Bài giảng Chuyển mạch gói nhanh (Fast Packet Switching)

pdf 41 trang phuongnguyen 4250
Bạn đang xem 20 trang mẫu của tài liệu "Bài giảng Chuyển mạch gói nhanh (Fast Packet Switching)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pdfbai_giang_chuyen_mach_goi_nhanh_fast_packet_switching.pdf

Nội dung text: Bài giảng Chuyển mạch gói nhanh (Fast Packet Switching)

  1. CHUYỂN MẠCH GÓI NHANH (Fast Packet Switching) 1
  2. Nội dung ! Tổng quan. ! Frame Relay. ! ATM. Switching Engineering Page 2
  3. Tổng quan ! Sự bùng nổ thông tin cùng với sự phát triển của xã hội " Yêu cầu các dịch vụ thời gian thực và đa môi trường. ! Nhiều phương án được đề xuất để xây dựng cơ sở hạ tầng thông tin viễn thông để phát triển. ! Xu thế chung là dựa trên các mạng thông tin băng rộng tích hợp IBCN (Integrated Broadband Communication Network). ! Quá trình tiến tới IBCN theo 3 con đường chính: ! Thoại - ISDN - BISDN – IBCN. ! Data – FR – ATM – IBCN. ! IP – MPLS – IBCN. ! Mạng X.25 hoạt động với thông lượng 64kbps, không đáp ứng được nhu cầu sử dụng dịch vụ đa môi trường. Switching Engineering Page 3
  4. Tổng quan ! Kỹ thuật chuyển mạch gói nhanh FPS tăng tốc độ chuyển mạch tại nút mạng, hai kỹ thuật cơ bản: Frame Relay và Cell Relay. ! FR : đơn vị dữ liệu kích thước thay đổi - khung (frame). Tốc độ >64kbps nhưng <34Mbps. Đáp ứng nhu cầu thuê kênh riêng và mạng riêng ảo. ! CR : đơn vị dữ liệu kích thước cố định - tế bào (cell). Tốc độ hàng trăm Mbps. Đáp ứng nhu cầu multimedia và realtime. Tốc độ bit cố định Tốc độ bit thay đổi ISDN (H.261, px64kbps/channel Circuit Multirate Circuit Cell Relay Frame Relay Packet Switching Switching ATM Switching Hình 5-1 Các kỹ thuật chuyển mạch Switching Engineering Page 4
  5. FRAME RELAY ! Giới thiệu ! Cấu hình chung mạng Frame Relay. ! Hoạt động. ! Cấu trúc khung Frame Relay. ! Frame Relay và mô hình OSI. ! Giao diện quản lý nội hạt LMI. Switching Engineering Page 5
  6. Giới thiệu ! X.25: ! Kiểm soát lỗi và kiểm soát luồng để đảm bảo việc truyền tin không lỗi. ! Chuyển mạch ở lớp 2, định tuyến, ghép kênh logic ở lớp 3. ! Nhược điểm: tăng độ phức tạp, tốc độ thấp. ! Frame Relay: ! ITU-T (CCITT) đề xuất và cũng được ANSI (Mỹ) công nhận năm 1984. ! Mục tiêu: ! Tạo giao diện chuẩn để kết nối thiết bị giữa user và network. ! Chức năng ghép kênh, định tuyến đều thực hiện ở lớp 2, đơn giản hoá chức năng định tuyến cho các frame. ! " Thông lượng cao hơn X.25. ! Giảm thiểu 1 số chức năng ở lớp 2 như điều khiển luồng, kiểm soát lỗi nhằm giảm độ trễ trong mạng. Switching Engineering Page 6
  7. Giới thiệu ! Kiểm soát lỗi trong truyền số liệu ACK NAK Point-to-point End-to-End Hình 5-2 Kiểm soát lỗi Point-to-point End-to-End Khi user gởi gói tin vào mạng thì Mạng thực hiện chuyển gói tin đến mạng sẽ trao đổi thông tin kiểm đích nhưng nếu có lỗi thì đầu cuối soát lỗi qua từng chặng để đảm yêu cầu truyền lại. bảo gói tin truyền đến đích là không có lỗi. Độ trễ truyền dẫn lớn. Độ trễ truyền dẫn bé. Switching Engineering Page 7
  8. Giới thiệu ! Thông lượng là dung lượng thật sự có thể truyền được tối đa của một kênh trong một đơn vị thời gian. ! FR kết hợp các ưu điểm của việc dùng chung thiết bị của X.25 và thông lượng cao của TDM. Bảng 5-1 So sánh TDM, X.25, Frame-relay Công nghệ Tốc độ Độ trễ Thông lượng STDM X.25 Thay đổi Lớn thấp Có TDM Cố định Rất nhỏ Cao Không Frame-Relay Thay đổi Nhỏ Cao Có STDM (Statistic Time Division Multiplexing): Ghép kênh thống kê theo thời gian Switching Engineering Page 8
  9. Giới thiệu ! Ưu điểm của Frame-Relay: ! Thời gian thực hiện nhanh. ! Băng thông rộng: từ 2Mbps đến 34Mbps. ! Tận dụng tối đa hiệu suất băng thông, khi lượng thông tin cần truyền lớn thì FR có thể phân phối băng thông lớn cho user, trong trường hợp bình thường thì chỉ phân phối 1 lượng băng thông nhỏ, 64kbps đến 256kbps là đủ. ! Dùng chung giao diện. ! Tiết kiệm giá thành trong mạng diện rộng Switching Engineering Page 9
  10. Cấu hình chung mạng FR !Các thành phần mạng Frame Relay: ! Thiết bị FRAD có thể là các LAN bridge, LAN Router v.v ! Thiết bị FRND có thể là các tổng đài chuyển mạch khung (Frame) hay tổng đài chuyển mạch tế bào. ! Đường kết nối giữa các thiết bị là giao diện chung cho FRAD và FRND, giao thức người dùng và mạng hay gọi F.R UNI (Frame Relay User Network Interface). Hình 5-3 Mạng Frame Relay Switching Engineering Page 10
  11. Hoạt động ! Khi người sử dụng gửi một Frame mang thông tin địa chỉ đích và thông tin người sử dụng, mạng sẽ dùng thông tin này để định tuyến trên mạng. ! Việc định tuyến được thực hiện bởi FRND và định khung FR theo giao thức LAP-D hoặc LAP-F (Link Access Protocol D hay F). ! Công nghệ Frame Relay cho phép người sử dụng dùng tốc độ cao hơn mức họ đng ký trong một khoảng thời gian nhất định, có nghĩa là Frame Relay không cố định bng thông (Bandwith) cho từng cuộc gọi một mà phân phối bandwith một cách linh hoạt điều mà X25 và thuê kênh riêng không có. ! Ví dụ: hợp đồng sử dụng với tốc độ 64 kbps, nhưng khi chuyển một lượng thông tin lớn, Frame Relay cho phép truyền chúng ở tốc độ cao hơn. Hiện tượng này được gọi là "bùng nổ" - Bursting. Switching Engineering Page 11
  12. Hoạt động ! Truyền Frame: ! Để đảm bảo việc truyền các frame đúng địa chỉ, chính xác, nhanh, đủ, FR sử dụng các trường sau: ! 1, DLCI (Data Link Connection Identifier) Trên nối kết vật lý có thể có rất nhiều các nối kết ảo, mỗi một nối kết ảo có định danh riêng để tránh bị lẫn, được gọi tắt là DLCI. ! 2, CIR ( Committed Information Rate ) Đây là tốc độ khách hàng thoả thuận với nhà cung cấp dịch vụ và mạng lưới phải cam kết thường xuyên đạt được tốc độ này. ! 3, CBIR ( Committed Burst Information Rate ) Khi có lượng tin truyền quá lớn, FR vẫn cho phép khách hàng truyền quá tốc độ cam kết CIR tại tốc độ CBIR trong một khoảng thời gian (Tc) rất ngắn vài ba giây một đợt, điều này tuỳ thuộc vào độ "nghẽn" của mạng cũng như CIR. ! 4, DE bit ( Discard Eligibility Bit ) Bit này được lập khi truyền vượt qua CIR và những frame có DE=1 thì sẽ ưu tiên loại khi nghẽn. Lúc đó đầu cuối phải phát lại Switching Engineering Page 12
  13. Hoạt động ! Kiểm soát nghẽn: ! FECN và BECN (Forward Explicit Congestion Notification và Backward Explicit Congestion Notification) Hình 5-4 FECN và BECN Switching Engineering Page 13
  14. Hoạt động ! Kiểm soát nghẽn: ! LMI (Local Management Interface) ! Thông báo trạng thái (bổ sung, giải phóng, hiệu chỉnh kênh ảo ) cho thiết bị đầu cuối, điều khiển và giám sát giao tiếp và trạng thái thuê bao (hoạt động giữa FRAD và FRND). Hình 5-5 Giao tiếp quản lý nội hạt Switching Engineering Page 14
  15. Cấu trúc khung của FR F A I FCS F Hình 5-6 Cấu trúc khung của Frame Relay ! Flag: ! Khởi đầu và k thúc một khung. ! Giá trị 01111110 (7EH). ! Khi thông tin giống cờ (>5 bit 1 liên tiếp) thì chèn thêm bit 0 vào vị trí bit 1 thứ sáu. Switching Engineering Page 15
  16. Cấu trúc khung của FR ! Address: ! Gồm 2 hoặc nhiều hơn 2 bytes. ! Bit EA: Extended Address. Được sử dụng để mở rộng trường địa chỉ (3 bytes). Bình thường, EA1=0, EA2=1. Khi mở rộng 3 bytes thì EA1=0, EA2=0, EA3=1. DLCI (6bits) C/R EA1 DLCI (4bits) FECN BECN DE EA2 DLCI (6bits) C/R EA1 DLCI (4bits) FECN BECN DE EA2 DLCI (7 bits) EA3 Hình 5-7 Trường địa chỉ 2 bytes và 3 bytes Switching Engineering Page 16
  17. Cấu trúc khung của FR ! Bit C/R: Command/Respond (lệnh/đáp ứng). ! Bit này tương tự như thủ tục X25 dùng để hỏi và đáp, nhưng mạng Frame Relay không dùng mà chỉ dành cho các thiết bị đầu cuối (FRAD) sử dụng mỗi khi cần trao đổi thông tin cho nhau, Bit C/R do FRAD đặt giá trị và được giữ nguyên khi truyền qua mạng. ! DLCI: Định danh nối kết ảo, ! Trong trường hợp mở rộng trừờng địa chỉ thì DLCI định danh tối đa 217 địa chỉ, còn bình thường thì định danh cho 1024 địa chỉ. ! Tương tự, DLCI có thể mở rộng thành 4 bytes địa chỉ khi ta thêm 1 byte địa chỉ nữa với EA1=0, EA2=0, EA3=0, EA4=1. ! Bit DE: Discard Bit. ! Đánh dấu các frame được chuyển với tốc độ vượt CIR, những frame này có thể bị loại bỏ nếu mạng nghẽn. Bình thường DE=0. Switching Engineering Page 17
  18. Cấu trúc khung của FR Tc Discard Quá mức Be Có thể được Khách hàng Bc đăng ký (CIR) Frame1 Frame2 Frame3 Frame4 DE=0 DE=1 DE=2 Discard Hình 5-8 Minh hoạ bit DE (bỏ) Bc: (Committed Burst Size): Là số lượng dữ liệu data tối đa mạng lưới chấp nhận truyền đi trong các khoảng thời gian Tc . Tc: (Committed Rate Measurement Interval): Tc = Bc/CIR là khoảng thời gian mà FRAD cho phép gửi Bc và thậm chí cả Be. Be: (Exess Burst Size): Là số lượng dữ liệu data tối đa mà mạng không đảm bảo truyền tốt nhưng vẫn truyền thử xem. Switching Engineering Page 18
  19. Cấu trúc khung của FR ! Các bit FECN và BECN Bảng 5-2 FECN và BECN Hướng đi FECN BECN Ghi chú A đến B 0 0 Không nghẽn 1 B đến A 0 0 Không nghẽn A đến B 1 0 Nghẽn 2 B đến A 0 1 Không nghẽn A đến B 0 1 Không nghẽn 3 B đến A 1 0 Nghẽn A đến B 1 1 Nghẽn 4 B đến A 1 1 Nghẽn Switching Engineering Page 19
  20. Cấu trúc khung của FR ! Trường thông tin I: ! Độ dài thay đổi. LAP-F độ dài 4096 tương ứng ISDN, đối với ứng dụng phi ISDN thì độ dài là 8196 hoặc hơn nữa. ! Gồm thông tin dữ liệu của người dùng (Application Data hay User Data ) và thông tin về giao thức từng lớp sử dụng PCI (Protocol Control Information) để thông báo cho lớp tương ứng của bên nhận biết. Information User Data PCI layer1 PCI layer2 PCI layer3 PCI: Protocol Control Information Hình 5-9 Trường thông tin Switching Engineering Page 20
  21. Cấu trúc khung của FR ! Hai bytes FCS: ! Kiểm tra CRC cho khung. 16 12 5 ! Đa thức x +x +x +1 (CCITT). ! Bao hàm thứ tự frame, được FRAD sử dụng để kiểm tra, nếu phát hiện lỗi thì sẽ huỷ khung đó và báo cho FRAD phát phát lại. Hình 5-10 Kiểm tra lỗi các khung gởi đi bằng FCS Switching Engineering Page 21
  22. Frame Relay và mô hình OSI Hình 5-11 FR và mô hình OSI ! Level 1. Lớp vật lý - physical layer. ! Lớp 1 của Frame relay cũng định nghĩa giao diện vật lý, điện lý dùng chung giữa FRAD và FRND, Frame relay dùng ở tốc độ cao nên vẫn hay dùng giao diện V35. Switching Engineering Page 22
  23. Frame Relay và mô hình OSI ! Level 2. Lớp tuyến - Link Layer. ! Lớp này định nghĩa thể lệ và thủ tục tuyến nối, được coi như LAP (Link Access Protocol). Frame Relay hiện tại đang dùng 2 loại LAP là: · LAP-D. Là giao thức cơ bản của lớp 2 của ISDN - D channel , nó cũng được dùng cho Frame relay để chuyển tải thông tin theo tiêu chuẩn CCITT I.441/Q821. · LAP-F. Giao thức của Frame relay cải tiến từ LAP-D do tiêu chuẩn Q922 định nghĩa và được sử dụng nhiều hơn (Cấu trúc khung nêu ở trên theo LAP-F). ! Lớp 2 của Frame Relay chia thành 2 lớp chức nng là Core Funtion và Upper Function, chức nng của lớp 2 cũng đảm bảo thủ tục kết nối LAP-F: Core function: Kiểm soát để các Frame không bị đúp hay mất, kiểm tra độ dài của một khung, phân tích lỗi truyền dẫn qua FCS, điều khiển nghẽn qua FENC/BECN. Upper function: Điều khiển DLCI (Data Link Connection Identification) định nghĩa đường nối Logic giữa FRAD và FRND. Switching Engineering Page 23
  24. Giao diện quản lý nội hạt LMI ! LMI (Local Management Interface) được sử dụng để điều khiển kết nối giữa user và mạng, thực hiện các nhiệm vụ sau: ! Đảm bảo nối kết giữa user và mạng luôn hoạt động. ! Thông báo sự thay đổi PVC. ! Phân phối bản tin về trạng thái và tính hiệu dụng của các kênh. ! LMI hoạt động như một thủ tục thăm dò giữa user và mạng. Bản tin thăm dò và bản tin xác nhận được truyền ở những khoảng thời gian xác định. Song song với nó là bản tin trạng thái cũng được truyền theo chu kỳ hoặc những khi có sự thay đổi trạng thái thì bản tin trạng thái cũng được gởi đi. ! LMI sử dụng DLCI 0 hoặc 1023 để chuyển các bản tin, nghĩa là LMI được xem như một kênh báo hiệu song song với kênh dữ liệu. Switching Engineering Page 24
  25. Asynchronous Transfer Mode ! Giới thiệu. ! Đặc điểm. ! Tế bào ATM. ! Cấu trúc phân lớp mạng ATM trong mô hình tham chiếu giao thức B-ISDN. Switching Engineering Page 25
  26. Giới thiệu ! Mục tiêu: Cung cấp một mạng ghép kênh và chuyển mạch tốc độ cao, độ trễ nhỏ, đáp ứng cho các dịch vụ đa phương tiện, thời gian thực. ! Sử dụng ghép kênh theo thời gian không đồng bộ ATDM (Asynchronous Time Division Multiplexer), trong đó, các bản tin được phân thành từng gói có kích thước cố định gọi là tế bào (cell). ! Các cell được gán cho một định danh của đường truyền (địa chỉ trong header của cell) và bất kể là dịch vụ nào thì các cell cũng có cùng kích thước và bao gồm header và payload. ! Mỗi cell được truyền đến đích theo địa chỉ của cell. Header Payload Hình 5-12 Cell ATM. Switching Engineering Page 26
  27. Đặc điểm ! Các cell có độ dài cố định và kích thước bé nên trễ nhỏ và xử lý đơn giản hơn. ! Sử dụng thiết bị truyền dẫn số tốc độ cao với khả năng kiểm soát lỗi, cho phép các bản tin ở mức tuyến đơn giản hơn. ! Sử dụng ATDM bằng việc ghép các luồng tín hiệu vào các khối có kích thước cố định gọi là cell ATM. ! Cho phép sử dụng băng thông động, nghĩa là nếu có nhiều kênh cần gởi dữ liệu thì lượng băng thông sử dụng lớn, ít kênh gởi thì lượng băng thông sử dụng nhỏ còn toàn bộ băng thông còn lại có thể được dùng cho các kênh khác muốn kết nối vào mạng. ! Không kiểm soát luồng hay sửa lỗi ở mức tuyến mà kiểm soát luồng được thực hiện trên cơ sở đầu cuối đến đầu cuối và phụ thuộc vào từng ứng dụng. Switching Engineering Page 27
  28. Tế bào ATM ! Tế bào ATM gồm 2 phần: ! Phần header: 5bytes mang thông tin về mạng và có sự khác bit gữa giao diện người dùng-mạng (UNI User Network Interface) và giao diện mạng-mạng (NNI Network Network Interface). ! Phần payload 48 bytes mang thông tin của người dùng được truyền tải qua mạng mà không bị xử lý. 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 1 GFC VPI VPI 2 2 VPI VCI VPI VCI 3 3 VCI VCI 4 4 VCI PT CLP VCI PT CLP 5 5 HEC HEC Header UNI Header NNI Hình 5-13 Cấu trúc header của tế bào ATM Switching Engineering Page 28
  29. Tế bào ATM ! Trường điều khiển luồng chung GFC (Generic Flow Control) gồm 4 bits, 2 bits dùng để điều khiển và 2 bits dùng cho tham số. GFC chỉ áp dụng đối với giao diện UNI, được sử dụng cho các kết nối điểm tới điểm và điểm tới nhiều điểm. ! Trường định tuyến VPI (Virtual Path Identifier), VCI (Virtual Circuit Identifier): Đối với giao diện UNI có 24 bits (8 bits VPI và 16 bits VCI) còn đối với giao diện NNI có 28 bits (12 bits VPI và 16 bits VCI). ! VCI gọi là định danh kênh ảo, mỗi giá trị VCI chỉ có ý nghĩa tại từng tuyến từ nút đến nút của mạng, khi sự trao đổi thông tin kết thúc thì các giá trị VCI được giải phóng để dùng cho các kết nối khác. ! VPI là định danh đường ảo, được sử dụng giống VCI để thiết lập kết nối VP cho một số kết nối kênh ảo. ! Tổ hợp VCI và VPI tạo thành một tổ hợp duy nhất cho mỗi nối kết. Switching Engineering Page 29
  30. Tế bào ATM !Kiểu tải trọng PT (Payload Type) có 3 bits được sử dụng để phân biệt các tế bào được truyền qua một kênh ảo cũng như phân biệt thông tin của mạng hay thông tin của người dùng. !Độ ưu tiên mất tế bào CLP (Cell Loss Priority) gồm 1 bit, được sử dụng để loại bỏ tế bào có CLP =1 khi mạng đang ở trình trạng tắc nghẽn. !Trường điều khiển lỗi tiêu đề HEC (Header Error Check) gồm 8 bits, HEC tạo ra phép tính CRC ở 4 byte đầu trong tiêu đề để phát hiện và sửa sai. Phần này chỉ sửa sai phần tiêu đề của tế bào chứ không sửa phần tải trọng. Switching Engineering Page 30
  31. Tế bào ATM Tế bào A Tế bào A Tế bào UA Tế bào UA Lớp ATM SAP Lớp Vật lý Tế bào V Tế bào I Tế bào IV SAP: Service Access Point Tế bào I Hình 5-14 Các kiểu tế bào ATM Switching Engineering Page 31
  32. Tế bào ATM !Tế bào rỗi I (Idle cell): Được sử dụng ở lớp vật lý để thích ứng tốc độ tế bào ATM với tốc độ truyền dẫn bằng cách sử dụng tiêu đề đã được định nghĩa trước. !Tế bào có hiệu lực V(Valid cell) là tế bào có HEC hợp lệ, không lỗi. !Tế bào không hiệu lực IV(Invalid cell) là tế bào có HEC bị sai, chúng sẽ bị loại ở lớp vật lý. !Tế bào được gán A(Assigned cell) mang thông tin có hiệu lực cho dịch vụ ở các lớp cao hơn có tiêu đề đúng. Chúng được tạo ra ở lớp ATM với tiêu đề thích hợp để thực hiện chức năng định hướng. !Tế bào không được gán UA(Unassigned cell) chứa thông tin không hiệu lực hoặc chứa tiêu đề được định nghĩa trước. Thông thường dùng cho các chức năng OAM, báo hiệu. Switching Engineering Page 32
  33. Cấu trúc phân lớp ATM trong mô hình tham chiếu B-ISDN ! Mô hình tham chiếu giao thức B-ISDN. ! Lớp vật lý. ! Lớp ATM. ! Lớp thích ứng ATM (AAL). Switching Engineering Page 33
  34. Mô hình tham chiếu giao thức B-ISDN. ! B-ISDN dựa trên cơ sở ISDN, trong đó bổ sung thêm các thành phần để thành B-ISDN PRM (Protocol Reference Mode). Mặt phẳng quản lý Qu ả n lým User Plane Control Plane Qu Các lớp cao hơn Các lớp cao hơn ả ặ n lýl t ph Lớp thích ứng ATM (AAL) ả ớ ng p Lớp ATM Lớp vật lý Hình 5-15 Mô hình tham chiếu giao thức B-ISDN Switching Engineering Page 34
  35. Mô hình tham chiếu giao thức B-ISDN ! Mặt phẳng quản lý thực hiện các chức năng liên quan đến quản lý các giao thức B-ISDN, mặt phẳng quản lý được chia thành hai lớp con: !Quản lý mặt phẳng (Plane Management) thực hiện tất cả các chức năng liên quan đến toàn bộ hệ thống từ đầu cuối đến đầu cuối. Nhiệm vụ phối hợp làm việc giữa các mặt phẳng khác nhau. !Quản lý lớp (Layer Management ) chia thành các lớp khác nhau thực hiện các chức năng quản lý liên quan đến tài nguyên và thông số ở các thực thể, mỗi lớp quản lý lớp xử lý dòng thông tin OAM tương ứng. ! Mặt phẳng điều khiển: Có cấu trúc phân lớp, nhiệm vụ kết nối kênh dẫn, xử lý cuộc gọi và các chức năng báo hiệu liên quan tới việc thiết lập, duy trì, giám sát và giải phóng nối kết. ! Mặt phẳng người dùng: Truyền thông tin của người sử dụng, bao gồm các cơ chế liên quan đến điều khiển luồng, điều khiển tắc nghẽn, chống lỗi. Switching Engineering Page 35
  36. Lớp vật lý ! Gồm hai phân lớp: ! Phân lớp PM (Physical Medium Sublayer): ! Thu thập và tổ chức tế bào ATM được chuyển xuống từ lớp ATM và truyền đến đường truyền vật lý và ngược lại. ! Cung cấp thông tin liên quan đến môi trường vật lý, và các thông tin định thời bit. ! Phân lớp TC (Convergence Transmission Sublayer): ! Thực hiện các chức năng bổ sung, lấy các tế bào trống (tế bào được truyền khi không có các tế bào nào truyền đi). ! Định dạng khung. ! Chuyển đổi luồng tế bào ATM thành luồng mã hoá bít dữ liệu. Switching Engineering Page 36
  37. Lớp vật lý ! Thực hiện các chức năng: ! Chức năng môi trường vật lý (sợi quang, phát/nhận quang, bộ nối ). ! Chức năng thông tin đồng bộ bit (cần thiết khi chuyển đổi tín hiệu truyền dẫn). ! Chức năng tạo và định dạng khung (đối với các trường hợp truyền dẫn phi ATM như SDH, G.702). ! Chức năng thích ứng khung truyền (thích ứng với mô trường truyền dẫn phi ATM). ! Chức năng xác định biên của tế bào (xác định tế bào trong dòng các tế bào). ! Chức năng tạo và xác định HEC (tạo và kiểm tra HEC trong header ATM). ! Chức năng phân định tốc độ tế bào (ghép thêm các tế bào rỗi để thích ứng tốc độ). Switching Engineering Page 37
  38. Lớp ATM ! Thực hiện các chức năng: ! Chức nng ghép và tách tế bào: ghép các tế bào ATM với các luồng ảo và kênh ảo khác nhau để tạo nên dòng tế bào tổng hợp, hoặc ngược lại. Trong khi đó, các tế bào ghép không nhất thiết phải là dòng tín hiệu liên tục. ! Chức nng chuyển đổi tế bào VPI/VCI: yêu cầu đối với tổng đài ATM hay các nút nối chéo ATM. Nó ghép các giá trị mới vào các giá trị trong trường VPI/VCI. ! Chức nng tạo ra và định danh header của tế bào: dùng cho điểm xác định lớp ATM để tạo ra hoặc định danh 4 byte đầu của header của tế bào ATM. Nó ghép các thông tin nhận được từ lớp bậc cao đến các trường tương ứng để tạo ra header của tế bào và thực hiện quá trình ngược lại để định danh header. Ngoài ra nó dịch tín hiệu định danh điểm truy nhập dịch vụ SAPI thành tín hiệu VPI và VCI. ! Chức nng điều khiển dòng chung: điều khiển việc truy nhập và dòng thông tin trong UNI. Trong trường hợp này, thông tin điều khiển dòng được chuyển vào các tế bào chỉ định và không chỉ định. Switching Engineering Page 38
  39. Lớp thích ứng ATM !AAL (ATM Adaptation Layer) giải quyết mọi công việc được cung cấp bởi lớp ATM với các dịch vụ khách hàng yêu cầu. !CCITT định nghĩa 4 lớp như sau: ! ! Dịch vụ lớp A: Dùng cho điện thoại voice, audio và video, yêu cầu tốc độ bit không đổi. ! Dịch vụ lớp B: Các dịch vụ video, audio có tốc độ bit thay đổi có thể dùng cho truyền hình hội nghị khi tốc độ bit phụ thuộc vào tính động của hiện trường. ! Dịch vụ lớp C+D: Các dịch vụ này có tốc độ bit thay đổi nhưng không yêu cầu thời gian thực giữa nguồn và đích. Switching Engineering Page 39
  40. Lớp thích ứng AAL Bảng 5-3 Phân loại lớp thích ứng ATM Thuộc tính Lớp A Lớp B Lớp C Lớp D Tốc độ bit CBR VBR VBR VBR Chế độ kết Nối kết có Nối kết có Nối kết có Không nối kết nối hướng hướng hướng Quan hệ Yêu cầu thời Yêu cầu thời Không yêu Không yêu thời gian gian thực gian thực cầu thời gian cầu thời gian thực thực Kiểu dịch vụ AAL-1 AAL-2 AAL-3/4&5 AAL-3/4&5 AAL Ứng dụng Chuyển mạch Chuyển mạch Chuyển mạch LAN, IP, kênh gói khung SMDS Nx64 voice Voice+Video Switching Engineering Page 40
  41. Lớp thích ứng AAL Bảng 5-4 Các chức năng đại diện Loại Chức nng đại diện AAL Chuyển SDU của cùng một tốc độ bit theo cùng một tốc độ AAL-1 Chuyển thông tin thời gian giữa phát và thu Chỉ thị việc xác nhận lỗi Chuyển SDU theo tốc độ thay đổi AAL-2 Chuyển thông tin thời gian giữa phát và thu Chỉ thị việc xác nhận lỗi hoặc không phát hiện lỗi AAL- Cung cấp dịch vụ loại C và D từ AAL-SAP đến ATM-SAPs 3/4 Chuyển nhờ phương thức kết nối hoặc không kết nối Đơn giản hoá chức nng AAL-3/4 AAL-5 Truyền tốc độ cao Switching Engineering Page 41