộc gọi ảo vĩnh viễn và dữ liệu biểu tuỳ theo loại của chúng. Cuộc gọi ảo Khi một đường thoại được thiết lập trên mạng điện thoại, kênh đó được dùng cho đến khi gọi xong. Điều này cũng giống như trường hợp cuộc gọi ảo của mạng gói. Như trình bày trong hình 2.26, khi một thuê bao chủ bắt đầu gọi thuê bao này gửi một gói yêu cầu gọi bao gồm số điện thoại của đối tác và số kênh logic thuê bao sẽ dùng trên mạng.
  58. Hình 2.26. Thủ tục truyền tin gói Khi nhận được gói này, mạng gửi đi gói gọi đầu vào trong đó có kênh logic mà thuê bao đầu cuối sử dụng đến cho thuê bao số 2. Nếu thuê bao số 2 dạng ở trong trạng thái có thể nhận được cuộc gọi, nó gửi gói thông tin chấp nhận gọi cho mạng. Mạng gửi gói thông tin nhận được cho thuê bao số 1 như là một gói kết nối cuộc gọi và như vậy lập được đường liên lạc logic giữa thuê bao 1 và 2. Sau đó việc truyền gói dữ liệu được thực hiện qua kênh logic lúc đó đã được thiết lập. Một cuộc gọi ảo đã được thiết lập thông qua các thủ tục trên. Một gói yêu cầu xoá được gửi đi khi chấm dứt liên lạc và kênh logic này được giải phóng qua việc dùng một gói chỉ thị xoá và gói xác nhận xoá. Cũng như trong trường hợp gọi điện thoại, cuộc gọi ảo là cuộc gọi thiết lập ra một mạch logic cho trao đổi dữ liệu và sau đó gửi dữ liệu chỉ qua kênh đó và cuối cùng xoá kênh đi khi hoàn tất liên lạc. Gọi ảo vĩnh viễn Gọi ảo vĩnh viễn là phương pháp thiết lập đường liên lạc logic vĩnh viễn giữa 2 thuê bao và do đó không cần phải thiết lập hoặc xoá kênh logic như trong trường hợp gọi ảo.